Exercícios
Limite e continuidade
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Calcule o limite justificando as passagens.
$\lim\limits_{x\rightarrow \infty }\left( x-\sqrt{3x^{3}+2}\right) $.
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow \infty }3^{x}$.
$\infty$.
Considere a função $ f(x)=\left\{\begin{array}{ll} 1-2x &\text{ se} x\ne -1\\0&\text{ se } x=-1\end{array}\right.$.
Trace o gráfico de $f$.
Usando limites laterais, determine se o limite $\lim\limits_{x\rightarrow -1}f(x)$ existe ou não.
Usando os limites fundamentais, encontre o limite $\lim\limits_{x\rightarrow0}\frac{\tan x}{x}$.
$1$.
Considere a função $f(x) = \left\{\begin{array}{cl} x+2 & x\leq 2 \\ 3x-5 & x>2 \end{array}\right.$. Mostre que $\lim\limits_{x\to 2} f(x)$ não existe.
Determine os valores de $\lambda$ que tornam contínua a função $f:\mathbb{R\rightarrow R},$ da por:
\[
f\left( x\right) =\left\{
\begin{array}{c}
x^{2}+\lambda x\mbox{ se }x\leq 1 \\
\left( \lambda x\right) ^{2}-1=\lambda ^{2}x^{2}-1\mbox{ se }x>1
\end{array}
\right. \mbox{.}
\]
Calcule $\displaystyle\lim_{x\rightarrow 0}\frac{\frac{2}{x} - 5\cos(\frac{1}{x^2+2x})}{-\frac{5}{x} + 2\cos(\frac{1}{x^2+2x})}$.
Existe algum número real $a$ tal que a função $f(x) = \left\{\begin{array}{ccl}\displaystyle\frac{\frac{2}{x} - 5\cos(\frac{1}{x^2+2x})}{-\frac{5}{x} + 2\cos(\frac{1}{x^2+2x})},& \mbox{se} & x\neq 0\\ a, & \mbox{se} & x=0 \end{array} \right.$ seja contínua?
Calcule o seguinte limite, caso exista:
$\lim\limits_{x\rightarrow 0}\dfrac{\sin \left( \pi x\right) }{\sin\left( 23x\right) }$
$\begin{array}{rcl} \lim\limits_{x\rightarrow 0}\dfrac{\sin \left( \pi x\right) }{\sin\left( 23x\right) } &=& \lim\limits_{x\rightarrow 0} \dfrac{ \dfrac{\sin \left( \pi x\right)}{x} }{ \dfrac{\sin\left( 23x\right)}{x} } \\ &=& \lim\limits_{x\rightarrow 0} \dfrac{ \dfrac{\pi \sin \left( \pi x\right)}{\pi x} }{ \dfrac{23\sin\left( 23x\right)}{23x} } \\ &=& \lim\limits_{x\rightarrow 0} \dfrac{\pi}{23} \dfrac{ \dfrac{ \sin \left( \pi x\right)}{\pi x} }{ \dfrac{\sin\left( 23x\right)}{23x} }. \end{array}$
Fazendo as mudanças de variáveis $y = \pi x$ e $t = 23x$, temos que
$\lim\limits_{x\rightarrow 0}\dfrac{\sin \left( \pi x\right) }{\pi x} = \lim\limits_{y\rightarrow 0}\dfrac{\sin \left( y\right) }{y} = 1 $.
$\lim\limits_{x\rightarrow 0}\dfrac{\sin \left( 23 x\right) }{23 x} = \lim\limits_{y\rightarrow 0}\dfrac{\sin \left( t\right) }{t} = 1 $.
Onde nas últimas passagens usamos o limite fundamental do seno. Desse modo, sabendo que os limites existem, podemos substituí-los na expressão anterior:
$\begin{array}{rcl} \lim\limits_{x\rightarrow 0}\dfrac{\sin \left( \pi x\right) }{\sin\left( 23x\right) } &=& \lim\limits_{x\rightarrow 0} \dfrac{\pi}{23} \dfrac{ \dfrac{ \sin \left( \pi x\right)}{\pi x} }{ \dfrac{\sin\left( 23x\right)}{23x} } \\ &=& \dfrac{\pi}{23} \dfrac{1}{1} \\ &=& \dfrac{\pi}{23}. \end{array}$
A função pode tender a valores diferentes pela esquerda e pela direita, a função pode crescer de maneira ilimitada, ou a função pode oscilar em torno de um valor.
