LISTA DE DISCIPLINAS

Exercícios

Derivada

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


787   

Encontre o ponto de interseção da reta tangente ao gráfico de $y=x-\frac{1}{x}$ no ponto $(1,0)$ com o eixo $y$.


$(1,0)$.


1718   

  1. Dê um exemplo de função contínua em seu domínio mas que não é diferenciável em algum(ns) ponto(s).

  2. Qual a relação entre a continuidade e a diferenciabilidade de uma função? Demonstre.


1541   

Calcule $f'(x)$ sendo

  1. $f(x)=tg{x}$
  2. $f(x)=sec{x}$


1. $f'(x)=sec^2(x)$.

2. $f'(x)=sec(x)tg(x)$.


1743   

Escreva o número $\sin 1/2$ como uma soma (com a notação $\Sigma$), com um erro menor que $10^{-20}$.


810   

  Calcule $f^{\prime }\left( x\right)$:

  $f\left( x\right) =\dfrac{\sqrt{x}}{x+1}$.


$f'(x) = \dfrac{1-x}{2\sqrt{x}(x+1)^2}$.



Queremos calcular a derivada da divisão da função $\sqrt{x}$ pela função $x+1$. Usando a regra da derivada do quociente, obtemos:

\[\left( \dfrac{\sqrt{x}}{x+1} \right)^\prime = \dfrac{(\sqrt{x})^\prime \cdot (x+1) - \sqrt{x}\cdot (1+x)^\prime}{(x+1)^2}.\]

Sabendo que

\[(\sqrt{x})^\prime = \left(x^{1/2}\right)^\prime = \dfrac{1}{2} x^{\left(\tfrac{1}{2}-1\right)} = \dfrac{1}{2 \sqrt{x}}\]

e que

\[(x+1)^\prime = (x)^\prime + (1)^\prime = 1 + 0 = 1,\]

podemos usar essas expressões na regra do quociente e, assim, obter que

\[\dfrac{(\sqrt{x})^\prime \cdot (x+1) - (\sqrt{x})\cdot (1+x)^\prime}{(x+1)^2} = \dfrac{\dfrac{1}{2 \sqrt{x}}(x+1)-\sqrt{x}(1)}{(x+1)^2} = \dfrac{\dfrac{x}{2 \sqrt{x}} +\dfrac{1}{2 \sqrt{x}} -\dfrac{x}{\sqrt{x}}}{(x+1)^2}.\]

Disso, podemos concluir que

\[f'(x) = \dfrac{1-x}{2\sqrt{x}(x+1)^2}.\]


1726   

Seja $x$ uma função de $t$, isto é, $x=f(t)$, tal que para $t=0$, $x=1$ e para $t=1$, $x=2$. Suponha que $\dfrac{dx}{dt}>0$ para $t\geq0$; $\dfrac{d^2x}{dt^2}<0$ para $0<t<1$ e $\dfrac{d^2x}{dt^2}>0$ para $t>1$. Como você acha que deve ser o gráfico de $f$? Por quê?


1548   

A posição $s$ de uma partícula em um instante $t \geq 0$, se deslocando em um movimento retilíneo, é dada por:

$$s=10\cos(t+\pi/4).$$

  1. Encontre a posição inicial da partícula. Isto é, a posição em $t=0$.
  2. Quais são os pontos mais distantes da origem que a partícula pode alcançar? (à direita e à esquerda).
  3. Encontre a velocidade e a aceleração da partícula nos pontos do item anterior.
  4. Quando a partícula atinge a origem pela primeira vez? Encontre a velocidade, o módulo da velocidade e a aceleração neste instante.


794   

Determine a equação da reta tangente em $\left( p,f\left(p\right) \right)$:

$f\left( x\right) =1/x^{2},\;p=1$.


$y=-2x+3$.


1739   

Escreva o polinômio $p(x)=x^2-4x-9$ em $x$ como um polinômio em $(x-3)$. (Só é necessário calcular o polinômio de Taylor em $3$, do mesmo grau do polinômio original. Por quê?)


1746   

  1. Mostre que o polinômio de Taylor de $f(x)=\sin(x^2)$ de grau $4n+2$ em $0$ é:$$x^2-\dfrac{x^6}{3!}+\dfrac{x^{10}}{5!}-\ldots+(-1)^n\dfrac{x^{4n+2}}{(2n+1)!}.$$ Dica: se $p$ é o polinômio de Taylor de grau $2n+1$ para $\sin$ em $0$, então $\sin x=P(x) + R(x)$, onde $\displaystyle \lim_{x \to 0} \dfrac{R(x)}{x^{2n+1}}=0$. O que isto implica em $\displaystyle \lim_{x \to 0} \dfrac{R(x^2)}{x^{4n+2}}$?

  2. Calcule $f^{(k)}(0)$ para todo $k$.

  3. Em geral, se $f(x)=g(x^m)$, calcule $f^{(k)}(0)$ em termos das derivadas de $g$ em $0$.


796   

Calcule $f'\left( x\right) $, pela definição:

$f\left( x\right) =x^{2}+x$.


$f'(x)=2x + 1$.


1530   

A resposta do corpo humano a uma dose de um medicamento pode ser representada pela equação:
$$R=M^2\left(\dfrac{C}{2}-\dfrac{M}{3}\right),$$
onde $C$ é uma constante positiva e $M$ a quantidade de medicamento absorvida pelo sangue. Se $R$ for uma variação da pressão sanguínea, é medida em milímetros de mercúrio; se for variação de temperatura, é medida em graus. Determine a sensibilidade do organismo ao medicamento,  $dR/dM$.


838   

Derive a função $f\left( x\right) =\left( 3^{2x+3}\right)\sqrt{\cos \left( x^{3}+x^{1/3}\right) }.$


$ 2.3^{2 x + 3} \sqrt{\cos(x^3 + x^{1/3})} \log 3 - (3^{2 x + 3} (1/(3 x^{2/3}) + 3 x^2) \sin(x^3 + x^{1/3}))/(2 \sqrt{cos(x^3 + x^{1/3})})$.


519   

Enche-se um balão esférico a uma taxa de $4,5$ decímetros cúbicos por minuto. Calcule a taxa de variação do raio quando este medir $2$ decímetros.



1586   

Dados $f(x) =\sin^{-1}x$ e $x_0 = \pi/12$, escolha um valor inteiro próximo a $x_0$ tal que $f(x_0)$ e $f'(x_0)$ sejam fáceis de calcular, e calcule uma linearização da função neste ponto.


1245   

Calcule a derivada da seguinte função:
     $f\left(  x\right)  =\arcsin\left(  \cos\left(  x\right)  \right)  .$


-\frac{\sin (x)}{\sqrt{1-\cos ^2(x)}}


1720   

  1. Se uma massa cai uma distância $s(t)$ em $t$ segundos, e $s'$ é proporcional a $s$, então mostre que $s$ não pode ser uma função da forma $s(t)=ct^2$.

  2. Se $s(t)=\dfrac{a}{2} t^2$, mostre que $s''(t)=a$ (a aceleração é constante) e que $[s'(t)]^2=2as(t)$ (observe que obtivemos isso trocando ligeiramente a expressão de $s(t)$).

  3. Assumindo $a=9,8$m$/$s$^2$ (aceleração da gravidade), quantos segundos você tem para fugir de um lustre em um castelo que cai de um teto de $100$m? Se você não conseguir fugir, quão rápido o lustre vai estar quando te atingir? A que altura estava o lustre quando estava se movendo com metade desta velocidade?


516   

Seja $f:\mathbb{R\rightarrow R}$ uma função.

  1. Defina continuidade de $f$ no ponto $p\in \mathbb{R}$.
  2. Defina a derivada de $f$ no ponto $p\in \mathbb{R}$. O que é a função derivada $f^{\prime }\left( x\right) ?$
  3. Calcule, pela definição, a derivada $g^{\prime }\left( 0\right) $ onde    \begin{equation*}    g\left( x\right) =\left\{    \begin{array}{cc}    x^{2}\sin \left( \dfrac{1}{x^{2}}\right)  & \text{se }x\neq 0 \\    0 & \text{ se }x=0    \end{array}    \right.    \end{equation*}



800   

Resolva os itens.

  1. Considere a parábola $y=x^{2}$ e faça a seguinte construção: para cada $a\neq 0$ trace a reta normal à parábola no ponto $\left( a,a^{2}\right) $ e seja $P$ o ponto onde essa normal encontra o eixo $y$. Calcule o limite do ponto $P$ quando $a$ tende a zero.

  2. Calcule o mesmo limite fazendo a mesma construção para a curva quártica $y=x^{4}$ em lugar da parábola.


1529   

O projetista de um balão esférico (um projetista excêntrico) de ar quente com $10m$ de diâmetro quer suspender uma gôndola a $2m$ abaixo da parte inferior do balão, presa por cabos tangentes à superfície deste. Dado que os cabos, saindo da lateral do balão, tangenciam a superfície do mesmo nos pontos $(4,-3)$ e $(-4,-3)$, qual deve ser a largura da gôndola?

fig_tangente_1.png


1585   

Dados $f(x) = e^{-x}$ e $x_0 = -0,1$, escolha um valor inteiro próximo a $x_0$ tal que $f(x_0)$ e $f'(x_0)$ sejam fáceis de calcular, e calcule uma linearização da função neste ponto.


