LISTA DE DISCIPLINAS

Exercícios

Limites fundamentais

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


1335   

Calcule o limite $\lim_{x\rightarrow 0} \dfrac{3x+\tan x}{\sin x + \tan^2 x}.$


   



Temos que:
  $\dfrac{3x+\tan x}{\sin x + \tan^2 x}= \dfrac{x}{\sin x}\cdot\dfrac{3+\dfrac{\tan x}{x}}{1+ \dfrac{\sin x}{\cos^2 x}}.$

Lembramos o limite fundamental $\lim_{x\rightarrow 0}\frac{\sin x}{x}=1$ e, além disso, observamos que
  \begin{equation*}
  \begin{split}
  &\lim_{x\rightarrow 0}\dfrac{\sin x}{\cos^2 x}=0 \\
  &\lim_{x\rightarrow 0}\dfrac{\tan x}{x}=\lim_{x\rightarrow 0}\dfrac{\sin x}{x}\cdot\dfrac{1}{\cos x}=1.
  \end{split}
  \end{equation*}
  Então:
  $\lim_{x\rightarrow 0}\dfrac{3x+\tan x}{\sin x + \tan^2 x}= \lim_{x\rightarrow 0}\dfrac{x}{\sin x}\cdot\dfrac{3+\dfrac{\tan x}{x}}{1+ \dfrac{\sin x}{\cos^2 x}} = 1\cdot\dfrac{3+1}{1+0}=4.$



1706   

Embora limites como $\displaystyle \lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n]{n}$ e $\displaystyle \lim_{n \to \infty} a^n$ possam ser avaliados utilizando conhecimentos sobre as funções logaritmo e exponencial, estes não são necessários. Neste exercício vamos calcular esses tipos de limite por meio de argumentos ``elementares''. As ferramentas básicas são desigualdades provenientes do teorema binomial, principalmente:

$$(1+h)^n \geq 1+nh, \text{ para } h > 0.$$

  1. Mostre que $\displaystyle \lim_{n \to \infty} a^n = \infty$ se $a>1$, fazendo $a=1+h$, onde $h>0$.

  2. Mostre que $\displaystyle \lim_{n \to \infty} a^n= 0$ se $0<a<1$.


962   

Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:

  1. $\lim\limits_{x\rightarrow 0}x\sin \left( \dfrac{1}{x}\right)$
  2. $\lim\limits_{x\rightarrow p}\dfrac{\sin \left(x^{2}-p^{2}\right) }{x-p}$


690   

Calcule o seguinte limite


$\lim\limits_{x\rightarrow \infty }\left( 1+\dfrac{1}{x}\right)^{x+2}$.


1338   

Usando os limites fundamentais, encontre o limite $\lim\limits_{x\rightarrow0}\frac{\tan x}{x}$.



$1$.


961   

Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:

$\lim\limits_{x\rightarrow 0}\dfrac{\tan x}{x}$
$\lim\limits_{x\rightarrow 0}\dfrac{x^{3}}{\sin x}$


959   

Calcule o seguinte limite, caso exista:

$\lim\limits_{x\rightarrow 0}\dfrac{\sin \left( \pi x\right) }{\sin\left( 23x\right) }$



$\begin{array}{rcl} \lim\limits_{x\rightarrow 0}\dfrac{\sin \left( \pi x\right) }{\sin\left( 23x\right) } &=& \lim\limits_{x\rightarrow 0} \dfrac{ \dfrac{\sin \left( \pi x\right)}{x} }{ \dfrac{\sin\left( 23x\right)}{x} } \\ &=& \lim\limits_{x\rightarrow 0} \dfrac{ \dfrac{\pi \sin \left( \pi x\right)}{\pi x} }{ \dfrac{23\sin\left( 23x\right)}{23x} } \\ &=& \lim\limits_{x\rightarrow 0} \dfrac{\pi}{23} \dfrac{ \dfrac{ \sin \left( \pi x\right)}{\pi x} }{ \dfrac{\sin\left( 23x\right)}{23x} }. \end{array}$


Fazendo as mudanças de variáveis $y = \pi x$ e $t = 23x$, temos que 


$\lim\limits_{x\rightarrow 0}\dfrac{\sin \left( \pi x\right) }{\pi x} = \lim\limits_{y\rightarrow 0}\dfrac{\sin \left( y\right) }{y} = 1 $.


$\lim\limits_{x\rightarrow 0}\dfrac{\sin \left( 23 x\right) }{23 x} = \lim\limits_{y\rightarrow 0}\dfrac{\sin \left( t\right) }{t} = 1 $.


Onde nas últimas passagens usamos o limite fundamental do seno. Desse modo, sabendo que os limites existem, podemos substituí-los na expressão anterior:


$\begin{array}{rcl} \lim\limits_{x\rightarrow 0}\dfrac{\sin \left( \pi x\right) }{\sin\left( 23x\right) } &=& \lim\limits_{x\rightarrow 0} \dfrac{\pi}{23} \dfrac{ \dfrac{ \sin \left( \pi x\right)}{\pi x} }{ \dfrac{\sin\left( 23x\right)}{23x} } \\ &=& \dfrac{\pi}{23} \dfrac{1}{1} \\ &=& \dfrac{\pi}{23}. \end{array}$


1340   

Avalie o limite $\lim\limits_{x\rightarrow 0}\dfrac{\sin \left(7x\right) }{\sin \left( 23x\right) }$.


$7/23$.


1525   

Resolva os itens:

  1. Prove que existe $r>0$ tal que $\cos{x}-1<\dfrac{\sin{x}}{x}-1<0$ para $0<|x|<r$.
  2. Calcule $\lim\limits_{x \to 0}\dfrac{x-\sin{x}}{x^2}$.