Seja $f:\mathbb{R} \to \mathbb{R}$ uma função contínua que satisfaz as seguintes propriedades:
- $f(n)=0$, para todo inteiro $n$;
- Se $f(a)=0$ e $f(b)=0$ então $f \left(\frac{a+b}{2} \right)$.
Mostre que $f(x)=0$, para todo real $x$.
Seja $f:\mathbb{R\rightarrow R}$ a função
definida por
\begin{equation*}
f\left( x\right) =\left\{
\begin{array}{cc}
x^{2} & \text{se }x\leq 1 \\
2x-1 & \text{se }x>1
\end{array}
\right. ,
\end{equation*}
e defina $g\left( x\right) =\lim\limits_{x\rightarrow h}\dfrac{f\left(
x+h\right) -f\left( x\right) }{h}$. Mostre que $g\left( x\right) $ é contínua.
Para a função a seguir, responda se a mesma é contínua nos pontos abaixo (e, caso não o seja, justifique)
$ f(x) = \left\{\begin{array}{ccc}
x^3-x, & & \text{se } x<1\\
x-2, & & \text{se } x\geq 1
\end{array}\right.$
- $x=0$.
- $x=1$.
- Sim.
- Não: Os limites pela direita e pela esquerda não são iguais em $x=1$.
Utilizando o gráfico, avalie os seguintes limites para a função
$f(x) = \frac{1}{(x+1)^2}$
$ \lim\limits_{x\to -1^-} f(x)$
$ \lim\limits_{x\to -1^+} f(x)$
- $\infty$
- $\infty$
Identifique as assíntotas verticais e horizontais, caso existam, da função
$f(x)=\frac{2 x^2-2 x-4}{x^2+x-20}$.
Assíntota horizontal em $y=2$; assíntotas verticais em $x=-5$ e $x=4$.
Utilizando o gráfico a seguir, avalie os seguintes limites
- $ \lim\limits_{x\to 1^-} f(x)$
- $ \lim\limits_{x\to 1^+} f(x)$
- $ \lim\limits_{x\to 1} f(x)$
- $f(1)$
- $2$
- $0$
- Não existe.
- $1$
Verifique se os seguintes limites existem. Explique.
$\lim\limits_{x\rightarrow\infty}2^{1/x}$.
$\lim\limits_{t\rightarrow\infty}\sin x$.
$\lim\limits_{x\rightarrow 2^-}\tan^{-1}\left(\frac{1}{2x-4}\right)$.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$f(x) = x^2-3x+9$.
$(-\infty,\infty)$
Dê exemplo de uma função definida em $\mathbb{R}$, que não seja contínua em $2$, mas que $\lim\limits_{x \to 2^+}f(x)=\lim\limits_{x \to 2^-}f(x)$.
Utilizando o gráfico, avalie os seguintes limites para a função
$ f(x) = \frac{1}{(x-3)(x-5)^2}$.
$ \lim\limits_{x\to 3^-} f(x)$
$ \lim\limits_{x\to 3^+} f(x)$
$ \lim\limits_{x\to 3} f(x)$
$ \lim\limits_{x\to 5^-} f(x)$
$ \lim\limits_{x\to 5^+} f(x)$
$ \lim\limits_{x\to 5} f(x)$
- $-\infty$
- $\infty$
- O limite não existe
- $\infty$
- $\infty$
- $\infty$
Considere uma função contínua $\phi:\mathbb{R} \to \mathbb{R}$ tal que
\[ \forall \quad {x \in \mathbb{R}},\quad \phi(x)\geq x^2.\]
Mostre que existe $a\geq 0$ tal que $\left[a,+\infty\right[$ é o contradomínio de $\phi$.
Seja $f$ uma função definida em $\mathbb{R}$ e suponha que exista $M>0$ tal que $|f(x)-f(p)|\leq M|x-p|$ para todo $x$. Prove que $f$ é contínua em $p$.
Calcule o limite:
$\lim\limits_{x\rightarrow -\infty }\left( x-\sqrt{x^{2}+4x}\right)$.
$-\infty$.
Resolva os itens:
- Prove que existe $r>0$ tal que $\cos{x}-1<\dfrac{\sin{x}}{x}-1<0$ para $0<|x|<r$.