1537   

Seja $f(x)=\sin{x}+\cos{x}$, $0 \leq x \leq 2 \pi$.

  1. Estude o sinal de $f'(x)$.
  2. Faça um esboço do gráfico de $f$.


1587   

Determine a linearização de $f(x) = \sqrt{x+1} + \sin x$ em $x=0$. Como ela se relaciona com as linearizações individuais de $\sqrt{x+1}$ e $\sin x$ em $x=0$?


1574   

Determine $f'$, $f''$ e $f'''$ sendo $f(x)=1/x$.


$f'(x)=-\dfrac{1}{x^2}$, $f''(x)=\dfrac{2}{x^3}$ e $f'''(x)=-\dfrac{6}{x^4}$.


1201   

Se a velocidade de um objeto em metros por segundo no instante $t$ segundos é $v(t)=-\sin(t)-\cos(t)$, qual a sua posição no instante $t=4$?


$s(t)=\cos(4)-\sin(4)$


837   

Determine a derivada da função:

$f\left( x\right) =\left( sen x+\cos x\right) ^{3}.$


$3 (\cos (x)-\sin (x)) (\sin (x)+\cos (x))^2$


1554   

 O modelo Jenss é considerado geralmente como a fórmula mais precisa para predizer a altura de uma criança em idade pré-escolar. Se $h(x)$ denota a altura (em cm) na idade $x$ (em anos) para $\frac{1}{4} \leq x \leq 6$, então $h(x)$ pode ser aproximada por $h(x)=79,041+6,39x-e^{3,261-0,993x}$.

  1. Preveja a altura e a taxa de crescimento quando uma criança atinge a idade de $1$ ano.
  2. Quando é maior e quando é menor a taxa de crescimento?


1579   

Dados $f(x) = x^2+2x$ e $x_0 = 0,1$, escolha um valor inteiro próximo a $x_0$ tal que $f(x_0)$ e $f'(x_0)$ sejam fáceis de calcular, e calcule uma linearização da função neste ponto.


851   

Determine as derivadas das seguintes funções:

  1. $f\left( x\right) =e^{\cos \left( x^{2}\right) }$.

  2. $f\left( x\right) =\left( \sin x+\cos x\right)^{3}$.

  3. $f\left( x\right) =x^{3}e^{-3x}.$


829   

Calcule $f^{\prime }\left( x\right)$:

$f\left( x\right) =\dfrac{\ln x}{x}$.


$f'(x)=1-ln(x)$.


1589   

Suponha que $y=f(x)$ seja derivável em $x=a$ e que $g(x)=m(x-a)+c$ seja uma função linear, em que $m$ e $c$ sejam constantes. Se o erro entre $f$ e $g$, $E(x) = f(x)-g(x)$ for suficientemente pequeno perto de $x=a$, poderemos pensar em utilizar $g$ como aproximação linear de $f$ ao invés da linearização $L(x) = f(a)+f'(a)(x-a)$.

  1. Interprete as expressões $E(a)=0$ e $lim_{x\to a} \dfrac{E(x)}{x-a}=0$.
  2. Mostre que impondo as condições $E=0$ e $lim_{x\to a} \dfrac{E(x)}{x-a}=0$, temos $g(x)=f(a)+f'(a)(x-a)$. Interprete o resultado, relacionando com o item anterior.


1584   

Dados $f(x) = \dfrac{x}{x+1}$ e $x_0 = 1,3$, escolha um valor inteiro próximo a $x_0$ tal que $f(x_0)$ e $f'(x_0)$ sejam fáceis de calcular, e calcule uma linearização da função neste ponto.


1134   

Suponha que $x(t)=e^{0,05t}$ e que $z(t)=e^{0,01t}$. Calcule a taxa de crescimento de $y(t)$ nos seguintes casos:

  1.    $y=x$  
  2.    $y=z$
  


808   

Calcule $f^{\prime }\left( x\right)$:

$f\left( x\right) =\dfrac{\sec x}{3x+2}$.


$f'(x) = \dfrac{\tan x \sec x}{3x+2}-\dfrac{3 \sec x}{(3x+2)^2}$.



Queremos calcular a derivada da divisão da função $\sec x$ pela função $3x+2$. Usando a regra da derivada do quociente, obtemos:

\[\left( \dfrac{\sec x}{3x+2} \right)^\prime = \dfrac{(\sec x)^\prime \cdot (3x+2) - (\sec x)\cdot (3x+2)^\prime}{(3x+2)^2}.\]

Como $\sec x = \dfrac{1}{\cos x}$, podemos usar a regra do quociente para calcular sua derivada:

\[(\sec x)^\prime = \left(\dfrac{1}{\cos x}\right)^\prime = \dfrac{(1)^\prime\cdot \cos(x) - 1\cdot (\cos x)^\prime}{(\cos x)^2} =\dfrac{0 - (-\sin x)}{(\cos x)^2} = \tan(x)\sec(x).\]

Por outro lado, sabemos que $(3x+2)^\prime = 3$.

Dessa forma, voltando à primeira igualdade e substituindo $(\sec x)^\prime$ e $(3x+2)^\prime$ pelas expressões encontradas, obtemos:

\[\dfrac{(\sec x)^\prime \cdot (3x+2) - (\sec x)\cdot (3x+2)^\prime}{(3x+2)^2} = \dfrac{\tan(x) \sec(x) (3x+2) - (\sec x)(3)}{(3x+2)^2} .\]

Ou seja,

\[ \left( \dfrac{\sec x}{3x+2} \right)^\prime = \dfrac{\tan(x) \sec(x)}{3x+2} - \dfrac{3\sec(x)}{(3x+2)^2}. \]


1818   

Sejam $f,g,h$ funções deriváveis. Verifique que $(fgh)'=f'gh+fg'h+fgh'$. Generalize.



802   

Calcule $f^{\prime }\left( x\right)$:

$f\left( x\right) =x^{2}e^{x}$.


$f'(x)=e^x(x^2+2x)$.



Usando a regra da derivada do produto, temos que

\[f^\prime(x) = (x^2  e^x)^\prime = (x^2)' \cdot e^x + x^2 \cdot (e^x)^\prime.\]

Como $(x^2)^\prime = 2x$ e $(e^x)^\prime = e^x$, então

\[(x^2)' \cdot e^x + x^2 \cdot (e^x)^\prime = 2x e^x + x^2 e^x.\]

Colocando o fator comum $e^x$ em evidência, concluímos que

\[f^\prime (x) = e^x (x^2 + 2x).\]


827   

Calcule $f^{\prime }\left( x\right)$:

  $f\left( x\right) =\pi ^{x}$.


$f'(x)=ln(\pi)\pi^x$.


804   

Calcule $f^{\prime }\left( x\right)$:
$f\left( x\right) =\dfrac{1+e^{x}}{1-e^{x}}$.



$f'(x) = \dfrac{2 e^x}{(1-e^x)^2}$.



Queremos calcular a derivada da divisão da função $1+e^x$ pela função $1-e^x$. Usando a regra da derivada do quociente, obtemos:

\[\left( \dfrac{1+e^x}{1-e^x} \right)^\prime = \dfrac{(1+e^x)^\prime \cdot (1-e^x) - (1+e^x)\cdot (1-e^x)^\prime}{(1-e^x)^2}.\]

Como

\[(1+e^x)^\prime = (1)^\prime + (e^x)^\prime = 0 + e^x = e^x\]

e, analogamente,

\[(1-e^x)^\prime = -e^x,\]

temos então que

$\dfrac{(1+e^x)^\prime \cdot (1-e^x) - (1+e^x)\cdot (1-e^x)^\prime}{(1-e^x)^2} = \dfrac{e^x (1-e^x)-(1+e^x)(-e^x)}{(1-e^x)^2} = \dfrac{e^x(1-e^x)+e^x(1+e^x)}{(1-e^x)^2}$.

Para simplificar o numerador, colocamos o fator comum $e^x$ em evidência: $e^x(1-e^x+1+e^x) = 2e^x$. Portanto, concluímos que

\[f'(x) = \dfrac{2 e^x}{(1-e^x)^2}.\]




1575   

Determine $f'$, $f''$ e $f'''$ sendo $f(x)=4x^4+2/x$.


524   

Dois automóveis movem-se em direção a um cruzamento em ângulo reto, um dirigindo-se para o leste à razão de $72 km/h$ e o outro para o sul à razão de $54 km/h$. Com que velocidade os carros aproximam-se um do outro no instante em que o primeiro está a $400 m$ e o segundo a $300 m$ do cruzamento?




835   

Determine a derivada de $f\left( t\right) =t^{3}e^{-3t}$.


$-3 e^{-3t} (t-1) t^2$.


1327   

Encontre a equação da reta tangente ao gráfico da função $f(x)=12\sqrt[6]{x}-\frac{1}{2x^2}+\log_5(x)$ no ponto cuja coordenada horizontal é $3$.


531   

Se uma bola de neve derrete de tal forma que a área de sua superfície decresce a uma taxa de $1cm^{2}/\min $, encontre a taxa segundo qual o diâmetro decresce quando o diâmetro for $5 cm$.