693   

Calcule o seguinte limite:


$\lim\limits_{x\rightarrow 0}\dfrac{\sin \left(10x\right) }{\sin \left( 5x\right) }$.


$2$.


1339   

Usando os limites fundamentais, encontre o limite $\lim\limits_{x\rightarrow0}\frac{cotg (2x)}{cossec (x)}$.


  


$1/2$.


963   

Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:

  1. $\lim\limits_{x\rightarrow p}\dfrac{\tan \left( x-p\right) }{x^{2}-p^{2}}$
  2. $\lim\limits_{x\rightarrow p}\dfrac{\sin x-\sin p}{x-p}$
  3. $\lim\limits_{x\rightarrow p}\dfrac{\cos x-\cos p}{x-p}$


960   

Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:
$\lim\limits_{x\rightarrow 0}\dfrac{\sin 4x}{x}$

$\lim\limits_{x\rightarrow 0}\dfrac{x}{\sin x}$


  1. $4$.
  2. $1$.


964   

Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:

  1. $\lim\limits_{x\rightarrow 0}\left( 1+2x\right)^{\dfrac{1}{x}}$
  2. $\lim\limits_{x\rightarrow 0}\dfrac{e^{2x}-1}{x}$
  3. $\lim\limits_{x\rightarrow 0}\dfrac{e^{x^{2}}-1}{x}$


1809   

Resolva os itens:

  1. Prove que existe $r>0$ tal que $\cos{x}-1<\dfrac{\sin{x}}{x}-1<0$ para $0<|x|<r$.
  2. Calcule $\lim\limits_{x \to 0}\dfrac{x-\sin{x}}{x^2}$.


691   

Calcule o seguinte limite

$\lim\limits_{x\rightarrow \infty }\left( 1+\dfrac{1}{2x}\right)^{x}$.


$e^{1/2}$.


1337   

Usando os limites fundamentais, encontre o limite $\lim\limits_{x\rightarrow0}\frac{sen(cosx)}{sec(x)}$.



$\sin(1)$.


958   

Calcule o limite a seguir, justificando as passagens.

$\lim\limits_{x\rightarrow 0}\dfrac{1-\cos x}{x}$


0



Para todo $x\neq 0$ temos que
\begin{equation*}
\dfrac{1-\cos x}{x}=\dfrac{1-\cos x}{x}\dfrac{1+\cos x}{1+\cos x}=\dfrac{
1-\cos ^{2}x}{x}\dfrac{1}{1+\cos x}\text{.}
\end{equation*}
Como $1-\cos ^{2}x=\sin ^{2}x$ obtemos
\begin{eqnarray*}
\dfrac{1-\cos x}{x} &=&\dfrac{\sin ^{2}x}{x}\dfrac{1}{1+\cos x} \\
&=&\sin x\dfrac{\sin x}{x}\dfrac{1}{1+\cos x}.
\end{eqnarray*}
Mas
\begin{eqnarray*}
\lim\limits_{x\rightarrow 0}\sin x &=&0\;\text{(pois }\sin x\text{ é contínua)} \\
\lim\limits_{x\rightarrow 0}\dfrac{\sin x}{x} &=&1\;\text{(limite trigonométrico fundamental)} \\
\lim\limits_{x\rightarrow 0}\dfrac{1}{1+\cos x} &=&\dfrac{1}{2}\;\text{(}
\cos x\text{ cont\'{i}nua e }1+\cos \left( 0\right) \neq 0\text{).}
\end{eqnarray*}
Logo,
\begin{equation*}
\lim\limits_{x\rightarrow 0}\dfrac{1-\cos x}{x}=\lim\limits_{x\rightarrow
0}\sin x\lim\limits_{x\rightarrow 0}\dfrac{\sin x}{x}\lim\limits_{x
\rightarrow 0}\dfrac{1}{1+\cos x}=0.
\end{equation*}


1336   

Usando os limites fundamentais, encontre o limite  $\lim\limits_{x\rightarrow1}\frac{sen(x-1)}{x^{2}+x-2}$.
 


$1/3$.


692   

Calcule o seguinte limite

$\lim\limits_{x\rightarrow \infty }\left( \dfrac{x+2}{x+1}\right)^{x}$.


$e$.


957   

Calcule o limite, caso exista:

$\displaystyle \lim_{x\rightarrow \infty}\left( x-\sqrt{x^2 + 4x} \right) $


1705   

Se você fosse um professor e seu(sua) aluno(a) te perguntasse ``Por que $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$?''

  1. Como você responderia com palavras?

  2. Que bibliografia você recomendaria?

  3. Qual a demonstração formal?


1707   

Embora limites como $\displaystyle \lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n]{n}$ e $\displaystyle \lim_{n \to \infty} a^n$ possam ser avaliados utilizando conhecimentos sobre as funções logaritmo e exponencial, estes não são necessários. Neste exercício vamos calcular esses tipos de limite por meio de argumentos ``elementares''. As ferramentas básicas são desigualdades provenientes do teorema binomial, principalmente:

$$(1+h)^n \geq 1+nh, \text{ para } h > 0,$$

e, para o item 3 a seguir:

$$(1+h)^n \geq 1+nh+\dfrac{n(n-1)}{2}h^2 \geq \dfrac{n(n-1)}{2}h^2, \text{ para } h>0.$$

  1. Mostre que $\displaystyle \lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n]{a}= 1$ se $a>1$, fazendo $\sqrt[\leftroot{-2}\uproot{2}n]{a}=1+h$ e estimando $h$.

  2. Mostre que $\displaystyle \lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n]{a}=1 $ se $1<a<1$.

  3. Mostre que $\displaystyle \lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n]{n}= 1$.