- Calcule $\lim\limits_{x \to 0}\dfrac{x-\sin{x}}{x^2}$.
- $\lim\limits_{h\rightarrow 0}\left( x^{2}+5xh^{2}\right) $
- $\lim\limits_{x\rightarrow 2}\dfrac{1/x-1/2}{x-2}$
Uma importante aplicação do Teorema do Valor Intermediário é o Método da Bissecção.
Suponha que estamos interessados em encontrar as raízes de uma função contínua $f(x)$. O Método da Bissecção é uma alternativa que pode resultar em boas aproximações para as raízes, após sucessivas aplicações do método.
Para iniciar o método, precisamos encontrar dois valores $a$ e $b$ tais que $f(a) \cdot f(b) < 0$.
Sem perda de generalidade, vamos assumir $f(a) < 0$, $f(b) > 0$ e $a<b$. O Teorema do Valor Intermediário afirma que existe um valor $c$ no intervalo $[a,b]$ tal que $f(c) = 0$. O teorema não afirma nada a respeito da localização de $c$ dentro do intervalo, apenas que ele existe.
O Método da Bissecção é, portanto, uma maneira sistemática de obter este valor $c$. Seja $d=\frac{a+b}{2}$ o meio do intervalo. Existem três possibilidades:
- $f(d) = 0 $ - Por sorte, encontramos a raiz e não é necessário prosseguir com o método.
- $f(d) < 0$ - Como $f(b)>0$, sabemos que há uma raiz no intervalo $[d,b]$. Este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
- $f(d) > 0$ - Como $f(a)<0$, sabemos que há uma raiz no intervalo $[a,d]$. Novamente, este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
O Método da Bissecção é a aplicação sucessiva dos passos descritos até que se esteja próximo o suficiente da raiz de $f(x)$ para a aplicação desejada. Nota-se que para o caso em que $f(a)>0$ e $f(b)<0$ o método ainda funciona, mas no caso 2 o intervalo escolhido seria $[a,d]$ e no caso e $[d,b]$ (por quê?).
Utilize o Método da Bissecção para encontrar as raízes de $f(x) = e^x - 2$ no intervalo $[0.65,0.7]$.
A raiz aproximada é $x=0.69$.
Os intervalos utilizados são:
$[0.65,0.7] \quad [0.675,0.7] \quad [0.6875,0.7]$
$[0.6875,0.69375]\quad [0.690625,0.69375]$
Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua no intervalo $\left[2,6 \right]$ com $f(2)=3$ e $f(6)=5$. Use o Teorema de Weierstrass e o Teorema do Valor Intermediário pra mostrar que a imagem de $f$ é um intervalo fechado.
Suponha que você tenha as seguintes informações sobre duas funções $f$ e $g$:
$\lim\limits_{x\to 1} f(x) = 0$
$\lim\limits_{x\to 1} g(x) = 0$
$\lim\limits_{x\to 1} f(x)/g(x) = 2$
O que você pode dizer sobre o valor de $\left|\frac{f(x)}{g(x)}\right|$ quando $x \approx 1$?
Sejam $f$ e $g$ funções contínuas. Demonstre que $h(x)=\max(f(x),g(x))$ é contínua.
Mostre que a equação
\begin{equation*}
x^{26}+x^{2}-320=0
\end{equation*}
possui ao menos uma raiz real positiva e também uma raiz real negativa.
Mostre que $\lim\limits_{x\rightarrow p}f\left( x\right) =L$ se e somente se $\lim\limits_{x\rightarrow p}\left( f\left( x\right) -L\right) =0$.
Suponha que $f\left( x\right) \leq g\left( x\right) $ para todo $x$. Demonstre que $\lim\limits_{x\rightarrow p}f\left( x\right) \leq \lim\limits_{x\rightarrow p}g\left( x\right) $ sempre que os limites existirem.
Suponha agora que $f\left( x\right) <g\left( x\right) $ para todo $x$. Podemos afirmar que $\lim\limits_{x\rightarrow p}f\left( x\right) <\lim\limits_{x\rightarrow p}g\left( x\right) $ sempre que os limites existirem?
Seja $h$ uma função definida em $[-1,1]$, sendo que $h(-1) = -10$ e $h(1) = 10$. Existe um valor $-1<c<1$ tal que $h(c) = 0$? Por quê?