 


1819   

Seja $f(x)=\sin{x}+\cos{x}$, $0 \leq x \leq 2 \pi$.
Estude o sinal de $f'(x)$.
Faça um esboço do gráfico de $f$.



1184   

Determine a derivada da seguinte função:
  $f\left( x\right) =\ln \left( 3\cos ^{5}\left( 4x\right)\right) .$


$f'(x) = -20\tan(4x)$.


795   

Determine a equação da reta tangente em $\left( p,f\left(p\right) \right)$:

$f\left( x\right) =\sqrt[3]{x},\;p=1$.


$y=\dfrac{x+2}{3}$.


1538   

Suponha que em uma máquina um pistão se desloque verticalmente tal que sua posição no instante $t$ (medido em segundos) seja dado por:

$$s=A \cos(2 \pi b t ),$$

onde $A>0$ é a amplitude do movimento, e $b>0$ é a frequência (número de vezes que o pistão se desloca de cima para baixo por segundo). Qual o efeito da duplicação da frequência sobre a velocidade, a aceleração e a sobreaceleração do pistão? Relacione a sua resposta com o fato de que uma máquina quebra quando funciona rápido demais.


1384   

Um invertimento de \$500,00 da juro de 7% ao ano, capitalizado continuamente, e apót $t$ anos o investimento valerá $500e^{0,07t}$.

  1. Aproximadamente, quando o investimento valerá \$1000,00?
  2. Quando o valor do investimento estará crescendo à razão de \$50,00 por ano?


1546   

Demonstre as seguintes regras de derivação:

  1. $(sec{x})'=sec{x} \cdot tg{x}$
  2. $(cotg{x})'=-cossec^2{x}$
  3. $(cossec{x})'=-cossec{x} \cdot cotg{x}$


521   

A que taxa o nível do líquido diminui dentro de um tanque cilíndrico vertical de raio $2$ metros se bombearmos o líquido para fora a uma taxa de $3000$ litros por minuto?




773   

Determine uma reta que seja paralela a $x+y=1$ e tangente à curva $x^{2}+xy+y^{2}=3$


1553   

A corrente $I(t)$ em um circuito elétrico composto de um resistor e um indutor, no instante $t$, é dada por $I(t)=I_0e^{-Rt/L}$, onde $R$ é a resistência, $L$ a indutância e $I_0$ é a corrente no instante $t=0$. Mostre que a taxa de variação da corrente no instante $t$ é proporcional a $I(t)$.


1721   

Imagine uma estrada em que o limite de velocidade é especificado a cada ponto dela. Isto é, existe uma certa função $L$ tal que o limite de velocidade no quilômetro $x$ da estrada é $L(x)$. Dois carros, $A$ e $B$, estão viajando nesta estrada; o carro $A$ com posição $a(t)$ e o $B$ com posição $b(t)$.

  1. Escreva uma equação para o fato de que o carro $A$ sempre anda no limite de velocidade. (A resposta não é $a'(t)=L(t)$.)

  2. Suponha que $A$ sempre ande no limite de velocidade, e que a posição de $B$ no tempo $t$ é a posição de $A$ no tempo $t-1$. Mostre que $B$ também anda no limite da velocidade em todo o tempo.

  3. Suponha agora que $B$ anda sempre a uma distância fixa atrás de $A$. Sobre quais condições $B$ sempre irá andar no limite de velocidade?


1741   

Escreva o número $\sin 1$ como uma soma (com a notação $\Sigma$), com um erro menor que $10^{-17}$.


1740   

Escreva o polinômio $p(x)=x^4-12x^3+44x^2+2x+1$ em $x$ como um polinômio em $(x-3)$. (Só é necessário calcular o polinômio de Taylor em $3$, do mesmo grau do polinômio original. Por quê?)


1588   

Mostre que a linearização de $f(x)=(1+x)^k$ em $x=0$ é $L(x)=1+kx$.


528   

Dois carros estão se encaminhando em direção a um cruzamento em ângulo reto, um seguindo a direção leste a uma velocidade de $90 km/h$ e o outro seguindo a direção sul, a $60 km/h$. Qual a taxa segundo a qual eles se aproximam um do outro no instante em que o primeiro carro está a $0,2 km$ do cruzamento e o segundo a $0,15 km$?




1532   

Sejam $f_1,f_2,\ldots,f_n$, $n \geq 2$, funções deriváveis em $p$. Prove, por indução finita, que $f_1+f_2+\ldots+f_n$ é derivável em $p$. 



Veja Guidorizzi, volume $1$, página $158$.


826   

Calcule $f^{\prime }\left( x\right)$:

  $f\left( x\right) =2^{x}$.


$f'(x)=ln(2)2^x$.


526   

Uma escada de $8 m$ está encostada em uma parede. Se a extremidade inferior da escada for afastada do pé da parede a uma velocidade constante de $2 m/s$, com que velocidade a extremidade superior estará descendo no instante em que a inferior estiver a $3 m$ da parede?




784   

Consideremos a curva $y=-x^4 +2x^2+x$ e o ponto $P=(1,2)$ nessa curva. Verifique que a reta tangente a essa curva no ponto $P$ também é tangente à curva em outro ponto. Ache esse outro ponto.


1730   

Suco de maracujá (um bom calmante natural) é derramado a uma taxa uniforme de $20$cm$^3/$s em um copo de vidro em forma de um cone truncado (veja a figura abaixo). Se os raios superior e inferior do copo forem de $4$ e $3$cm e a altura $12$cm, com que rapidez estará subindo o nível de suco quando ele estiver na metade do copo? (Sugestão: estenda o copo para baixo para formar um cone.)

suquinho.png


1250   

Compute a derivada $f''(x)$ de $f(x)=\frac{x^2+1}{x}$.


$f''(x)=\dfrac{2}{x^3}$.


803   

Calcule $f^{\prime }\left( x\right)$:

$f\left( x\right) =e^{x}\cos x$.


$f'(x) = e^x(\cos x - \sin x)$.



Usando a regra da derivada do produto, temos que

\[f^\prime(x) = (e^x \cos x)^\prime = (e^x)^\prime \cdot \cos(x) + e^x \cdot (\cos x)^\prime.\]

Como $(e^x)^\prime = e^x$ e $(\cos x)^\prime = -\sin x$, então

\[(e^x)^\prime \cdot \cos(x) + e^x \cdot (\cos x)^\prime = e^x \cos x + e^x (-\sin x) .\]

Colocando o fator comum $e^x$ em evidência, concluímos que

\[f^\prime (x) = e^x (\cos x- \sin x).\]

523   

Uma escada de $5 m$ de altura está apoiada numa parede vertical. Se a base da escada é arrastada horizontalmente da parede a $3 m/s$, a que velocidade desliza a parte superior da escada ao longo da parede quando a base encontra-se a $3 m$ da parede?




1251   

Calcule a derivada de ordem $1000$ da função $f(x)=e^{kx}, k \in R$.


$f^{1000}(x)=k^{1000}e^{kx}$


1186   

Determine a derivada da seguinte função:
  $f\left( x\right) =\cos \left( x^{-2}\right)+x^{3}e^{-3x}.$


$f'(x) =  -3 e^{-3 x} x^3 + 3 e^{-3 x} x^2 + (2 \sin(x^{-2}))/x^3$.


789   

Demonstre que as retas tangentes às curvas $4y^3-x^2y-x+5y=0$ e $x^4-4y^3+5x+y=0$ na origem são perpendiculares.


1547   

Um aluno estudioso está sentado em uma sala de aula, ao lado da parede e de frente para a lousa, como na figura abaixo. A lousa tem $3$m de largura e começa a $1$m da parede à qual o aluno está próximo. Mostre que, se a distância da parede for $x$, o ângulo de visão é

$$\alpha = \cot^{-1} \dfrac{x}{15} - \cot^{-1} \dfrac{x}{3}.$$

fig_trig_1.png


1540   

Seja $f(x)=\sin{x}$. Calcule $f'(x)$ e $f'\left(\dfrac{\pi}{4}\right)$.


$f'(x)=\cos(x)$ e $f'\left(\dfrac{\pi}{4}\right)=\dfrac{\sqrt{2}}{2}$.


790   

Dê a definição de derivada de uma função $f$ no ponto $p\in \mathbb{R}.$ O que é a função derivada $f^{\prime }(x)$?


1202   

Demonstre que a derivada da função seno é a função cosseno.


1744   

Escreva o número $e$ como uma soma (com a notação $\Sigma$), com um erro menor que $10^{-4}$.


1254   

Determine a derivada de ordem $999$ da função $f(x)=\sin(x)+\cos(x)$.


1200   

Uma partícula tem sua posição variando com o tempo de acordo com a relação $s(t)=-2\sin(t)+3\cos(t)$ , onde $s$ é dado em metros e $t$ em segundos.

  1. Encontre a velocidade da partícula no instante $t$.
  2. Encontre a velocidade da partícula no instante $t=3$ segundos.


1. $v(t)=-3\sin(t)-2\cos(t)$.

2. $v(3)=-3\sin(3)-2\cos(3)$.


