Exercícios
Substituições trigonométricas
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Utilize uma substituição trigonométrica para mostrar que $\displaystyle \int \dfrac{u^2}{\sqrt{u^2 - a^2}} \, du = \dfrac{u}{2}\sqrt{u^2-a^2}+\dfrac{a^2}{2} \ln | u + \sqrt{u^2-a^2} | + C $.
A área de um setor circular com raio $r$ e ângulo central $\theta$ é $A=\frac{1}{2} r^2 \theta$. Demonstre esta fórmula. (Dica: assuma um ângulo $0<\theta<\pi/2$ e considere o círculo centrado na origem, de forma que tenha equação $x^2+y^2=r^2$. Então $A$ é a soma da área de um triângulo e a porção restante do setor cirular. Faça um esboço do gráfico para facilitar.)
Considere um tanque de formato cilíndrico que é utilizado para armazenamento de produtos químicos líquidos, com diâmetro de $10$m. Sua posição é tal que suas seções transversais circulares são verticais. Se o produto químico ocupa o cilindro até $7$m de profundidade, qual porcentagem da capacidade total que está sendo utilizada?
Calcule a integral a seguir utilizando substituições trigonométricas:
$\int{\frac{dx}{\sqrt{9+x^2}}}$
$sinh^{-1}(x/3)+C$.
Utilize uma substituição trigonométrica para mostrar que $\displaystyle \int \dfrac{1}{u^2 \sqrt{a^2 - u^2}} \, du = -\dfrac{1}{a^2 u} \sqrt{a^2-u^2} + C $.
Calcule a integral a seguir:
$\int_{0}^{ln\ 4}{\frac{e^t dt}{\sqrt{e^{2t}+9}}}$
Aproximadamente $0,77116$
Calcule $\displaystyle \int \dfrac{1}{2+\sin x} \, dx$.
$\frac{2 \tan ^{-1}\left(\frac{2 \tan \left(\frac{x}{2}\right)+1}{\sqrt{3}}\right)}{\sqrt{3}}$
Calcule a integral a seguir utilizando substituições trigonométricas:
$\int{3\frac{dx}{\sqrt{1+9x^2}}}$
$sinh^{-1}(3x)+C$.
Calcule a seguinte integral:
$ \int_2^3 \frac{1}{x^2-1}dx$.
$\tanh ^{-1}(2)-\tanh ^{-1}(3)$
Prove que $\displaystyle\int \dfrac{1}{u\sqrt{a^2+u^2}}du=-\dfrac{1}{a}\ln \left|\dfrac{\sqrt{a^2+u^2}+a}{u}\right|+C$.
Calcule a seguinte integral:
$\int_{0}^{r}\sqrt{r^{2}-x^{2}}dx.$
Calcule a integral a seguir utilizando substituições trigonométricas:
$\int{\frac{x^3 dx}{\sqrt{x^2+4}}}$
$\dfrac{1}{3}(x^2-8)\sqrt{x^2+4}+C$.
Prove que $\displaystyle\int \sqrt{a^2+u^2}du=\dfrac{u}{2}\sqrt{a^2+u^2}+\dfrac{a^2}{2}\ln{|u+\sqrt{a^2+u^2}|}+C$.
Calcule a integral $\int_{0}^{r}\sqrt{r^{2}-x^{2}}dx$.
$\frac{1}{4}\pi r^4$