Não é possível dizer: O Teorema do Valor Intermediário só se aplica para funções contínuas, e nada foi afirmado sobre a continuidade de $h$.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ g(x) = \frac{1}{1+x^2}$.
$(-\infty,\infty)$
Para a função a seguir, responda se a mesma é contínua nos pontos abaixo (e, caso não o seja, justifique)
$ f(x) = \left\{\begin{array}{ccc} 1, & & \text{se } x=0\\ \frac{\sin x}{x}, & &\text{se } x>0 \end{array}\right.$
- $x=0$
- $x=\pi$
- Sim.
- Sim.
Prove que $\lim_{x\to a}f(x)=l$ se, e somente se, $\lim_{x\to a}[f(x)-l]=0$. Sugestão: Primeiro, compreenda por qual razão a afirmação anterior é óbvia; então dê uma prova formal.
Prove que $\lim_{x\to 0}f(x)=\lim_{x\to a}f(x-a)$.
Prove que $\lim_{x\to 0}f(x)=\lim_{x\to 0}f(x^3)$.
Dê um exemplo em que $\lim_{x\to 0}f(x^2)$ existe, mas $\lim_{x\to 0}f(x)$ não existe.
Construa uma função com uma assíntota vertical em $x=5$ e uma assíntota horizontal em $y=5$.
Seja $f$ uma função contínua e decrescente em $\left[a,b\right]$. Mostre que $f$ tem uma inversa decrescente em $\left[f(b),f(a)\right]$.
Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:
$\lim\limits_{x\rightarrow 0}\dfrac{\sin 4x}{x}$
$\lim\limits_{x\rightarrow 0}\dfrac{x}{\sin x}$
- $4$.
- $1$.
Calcule o limite, caso exista:
$\displaystyle \lim_{x\rightarrow \infty}\left( x-\sqrt{x^2 + 4x} \right) $
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow 0}\dfrac{e^{2x}-1}{x}$.
$2$.
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow \infty }\left( 0,27\right) ^{x}$.
$0$.
Mostre $\lim\limits_{x\to 0} \frac{x+1}{x^2+3x}$ não existe.
Usando os limites fundamentais, encontre o limite $\lim\limits_{x\rightarrow0}\frac{cotg (2x)}{cossec (x)}$.
$1/2$.
Calcule o seguinte limite
$\lim\limits_{x\rightarrow \infty }\left( 1+\dfrac{1}{2x}\right)^{x}$.
$e^{1/2}$.
Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:
- $\lim\limits_{x\rightarrow 0}x\sin \left( \dfrac{1}{x}\right)$
- $\lim\limits_{x\rightarrow p}\dfrac{\sin \left(x^{2}-p^{2}\right) }{x-p}$
Mostre que $f(x) = \cos x - \frac{x}{10}$ tem pelo menos dois zeros em $[0, 2\pi]$.
Calcule, através da definição, o limite $ \lim_{x\to 2} 5 = 5$
Seja $\epsilon >0$ dado. Queremos encontrar $\delta >0$ tal que, quando $|x-2|<\delta$, $|f(x)-5|<\epsilon$. Entretanto, como $f(x)=5$ é uma função constante, a segunda inequação é simplesmente $|5-5|<\epsilon$, o que é sempre verdade. Assim, pode-se escolher um $\delta$ qualquer; arbitrariamente, escolhe-se $\delta =\epsilon$.
Calcule os seguintes limites:
$\lim\limits_{x\rightarrow \infty }\left( 1+\dfrac{1}{x}\right) ^{x+2}$
$\lim\limits_{x\rightarrow \infty }\left( 1+\dfrac{1}{2x}\right) ^{x} $
$\lim\limits_{x\rightarrow \infty }\left( \dfrac{x+2}{x+1}\right) ^{x}$
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow \infty }\dfrac{1-2^{x}}{1-3^{x}}$.
$0$.
Calcule o seguinte limite
$\lim\limits_{x\rightarrow \infty }\left( \dfrac{x+2}{x+1}\right)^{x}$.
$e$.
Determine os intervalos para os quais a função
\begin{equation*} f\left( x\right) =\left\{ \begin{array} [c]{c} x^{2}+1\text{ se }x\leq0\\ \cos x\text{ se }0<x<1\\ x^{2}+1\text{ se }1\leq x \end{array} \right. \end{equation*} é contínua. Justifique sua resposta.