1560   

Determine a equação da reta tangente ao gráfico de $f(x)=e^x$ no ponto de abscissa $0$.


1550   

Se um raio de luz de intensidade $k$ é projetado verticalmente para baixo na água, então a sua intensidade $I(x)$ à profundidade de $x$ metros é $I(x)=ke^{-1,4x}$.

  1. A que taxa de intensidade o raio de luz está variando em relação à profundidade a $1$ metro?
  2. A que profundidade a intensidade é a metade de seu valor na superfície?


1572   

Prove que se $f$ for derivável em $p$, então $f$ será contínua em $p$. 



Veja Guidorizzi, volume $1$, página $152$.


518   

Um recipiente cheio de água com a forma de um cone invertido está sendo esvaziado à razão de $6\,cm^3/min$. A altura do cone é $24cm$ e o raio da base é $12cm$. Encontre a velocidade com que baixa o nível da água quando está a $10cm$ do fundo.


$\dfrac{dr}{dt}=-\dfrac{1}{25 \pi}$ cm/min


1549   

Se uma droga é injetada em uma corrente sanguínea, sua concentração $C$, $t$ minutos depois, é dada por $C(t)=\frac{k}{a-b}(e^{-bt}-e^{-at})$, para constantes positivas $a$, $b$ e $k$.

  1. Em que instante ocorre a concentração máxima?
  2. Que se pode dizer sobre a concentração após um longo período de tempo? 


1573   

Determine $f'$, $f''$ e $f'''$ sendo $f(x)=4x^4+2x$.


$f'(x)=16x^3+2$, $f''(x)=48x^2$ e $f'''(x)=96x$.


843   

Calcule a derivada da função:

$y=\dfrac{x\tan 3x}{x^{2}+4}$.


$y' =  -(2 x^2 \tan(3 x))/(x^2 + 4)^2 + (\tan(3 x))/(x^2 + 4) + (3 x \sec^2(3 x))/(x^2 + 4)$.


1138   

Escreva a taxa de crescimento de $y$ em termos das taxas de crescimento das variáveis $k$, $l$ e $m$ para os seguintes casos. Assuma $\beta$ como uma dada constante.

  1.    $y=(klm)^{\beta }$  
  2.    $y=(kl)^{\beta }(1/m)^{1-\beta }$


846   

Calcule a derivada da função:

$y=\dfrac{e^{\sec \sqrt{x}}}{x}$.


$y'=\dfrac{(\tan x) e^{\sec x} \sec x)}{\sqrt{x}} - \dfrac{e^{\sec x}}{(2 x^{3/2})}$.


1188   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =\log_{2}\left(  2x\right)  \log_{3}\left(3x\right)  .$


$f'(x) = \dfrac{2 \ln x + \ln 6}{x \ln 2 \ln 3}$.


849   

Calcule a derivada da função:

$y=\ln \left(\dfrac{\cos \sqrt{x}}{1+\sin \sqrt{x}}\right)$.


$y'=(\sin(\sqrt{x}) + 1) \sec(\sqrt{x}) \left(-\dfrac{\sin(\sqrt{x})}{2 \sqrt{x} (\sin(\sqrt{x}) + 1)} - \dfrac{\cos^2(\sqrt{x})}{2 \sqrt{x} (\sin(\sqrt{x}) + 1)^2}\right)$.


788   

Encontre as equações das retas que passam pelo ponto $(-1,1)$ e são tangentes à curva $x^2+4y^2-4x-8y+3=0.$


1135   

Suponha que $x(t)=e^{0,05t}$ e que $z(t)=e^{0,01t}$. Calcule a taxa de crescimento de $y(t)$ nos seguintes casos:

  1.    $y=xy$  
  2.    $y=x/y$


1137   

Escreva a taxa de crescimento de $y$ em termos das taxas de crescimento de $k$, $l$ e $m$ para os seguintes casos. Assuma $\beta$ como uma dada constante.

  1. $y=k^{\beta }$ 
  2. $y=k/m$


801   

Ache uma fórmula para a soma $1+2x+3x^2 +\cdots +nx^{n-1}$.


$\dfrac{nx^{n+1}-(n+1)x^n+1}{(x-1)^2}$, $x \neq 1$. Se $x=1$, a soma dá $\dfrac{n(n+1)}{2}$.


809   

Calcule $f^{\prime }\left( x\right)$:

$f\left( x\right) =4\sec x+\cot x$.


$f'(x) = 4 \sec x \tan x - \csc^2 x$.



Como a derivada da soma de funções é a soma de suas derivadas, temos inicialmente que

\[ (4\sec x+\cot x)^\prime = (4\sec x)^\prime + (\cot x)^\prime = 4 (\sec x)^\prime + (\cot x)^\prime .\]

Como $\sec x = \dfrac{1}{\cos x}$, podemos usar a regra do quociente para calcular sua derivada:

\[(\sec x)^\prime = \left(\dfrac{1}{\cos x}\right)^\prime = \dfrac{(1)^\prime\cdot \cos(x) - 1\cdot (\cos x)^\prime}{(\cos x)^2} =\dfrac{0 - (-\sin x)}{(\cos x)^2} = \tan(x)\sec(x).\]

De forma análoga, usaremos a regra do quociente para calcular a derivada da função $\cot x$, que é igual a $\frac{\cos x}{\sin x}$:

\[(\cot x)^\prime = \left(\dfrac{\cos x}{\sin x}\right)^\prime = \dfrac{(\cos x)^\prime\cdot \sin(x) - \cos(x)\cdot (\sin x)^\prime}{(\sin x)^2} =\dfrac{(-\sin x) \sin x - \cos(x)(\cos x)}{(\sin x)^2} = -(\csc x)^2,\]

em que usamos a identidade trigonométrica fundamental

\[(\sin x)^2 + (\cos x)^2 = 1\]

e a identidade $\csc x = \frac{1}{\sin x}$ para obter a cossecante.

Substituindo as expressões encontradas para as derivadas de $\sec x$ e de $\cot x$ na primeira igualdade, concluímos que

$f'(x) = 4 \tan(x)\sec(x) - (\csc x)^2$.




1198   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =\frac{\sqrt{x^{3}+1}}{\left(  x^{2}+1\right)  ^{4}}.$


1253   

Calcule a derivada de ordem $n$ da função $f(x)=\sin{x}+\cos{x}$.


1562   

Seja $g(x)=log_a{x}$, em que $a>0$ e $a \neq 1$ é um real dado. Mostre que $g'(x)=\dfrac{1}{x \ln{a}}$.


1728   

A naftalina pode ser utilizada como repelente de insetos, embora possa trazer malefícios à saúde. Este composto tem a capacidade de sublimar, isto é: passa do estado sólido diretamente para o gasoso. Se uma bolinha de naftalina evapora a uma taxa proporcional à área de sua superfície, mostre que o seu raio decresce a uma taxa constante.


1577   

Determine $f'$, $f''$ e $f'''$ sendo $f(x)=\left\{\begin{array}{ll}
x^2+3x, & \text{se} x \leq 1 \\
5x-1, & \text{se} x>1  
\end{array}\right.$.


836   

Determine a derivada da função:

$f\left( x\right) =e^{\cos \left( x^{2}\right)}.$



Pela regra da cadeia, temos que
$f(g(x))' = f'(g(x))g'(x)$
Assim, escolhendo $f(x) = e^x$ e $g(x)=\cos(x^2)$, temos:
$(e^{\cos(x^2)}))' = e^{\cos(x^2)}(\cos(x^2))'$
Para calcular $(\cos(x^2))'$, temos que aplicar novamente a regra da cadeia. Desta vez, podemos escolher $f(x)=\cos(x)$ e $g(x)=x^2$.
Assim, 
$(\cos(x^2))'= -2\sin(x^2)x$
Portanto:
$(e^{\cos(x^2)}))' = -2 e^{\cos(x^2)}x\sin(x^2)$


1727   

Uma partícula se move na circunferência $x^2 + y^2 = a^2$ de tal modo que a componente $x$ de sua velocidade é $\dfrac{dx}{dt}=-y$. Encontre $\dfrac{dy}{dt}$ e determine se o sentido do movimento é horário ou anti-horário.


852   

Determine as derivadas das seguintes funções:

  1. $f\left( x\right) =e^{\tan \left( x^{3}\right) }$.

  2. $f\left( x\right) =\left( a\sin x+\cos bx\right)^{3};$

  3. $f\left( x\right) =\dfrac{xe^{-3x}}{1+\cos x}.$


529   

Um balão está subindo verticalmente acima de uma estrada a uma velocidade constante de $1$ pé por segundo. Quando ele está a $65$ pés acima do solo, uma bicicleta que se desloca a uma velocidade constante de $17$ pés por segundo  passa por baixo dele. A que taxa a distância $s(t)$ entre a bicicleta e o balão aumentará três segundos depois?




1242   

Encontre os dois pontos onde a curva $x^2+xy+y^2=7$  cruza o eixo x e mostre que as tangentes à curva nesses pontos são paralelas. Qual é o coeficiente angular comum dessas retas?


1717   

Dizemos que duas famílias de curvas são trajetórias ortogonais uma da outra se cada curva de uma família for ortogonal a cada curva da outra. Faça um esboço de gráfico da família de curvas $xy=c$ e da família $x^2-y^2=k$ no mesmo plano cartesiano, para alguns valores de $c$ e $k$ reais (se necessário, utilize algum recurso computacional). Mostre que estas famílias (de hipérboles) são ortogonais uma da outra. (Sugestão: retas tangentes são perpendiculares em um ponto de interseção se as suas inclinações são recíprocas negativas uma da outra.)


1544   

Determine a equação da reta tangente ao gráfico de $f(x)=tg{x}$ no ponto de abscissa $0$.


$y=x$


1561   

Determine a equação da reta tangente ao gráfico de $f(x)=\ln{x}$ no ponto de abscissa $1$. Esboce os gráficos de $f$ e da reta tangente.


1203   

Demonstre que a derivada da função cosseno é a oposta da função seno.


797   

Calcule $f'\left( x\right) $, pela definição:

$f\left( x\right) =1/x$.


$f'(x)=-\dfrac{1}{x^2}$.


1195   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =\tan\left(  x\right)  \cos^{2}\left(  x\right)  .$


1535   

Calcule $F'(x)$ sendo $F(x)$ igual a:

  1. $x^2e^x\cos{x}$
  2. $e^x \sinh{x} \cos^2{x}$


845   

Calcule a derivada da função:

$y=\left( 2+\sin x\right) ^{x}$.


$y' = (\sin x + 2)^x (\log(\sin x + 2) + (x \cos x )/(\sin x + 2))$.


1742   

Escreva o número $\sin 2$ como uma soma (com a notação $\Sigma$), com um erro menor que $10^{-12}$.


1193   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =5^{x\cos\left(  x^{2}\right)  }.$


841   

O que podemos dizer sobre uma função $f\left( x\right) $ tal

que $f^{\prime }\left( f\left( x\right) \right) =\left( f\left( f\left(x\right) \right) \right) ^{\prime }$ para todo $x$?



Pela aplicação direta da Regra da cadeia, temos que:

$\left( f\left( f\left(x\right) \right) \right) ^{\prime }=f^{\prime }\left( f\left( x\right) \right)f^{\prime}(x)$

Para $f(x)$, portanto, temos que:

$f^{\prime }\left( f\left( x\right) \right) =f^{\prime }\left( f\left( x\right) \right)f^{\prime}(x)$

Para que a igualdade seja verdadeira, há duas possibilidades. Ou:

$f^{\prime}(x)=0,\,\forall x$

 i.e., a função é uma constante (o que resultaria em $0=0$). Ou: 

$f^{\prime}(x)=1,\,\forall x$

i.e., $f(x)=x+a$, sendo que $a$ é uma constante (o que resultaria em $f^{\prime }\left( f\left( x\right) \right)=f^{\prime }\left( f\left( x\right) \right)$).


1204   

Demonstre que a derivada da função tangente é igual ao quadrado da função secante.


1185   

Determine a derivada da seguinte função:
  $f\left( x\right) =\left( \left( \sin x\right) \left(\cos x\right) \right) ^{3}.$


$f'(x)=3/8 \sin(2x) \sin(4x)$.


799   

Calcule $f'\left( x\right) $, pela definição:

$f\left( x\right) =1/x^{2}$.


$f'(x) = -\dfrac{2}{x^3}$.


1576   

Determine $f'$, $f''$ e $f'''$ sendo $f(x)=x|x|$.


1748   

  1. Mostre que se $f''(a)$ existe, então $f''(a) = \displaystyle \lim_{h \to 0} \dfrac{f(a+h) - 2f(a) + f(a-h)}{h^2}.$ (Sugestão: use o polinômio de Taylor $P_{2,a}(x)$ com $x=a+h$ e com $x=a-h$).

  2. Conclua que $\dfrac{f(a+h) - 2f(a) + f(a-h)}{h^2}$ é uma boa aproximação para $f''(a)$, para $h$ pequeno.

  3. Sabendo que a posição de uma partícula em função do tempo $x(t)$ é tal que $x(0)=2$, $x(1)=4$ e $x(2)=5$, utilizando a fórmula acima obtenha uma aproximação para a aceleração da partícula entre os tempos $t=0$ e $t=2$. (Escolha apropriadamente os valores de $a$ e $h$).


1197   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =\frac{\cos^{2}\left(  x\right)  +\sin^{2}\left(x\right)  }{\sqrt{x^{3}+1}}.$


1133   

Seja $f(x)=2x^2-3$. Determine a equação da reta tangente ao gráfico de $f$ nos pontos:

  1. $(0,f(0))$
  2. $(2,f(2))$


1533   

Seja $g(x)=x^3+\dfrac{1}{x}$. Determine a equação da reta tangente ao gráfico de $g$ no ponto correspondente a $x=1$.


$y=2x$.


517   

Calcule, pela definição, a derivada das seguntes funções:

  1. $f\left( x\right) =ax+b$
  2. $g\left( x\right) =ax^{2}+bx+c$.


1. $f'(x)=a$.

2.$f'(x)=2ax+b$.


792   

Determine a equação da reta tangente em $\left( p,f\left(p\right) \right)$:

$f\left( x\right) =x^{2}-x;\;p=1$.


$y=x-1$.


527   

A base $x$ e a altura $y$ de um retângulo estão variando com o tempo. Em um dado instante, $x$ mede $3 cm$  e cresce a uma taxa de $2 cm/s$, enquanto $y$ mede $4 cm$ e decresce a uma taxa de $1 cm/s$. Determine, nesse instante, a taxa de variação da área $A$ do retângulo em relação ao tempo.




1590   

Uma criança empina uma pipa a uma altura de $50$m. O vento age sobre a pipa horizontalmente a uma velocidade de $7$m$/$s em relação à criança. Com que velocidade a criança deve soltar a linha quando a pipa estiver a $100$m de distância?


811   

Calcule $f^{\prime }\left( x\right)$:

$\dfrac{x+\sqrt[4]{x}}{x^{2}+3}$.


$f'(x) = \dfrac{3-7x^2}{4 x^{3/4}(x^2+3)^2}$.


1194   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =\frac{\left(  x^{3}+1\right)  ^{5}}{\left(x^{2}+1\right)  ^{4}}.$


$\frac{x \left(x^3+1\right)^4 \left(7 x^3+15 x-8\right)}{\left(x^2+1\right)^5}$


798   

Calcule $f'\left( x\right) $, pela definição:

$f\left( x\right) =\dfrac{x}{x+1}$.


$f'(x) = \dfrac{1}{(x+1)^2}$.


1255   

 Considere a curva definida pela equação $x^2y+3\ln(1-y)+x^4=1.$ 

  1. Calcule $y'.$
  2. Encontre a aproximação linear à curva no ponto $(1,0).$



847   

Calcule a derivada da função:

$y=e^{x^{x}}$.


$y'=e^{x^x} x^x (\log x + 1)$.


1330   

Considere a seguinte função:
\begin{equation*}
  f(x)= \begin{cases}
        (x-b)^2 -2, \quad x\geq 0 
        a\sin x,\quad x<0.
        \end{cases}
\end{equation*}

  1.  Encontre os valores de $a$ e $b$ tais que $f(x)$ seja contínua e diferenciável para todo $x\in\mathbb{R}.$
  2.  Encontre o valor de $b$ tal que a reta tangente $t$ à curva $f(x)$ no ponto $x=1$ possui inclinação 2. Escreva a equação de $t.$
  3.  Encontre o valor de $a$ tal que a reta $s$ normal à reta tangente à $f(x)$ no ponto $x=-\pi$ possui inclinação $-\frac{1}{2}$. Escreva a equação de $s$.



 Observamos que para todo $x\geq 0$ a função $(x-b)^2 -2$ é contínua e que para todo $x<0$ também a função $a\sin x$ é contínua. Logo, temos que verificar a continuidade no ponto $x=0$, isto é, deve acontecer que

$\lim_{x\rightarrow 0^-}f(x)= \lim_{x\rightarrow 0^+}f(x),$

ou seja,

$\lim_{x\rightarrow 0^-}a\sin x=\lim_{x\rightarrow 0^+} (x-b)^2 -2.$

A relação anterior implica que $0= b^2-2$, ou seja $b=\pm\sqrt{2}.$ \\

Afim de achar o valor de $a$, encontramos a derivada de $f(x)$. Observamos que, sendo $a\sin x$ e $(x-b)^2 -2$ funções diferenciáveis para todo $x\in \mathbb{R}$, a derivada de $f(x)$ é a seguinte:

$f'(x)= \begin{cases}     
2(x-b), \quad x> 0 
a\cos x,\quad x<0.
\end{cases}$

Como queremos que $f(x)$ seja diferenciável no ponto $x=0$ também, temos que impor

$\lim_{x\rightarrow 0^-}f'(x)= \lim_{x\rightarrow 0^+}f'(x),$

ou seja,

$\lim_{x\rightarrow 0^-}a\cos x= \lim_{x\rightarrow 0^+}2(x-b).$

A relação anterior implica que $a= -2b$, então as duplas de valores para os quais $f(x)$ é contínua e diferenciável para todo $x\in \mathbb{R}$, são $(a,b)= (2\sqrt{2}, -\sqrt{2})$ ou $(a,b)=(-2\sqrt{2}, \sqrt{2}).$

Usando a função derivada calculada no ponto anterior, temos que $f'(1)= 2(1-b),$ então, como a inclinação da reta tangente deve ser 2, obtemos $2(1-b)=2$ e logo $b= 1$. A equação de $t$ é $y= f(1)+ f'(1)(x-1)$, isto é $y= -2+1\cdot(x-1)=x-3.$

Usando a função derivada calculada no ponto anterior, temos que $f'(-\pi)= a\cos (-\pi)= -a,$ então, como a inclinação da reta normal $s$ é $-\frac{1}{2}$, deve ser $-a=2$, ou seja $a=-2$. A equação de $s$ é $y= f(-\pi)-\frac{1}{2}(x+\pi)$, isto é $y= -\frac{1}{2}x -\frac{1}{2}\pi.$



1580   

Dados $f(x) = x^{-1}$ e $x_0 = 0,9$, escolha um valor inteiro próximo a $x_0$ tal que $f(x_0)$ e $f'(x_0)$ sejam fáceis de calcular, e calcule uma linearização da função neste ponto.



A linearização da função $f(x)$ em torno de um ponto $x_0$ nada mais é do que assumir que ela se comporta como uma reta que passa pelo ponto $(x_0,f(x_0))$ com inclinação $f'(x_0)$.

Neste caso temos $f(x)=x^{-1}$ e $f'(x)=-x^{-2}$. Linearizando a função em torno de $1$, temos $\frac{y-f(1)}{x-1}=f'(1)=\frac{y-1}{x-1}= -1$ portanto temos

$y=2-x$


1189   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =\frac{\left(  x^{2}-1\right)  ^{2}}{\sqrt{x^{2}+1}}.$


$f'(x) = \dfrac{x(x^2-1)(3x^2+5)}{(x^2+1)^{3/2}}$.


1591   

Em uma esteira transportadora, areia é derrubada a uma taxa de $10$m$^3/$min no topo de um monte em formato de cone. A relação entre a altura do monte e o diâmetro da base é sempre de $3/8$.

  1. Qual a taxa de variação da altura?
  2. Qual a taxa de variação do raio, se o monte tiver $4$m de altura?


1243   

Calcule a derivada da seguinte função:
   $f\left(  x\right)  =\tan\left(  x\right)  \arcsin\left(  x^{2}\right).$


1328   

Sejam $x_0,c\in\mathbb R$ e considere a função $f(x)=e^{cx}$. Encontre $f'(x_0)$ usando a definição de derivada.


$ce^{cx_0}$.


1570   

Seja $f(x)=\left\{\begin{array}{ll}
x^2, & \text{se } x \leq 0 \\
-x^2, & \text{se } x>0  
\end{array}\right.$

  1. $f$ é contínua em $0$. Por quê?
  2. $f$ é derivável em $0$. Por quê?


1. Sim.
2. Sim.


1534   

Calcule $F'(x)$ sendo $F(x)$ igual a:

  1. $xe^x\cos{x}$
  2. $e^x \sin{x} \cos{x}$


1531   

Em um gerenciamento de estoques, o custo médio semanal de pedidos, pagamentos e armazenamento de mercadoria é dado por:
$$A(q)=\dfrac{km}{q}+cm+\dfrac{hq}{2},$$
onde $q$ é a quantidade de produtos pedida em períodos de baixa no estoque; $k$ é o custo (fixo) da colocação de um pedido; $c$ é o custo (também fixo) de cada item; $m$ é a quantidade de itens vendidos por mês; e $h$ é o custo mensal para manter cada item (custos de espaço, seguro, etc). Determine $dA/dq$ e $d^2A/dq^2$. Interprete os resultados.


1571   

Seja $f(x)=\left\{\begin{array}{ll}
-x+3, & \text{se } x<3 \\
x-3, & \text{se } x \geq 3  
\end{array}\right.$

  1. $f$ é contínua em $3$. Por quê?
  2. $f$ é derivável em $3$. Por quê?


1. Sim

2. Não


1816   

Calcule $F'(x)$ sendo $F(x)$ igual a:

  1. $xe^x\cos{x}$.
  2. $e^x \sin{x} \cos{x}$.



  1. $-e^x x^2 \sin (x)+e^x x^2 \cos (x)+2 e^x x \cos (x)$.
  2. $-e^x \sin ^2(x)+e^x \cos ^2(x)+e^x \sin (x) \cos (x)$.


1252   

Calcule a derivada de ordem $1000$ da função $f(x)=\sin{kx}, k \in R$.


$f^{1000}(x)=k^{1000}\sin{kx}$


1820   

Sejam $f_1,f_2,\ldots,f_n$, $n \geq 2$, funções deriváveis em $p$. Prove, por indução finita, que $f_1+f_2+\ldots+f_n$ é derivável em $p$. Veja Guidorizzi, volume $1$, página $158$.


840   

Derive a função abaixo e avalie a derivada no ponto indicado:

$f\left( x\right) =\dfrac{\ln \left( x^{2}\right) +5x^{3}}{1+\cos^{2}x};$ avaliar em $f\,^{\prime }\left( \pi /2\right) .$.


$f'(x) = (15 x^2 + 2/x)/(\cos^2 x + 1) + (2 (5 x^3 + \log(x^2)) \sin x \cos x )/(\cos^2 x + 1)^2$.

$f'(\pi/2) = \dfrac{4}{\pi} + \dfrac{15 \pi^2}{4}$.


850   

Calcule a derivada da função:

$y=\dfrac{1}{2}\cot ^{2}5x+\ln \sin x.$


$y'=\cot(x) - 5 \cot(5 x) \csc^2(5 x)$.


1191   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =\log_{2}\left(  \cos^{3}\left(  x\right)  \right).$


$f'(x) = -\dfrac{3 \tan x}{\log 2}$.


1578   

Determine a derivada de ordem $n$ de:

  1. $f(x)=e^x$
  2. $f(x)=\cos{x}$
  3. $f(x)=\sin{x}$
  4. $f(x)=\ln{x}$


1731   

Em um reservatório cônico (com vértice para baixo), água é evaporada a uma taxa proporcional à área da superfície exposta ao ar. Mostre que a profundidade da água decresce a uma taxa constante que não depende das dimensões do reservatório.


1552   

Uma substância radioativa decai de acordo com a fórmula $q(t)=q_0e^{-ct}$, onde $q_0$ é a quantidade inicial da substância, $c$ é uma constante positiva, e $q(t)$ é a quantidade remanescente após o tempo $t$. Mostre que a taxa na qual a substância decai é proporcional a $q(t)$.


1329   

Encontre os pontos sobre o gráfico de $p(x)=x^3-2x^2-8x+3$ nos quais a reta tangente é paralela à reta $y=4-9x.$


1582   

Dados $f(x) = 1+x$ e $x_0 = 8,1$, escolha um valor inteiro próximo a $x_0$ tal que $f(x_0)$ e $f'(x_0)$ sejam fáceis de calcular, e calcule uma linearização da função neste ponto.


1192   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =x^{3}\ln\left(  x^{2}\right)  .$


791   

Determine a equação da reta tangente em $\left( p,f\left(p\right) \right)$:

$f\left( x\right) =x^{2},\;p=2$.


$y=4x-4$.


1747   

Seja

$$f(x)=\left\{\begin{array}{ll}\dfrac{\sin(x)}{x}, &\text{ se } x\neq0,\\1, &\text{ se } x=0\end{array}\right..$$

Começando com o polinômio de Taylor de ordem $2n+1$ para $\sin x$, junto com a estimativa para o termo de resto $R_{n,1}(x)=\dfrac{f^{(n+1)}(t)}{(n+1)!}(x-a){n+1}$, mostre que:

$$f(x) = \left( 1-\dfrac{x^2}{3!}+\dfrac{x^4}{5!}+\ldots+(-1)^n\dfrac{x^{2n}}{(2n+1)!} + R_{2n,0,f}(x) \right),$$

onde:

$$|R_{2n,0,f}(x)| \leq \dfrac{|x|^{2n+1}}{(2n+2)!}.$$


807   

Calcule $f^{\prime }\left( x\right)$:

$\left( 1+\sqrt{x}\right) e^{x}\tan x$.


$f'(x) = \left( 1+\sqrt{x}\right) e^{x}\tan x + \dfrac{e^x \tan x}{2 \sqrt{x}} + e^x(\sqrt{x} + 1) \sec^2 x$.


1536   

Sejam $f,g,h$ funções deriváveis. Verifique que $(fgh)'=f'gh+fg'h+fgh'$. Generalize.


Dica: Derive a função $Fh$, onde $F=fg$. Use a regra do produto duas vezes. Para generalizar use o princípio da indução finita.


530   

Suponha que uma gota de neblina seja uma esfera perfeita e que, por condensação, capte umidade a uma taxa proporcional à área de sua superfície. Mostre que nessas circunstâncias o raio da gota cresce a uma taxa constante.




785   

Mostre que qualquer reta tangente ao gráfico da hipérbole $xy=a^2$ determina com as assíntotas um triângulo de área igual a $2a^2$.


1723   

Uma escada de $4$m está apoiada em uma parede fazendo um ângulo $\theta$ com o chão. Considerando $h$ como a altura do chão até o ponto em que a escada encosta na parede, expresse $h$ em função de $\theta$ e, então, use $dh$ para estimar a variação em $h$ se $\theta$ varia de $60^\circ$ a $59^\circ$, de $60^\circ$ a $58^\circ$, e de $60^\circ$ a $55^\circ$. Interprete estes resultados.


515   

Considere as funções trigonométricas hiperbólicas:

\begin{equation*}  \sinh x=\dfrac{e^{x}-e^{-x}}{2};\;\cosh x=\dfrac{e^{x}+e^{-x}}{2}\text{.} \end{equation*}

  1. Mostre que $\cosh ^{2}x-\sinh ^{2}x=1$.

  2. Mostre que $\left( \sinh ^{\prime }x\right) ^{2}-\left( \cosh^{\prime }x\right) ^{2}=1$.


844   

Calcule a derivada da função:

$y=\ln \sqrt{\dfrac{1+\sin x}{1-\sin x}}$.


$y' = \sec x$.


1551   

Se $p$ denota o preço de venda de um artigo e $x$ é a procura correspondente (em número de artigos vendidos por di, então a relação entre $p$ e $x$ pode ser dada por $p(x)=p_0e^{-ax}$ para constantes positivas $p_0$ e $a$. Suponha $p(x)=300e^{-0,02x}$. Determine o preço de venda que maximize a receita diária.


1719   

A função de Heaviside (também conhecida como função degrau), cujo gráfico pode ser visto abaixo, é muito utilizada para modelar chaves que ligam e desligam em circuitos elétricos (e também diversas aplicações). O que você tem a dizer sobre a continuidade dessa função? E sobre a diferenciabilidade?

heaviside.png


2   

Seja  $\ell$ a reta que passa pela origem do plano cartesiano e tangencia a curva $y = x^3 + x + 16$. Qual a inclinação de $\ell$?



Dado que $\ell$ é uma reta que passa pela origem, sabemos que sua equação é do tipo $\ell(x)=ax$. Como ela tangencia a curva $y(x)$, sabemos que há um ponto $x^*$ tal que $\ell(x^*)=y(x^*)$.

Além disso, sabemos que em $x^*$ a inclinação de $\ell$ é a mesma inclinação de $y$ (por quê?), o que é equivalente a $\ell'(x^*)=y'(x^*)$.

Assim, temos:

\begin{cases}
    \left.x^*\right.^3+x^*+16 = ax^* \\
    3\left.x^*\right.^2+1=a
    \end{cases}

Resolvendo o sistema de equações obtemos:

\begin{align*}
x^* = 2\\
a = 13
\end{align*}


Sendo, portanto, $a=13$ a resposta desejada.


1326   

O coeficiente angular da reta tangente, no ponto de abscissa x, ao gráfico de $y=f\left( x\right) $, é proporcional ao cubo da ordenada do ponto de tangência. Sabendo que $f\left( 0\right) =1$ e que $f\left(1\right) =1/\sqrt{2}$, determine $f$.


522   

Uma viatura de polícia, vindo do norte e se aproximando de um cruzamento em ângulo reto, está perseguindo um carro em alta velocidade, que, no cruzamento, toma a direção leste. Quando a viatura está a $0,6 km$ ao norte do cruzamento e o carro fugitivo a $0,8 km$ a leste, o radar da polícia detecta que a distância entre a viatura e o fugitivo está aumentando a $20 km/h$. Se a viatura está se deslocando a 60 km/h no instante dessa medida, qual é a velocidade do fugitivo?




818   

Sejam $f\left( x\right) $ e $g\left( x\right) $ funções
diferenciáveis e suponha que esta assuma os seguintes valores:

$\begin{array}{|c|c|}
\hline x & f\left( x\right)  & g\left( x\right)  & f^{\prime }\left(
x\right)  & g^{\prime }\left( x\right) \\\hline
  0 & 1 & 1 & 5 & 1/3 \\\hline
  1 & 3 & -9 & -1/3 & -8/3 \\\hline
\end{array}$

Encontre as derivadas de:

  1. $f\left( x\right) -3g\left( x\right) $ em $x=0;$

  2. $f\left( g\left( x\right) \right) $ em $x=0;$

  3. $\left( x^{11}+f\left( x\right) \right) ^{-2}$ em $x=1;$

  4. $f\left( e^{\sin \left( x-1\right) }\right) $ em $x=1;$


  1. $4$
  2. $8/9$
  3. $-1/3$
  4. $-1/3$

520   

Uma escada de $10$ metros de comprimento está apoiada em uma parede vertical. Se a base da escada começa a escorregar horizontalmente a uma taxa constante de $0,6 m/s$, com que velocidade o topo da escada percorre a parede quando ele está a $6 m$ do solo?




1244   

Calcule a derivada da seguinte função:
    $f\left(  x\right)  =\sin\left(  \arccos\left(  x\right)  \right)  .$


1559   

As distribuições gamma, importantes em teoria das probabilidades, são determinadas por $f(x)=cx^ne^{-ax}$ para $x>0$, um inteiro positivo $n$, uma constante positiva $a$ e $c=\dfrac{a^{n+1}}{n!}$.

  1. Mostre que $f$ tem exatamente um máximo local.
  2. Supondo $n=4$, determine onde $f(x)$ cresce mais rapidamente.


1745   

Escreva o número $e^2$ como uma soma (com a notação $\Sigma$), com um erro menor que $10^{-5}$.


1722   

A aproximação $(1+x)^k \approx 1+kx$ pode ser utilizada para cálculos rápidos.

  1. Mostre porque esta aproximação é boa e use-a para fazer uma estimativa simples de $(1,001)^{37}$.

  2. Compare sua estimativa com a obtida por meio de algum recurso computacional (pode ser uma calculdadora científica).

  3. Agora utilize esta aproximação para calcular $(1,1)^{37}$ e compare com o recurso computacional. O que acontece neste caso? Justifique.


842   

Calcule a derivada da função:

$y=\sqrt{1+\sqrt{x}}$.


$y'=\dfrac{1}{4\sqrt{\sqrt{x}+1}\sqrt{x}}$.


1817   

Calcule $F'(x)$ sendo $F(x)$ igual a:

  1. $x^2e^x\cos{x}$
  2. $e^x \sinh{x} \cos^2{x}$



1555   

Para uma população de elefantas africanas, o peso $W(t)$ (em quilogramas) e a idade $t$ (em anos) pode ser aproximado por uma função de crescimento de Fertanlanffy $W$ tal que $W(t)=2600(1-0,51e^{-0,075t})^3$.

  1. Dê uma aproximação do peso e da taxa de crescimento de um elefante recém-nascido.
  2. Supondo que uma elefanta adulta pese $1800$ $kg$, estime sua idade e sua taxa de crescimento presente.
  3. Calcule e interprete $\lim\limits_{t \to \infty}W(t)$.
  4. Mostre que a taxa de crescimento é máxima entre as idades de $5$ e $6$ anos.


786   

Calcule os valores de $a,b$ e $c$ de modo que as parábolas $y=x^2+ax+b$ e $y=-x^2 +cx$ sejam tangentes uma a outra no ponto $(1,2)$.


1563   

Seja $g(x)=a^x$, em que $a>0$ e $a \neq 1$ é um real dado. Mostre que $g'(x)=a^x \ln{a}$.


1196   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =3^{2x}\ln\left(  x^{2}\right)  .$


$2\ 3^{2 x} \log (3) \log \left(x^2\right)+\frac{2\ 3^{2 x}}{x}$


532   

O raio $r$ e a altura $h$ de um cilindro circular reto estão variando de modo a manter constante o volume $V$. Num determinado instante, $h=3cm$ e $r=1cm$ e, neste instante, a altura está variando a uma taxa de $0,2cm/s$. A que taxa está variando o volume neste instante?


1583   

Dados $f(x) = \sqrt[\leftroot{-2}\uproot{2}3]{x}$ e $x_0 = 8,5$, escolha um valor inteiro próximo a $x_0$ tal que $f(x_0)$ e $f'(x_0)$ sejam fáceis de calcular, e calcule uma linearização da função neste ponto.


806   

Calcule $f^{\prime }\left( x\right)$:

$f\left( x\right) =e^{x}\sin x\cos x$.


$f'(x) = \dfrac{1}{2} e^x ( \sin (2x) + 2 \cos (2x))$.


805   

Calcule $f^{\prime }\left( x\right)$:

$f\left( x\right) =xe^{x}\cos x$.


$f'(x) = e^x ((x+1) \cos x - x \sin x)$.



Usando a regra da derivada do produto de duas funções, escolhendo considerar $x e^x$ como uma delas e, consequentemente, $\cos x$ como a outra, obtemos:

\[ (x e^x \cos x)^\prime = (x e^x)^\prime \cdot \cos(x)+ x e^x \cdot (\cos x)^\prime .\]

Para calcular $(x e^x)^\prime$, vamos usar novamente a regra da derivada do produto:

\[(x e^x)^\prime = (x^\prime) \cdot e^x + x\cdot (e^x)^\prime = e^x(1+x),\]

em que usamos que $(x)^\prime=1$ e $(e^x)^\prime=e^x$, além de colocar em evidência o fator comum $e^x$.

Substuindo essas expressões na igualdade inicial, temos que

\[ (x e^x \cos x)^\prime = e^x(1+x)\cos(x)  - x e^x \sin x,\]

já que $(\cos x)^\prime = -\sin x$. Ou seja, obtivemos que

\[f'(x) = e^x ((x+1) \cos x - x \sin x).\]


1539   

Suponha que um meteorito pesado está a $s$ quilômetros do centro da Terra, e que sua velocidade de entrada na atmosfera terrestre seja inversamente proporcional a $\sqrt{s}$. Mostre que a aceleração do meteorito é inversamente proporcional a $s^2$ e interprete o resultado.


1256   

O fluxo de um campo magnético através de uma bobina, em função do tempo, é dado por  $F=B \cdot l^2 \sin(\omega t)$ , onde $B$ é a intensidade do campo, $l$ o comprimento da espira e $\omega$ a velocidade angular da bobina. Pela "Lei de Faraday'', temos que a tensão $v$ do circuito associado a esse campo é dada por $v=-\frac{dF}{dt}$.

  1. Escreva a equação do fluxo para $B = 20$, $l = 2$ e  $\omega= 4$.
  2. Para a equação obtida no item anterior, determine a expressão de v em função de t.


848   

Calcule a derivada da função:


$y=\dfrac{2\left( 4+3\sqrt[3]{x}\right) \left( 2-\sqrt[3]{x}\right)^{3/2}}{5}$.


$y'=-\dfrac{\sqrt{2 - x^{1/3}}}{x^{1/3}}$.


1556   

Os impulsos nervosos no corpo humano caminham ao longo de fibras nervosas que consistem em um axônio, que transporta o impulso, envolvido por uma camada de mielina. A fibra nervosa é semelhante a um cabo cilíndrico isolado, para o qual a velocidade $v$ de um impulso é dada por $v=-k(r/R)^2 \ln(r/R)$, onde $r$ é o raio do cabo e $R$ é o raio de isolamento. Ache o valor de $r/R$ que maximize $v$. Na maioria das fibras nervosas, $r/R$ vale aproximadamente $0,6$.

fig_deriv_1.png



1543   

Seja $f(x)=cossec{x}$. Calcule $f'(x)$ e $f'\left(\dfrac{\pi}{4}\right)$.



Inicialmente, determinamos a primeira derivada da função $f$:

$f'(x)=-cossec(x)cotg(x)$.
Agora, substituímos $x$ por $\dfrac{\pi}{4}$ e obtemos

$f'\left(\dfrac{\pi}{4}\right)$=-cossec\(\dfrac{\pi}{4}\)cotg\(\dfrac{\pi}{4}\)=-\dfrac{2}{\sqrt{2}}\cdot 1 = \dfrac{2}{\sqrt{2}}$.





1187   

Calcule a derivada da seguinte função:
 $f\left(  x\right)  =\frac{e^{x}-e^{-x}}{2}.$


 $f'\left(  x\right)  =\frac{e^{x}+e^{-x}}{2}.$


1558   

A taxa de crescimento $R$ de certo tipo de tumor pode ser relacionada com seu tamanho $x$, de modo aproximado, pela equação $R=r\cdot x\cdot ln(K/x)$, em que $r$ e $K$ são constantes positivas. Mostre que o tumor cresce mais rapidamente quando $x=e^{-1}K$.


1569   

Seja $f(x)=\left\{\begin{array}{ll}
x+1, & \text{se } x<2 \\
1, & \text{se } x \geq 2
\end{array}\right.$

  1. $f$ é contínua em $2$. Por quê?
  2. $f$ é derivável em $2$. Por quê?


1. Não.
2. Não


1557   

Um modelo de densidade urbana é uma fórmula que relaciona a densidade populacional (em número de habitantes por $km^2$) com a distância $r$ (em $km$) do centro da cidade. É considerada apropriada  para certas cidades a fórmula $D=ae^{-br+cr^2}$, com $a,b$ e $c$ constantes positivas. Determine a forma do gráfico de $D$ para $r \geq 0$.


828   

Calcule $f^{\prime }\left( x\right)$:

$f\left( x\right) =\log _{a}x,\;a>0$ e $a\neq 1$.


$f'(x)=\dfrac{1}{xln(a)}


1381   

Usa-se a técnica do carbono-14 para determinar a idade de espécimes arqueológicos ou geológicos. Este método baseia-se no fato de que o carbono-14, isótopo instável ($^{14}C$) está presente no $CO_2$ na atmosfera. As plantas assimilam carbono da atmosfera; quando morrem o $^{14}C$ acumulado começa a decair, com uma meia vida de aproximadamente 5700 anos. Medindo-se a quantidade de $^{14}C$ que resta em um espécime, é possível determinar quando o organismo morreu. Suponha que um osso fóssil acuse 20\% da quantidade de $^{14}C$ presente em um osso dos dias atuais. Dê uma aproximação da idade do osso fóssil.


774   

Determine uma reta que seja tangente à elipse $x^{2}+2y^{2}=9$ e que intecepte o eixo das ordenadas no ponto de ordenada $9/4$.


1190   

Calcule a derivada da seguinte função: 
 $f\left(  x\right)  =\frac{e^{x}+e^{-x}}{2}.$


$f'(x) = \frac{e^{x}-e^{-x}}{2}$.


1581   

Dados $f(x) = 2x^2+4x-3$ e $x_0 = -0,9$, escolha um valor inteiro próximo a $x_0$ tal que $f(x_0)$ e $f'(x_0)$ sejam fáceis de calcular, e calcule uma linearização da função neste ponto.


783   

Encontre a equação da reta tangente à curva $y=2x^2+3$ que seja paralela à reta $8x-y+3=0$.


$y=8x+3$.


1716   

Dizemos que duas famílias de curvas são trajetórias ortogonais uma da outra se cada curva de uma família for ortogonal a cada curva da outra. Faça um esboço de gráfico da família de curvas $x^2+(y-c)^2=c^2$ e da família $(x-k)^2+y^2=k^2$ no mesmo plano cartesiano, para alguns valores de $c$ e $k$ reais (se necessário, utilize algum recurso computacional). Mostre que estas famílias (de círculos) são ortogonais uma da outra. (Sugestão: retas tangentes são perpendiculares em um ponto de interseção se as suas inclinações são recíprocas negativas uma da outra.)


533   

Verifique que, para todo $x>0$, verificam-se as desigualdades:

  1. $e^{x}>x+1;$
  2. $\cos x>1-\dfrac{x^{2}}{2};$
  3. $\sin x<x-\dfrac{x^{3}}{3!}+\dfrac{x^{5}}{5!}.$



1729   

Um vaso em formato hemisférico de raio $7,5$cm está sendo enchido de água a uma taxa de $16$cm$^3/$s. Quando a profundidade da água está em $2,5$cm, com que velocidade o nível da água sobe?


1545   

 Demonstre as seguintes regras de derivação:

  1. $(\sin{x})'=cos{x}$
  2. $(\cos{x})'=-\sin{x}$
  3. $(tg{x})'=sec^2{x}$


525   

Se o raio de um círculo cresce à taxa de $30 cm/s$, a que taxa cresce a sua área em relação ao tempo, em função do raio? Dica: Use a fórmula da área do círculo.




839   

Derive a função abaixo e avalie a derivada no ponto indicado:


$f\left( x\right) =e^{2x^{3}}+\cos \left( \sin \left( 3x\right)\right) ;$ avaliar em $f\,^{\prime }\left( 0\right) $.


$f'(x) = 6 e^{2 x^3} x^2 - 3 \sin(\sin(3 x)) \cos(3 x)$.

$f'(0) = 0$.


1136   

Suponha que $x(t)=e^{0,05t}$ e que $z(t)=e^{0,01t}$. Calcule a taxa de crescimento de $y(t)$, sabendo que $y=x^{\beta }z^{1-\beta }$, com $\beta =1/2$.


1542   

Seja $f(x)=cotg{x}$. Calcule $f'(x)$ e $f'\left(\dfrac{\pi}{4}\right)$.


$f'(x)=-cossec^2(x)$ e $f'\left(\dfrac{\pi}{4}\right)=-2$.


1140   

Considere a função $f(x)=\sin x.$

  1.  Escreva o polinômio de Taylor de $f(x)$ até a terceira ordem.
  2.  Usando o polinômio de Taylor, encontre o valor do seguinte limite: $\lim_{x\rightarrow 0}\frac{\sin x-x+2x}{3x^5}.$


514   

Determine o domínio de definição das funções trigonométricas inversas a seguir e expresse suas derivadas em termos de funções polinomiais:

  1. $g\left( x\right) =\mathrm{\arccos }\left( x\right) $;
  2. $g\left( x\right) =\mathrm{arcsec}\left( x\right) $;
  3. $g\left( x\right) =\mathrm{arccot}\left( x\right) $.


793   

Determine a equação da reta tangente em $\left( p,f\left(p\right) \right)$:

$f\left( x\right) =\sqrt{x},\;p=9$.


$y=\dfrac{x+9}{6}$.