As funções $x^{2}+1$ e $\cos x$ são ambas contínuas e por isto $f\left( x\right) $ é contínua para todo $x\neq0,1$. É necessário verificar a continuidade nos pontos $x=0$ e $x=1$.
Para $x=0$ temos que $\lim_{x\rightarrow0^{-}}f\left(x\right) =\lim_{x\rightarrow0^{-}}\left( x^{2}+1\right) =1$ e $\lim_{x\rightarrow0^{+}}f\left( x\right) =\lim_{x\rightarrow0^{+}}\cos x=1$, logo $f\left( x\right) $ é contínua em $x=0$, pois ambos oslimites laterais existem, são iguais e coincidem com o valor da função no ponto.
Para $x=1$ temos que $\lim_{x\rightarrow1^{-}}f\left( x\right) =\lim_{x\rightarrow0^{-}}\cos x=\cos\left( 1\right) $ e $\lim_{x\rightarrow0^{+}}f\left( x\right) =\lim_{x\rightarrow0^{+}}\left(x^{2}+1\right) =2$, e como $\cos\left( 1\right) \neq2$ temos que $f\left(x\right) $ não é contínua em $x=1$, pois apesar dos limites laterais existirem estes são distintos.
Aproxime numericamente o seguinte limite
$ f(x)=\frac{x^2-11 x+30}{x^3-4 x^2-3 x+18}$
- \begin{array}{cc}
x & f(x) \\ \hline
2.9 & 132.857 \\
2.99 & 12124.4 \\
\end{array}
A tabela parece indicar que $\lim\limits_{x\to3^-}f(x) =\infty$. - \begin{array}{cc}
x & f(x) \\ \hline
3.1 & 108.039 \\
3.01 & 11876.4 \\
\end{array}
A tabela parece indicar que $\lim\limits_{x\to3^+}f(x) =\infty$. - As tabelas parecem indicar que $\lim\limits_{x\to3}f(x) =\infty$.
Avalie os seguintes limites para a função definida por partes
$ f(x) = \left\{\begin{array}{ccc}
x+1, & & \text{ se } x\leq 1 \\
x^2-5, & & \text{ se } x>1
\end{array}
\right.$
$ \lim\limits_{x\to 1^-} f(x)$
$ \lim\limits_{x\to 1^+} f(x)$
$ \lim\limits_{x\to 1} f(x)$
$f(1)$
2
$-4$
Não existe.
2
Calcule, se existir, o limite $\lim\limits_{x\rightarrow 0}\sqrt x$.
$0$.
Explique, usando propriedades de limites, porque $\lim\limits_{x\rightarrow 2}\frac{x^2-4}{x-2}\not = \frac{\lim\limits_{x\rightarrow 2} (x^2-4)}{\lim\limits_{x\rightarrow 2}(x-2)}$.
Note que somente podemos usar as propriedades de limite quando um limite existe e é finito. Além disso, lembre-se que limites que recaem na expressão indeterminada "$\frac{0}{0}$", podem existir ou não. Calcule os seguintes limites.
$\lim\limits_{x\rightarrow 2}\frac{x^2-4}{x-2}$
$\lim\limits_{h\rightarrow 0}\frac{(2+h)^2 - 4}{h}$
$\lim\limits_{x\rightarrow 2}\left(\frac{4}{x^2-2x}-\frac{x}{x-2}\right)$
$\lim\limits_{t\rightarrow 0}\frac{\sqrt{t^2+4}-2}{t^2}$
Estime numericamente os seguintes limites para a função $f(x)=\frac{x^2-9 x+18}{x^2-x-6}$:
$\lim\limits_{x \to 3^-} f(x)$
$\lim\limits_{x \to 3^+} f(x)$
$\lim\limits_{x \to 3} f(x)$
\begin{tabular}{cc}
$x$ & $f(x)$ \\ \hline
$2.9$ & $-0.632$ \\
$2.99$ & $-0.6032$ \\
$2.999$ & $-0.60032$ \\
\end{tabular}
A tabela parece indicar que $\lim\limits_{x\to3^-}f(x) =-0.6$.
\begin{tabular}{cc}
$x$ & $f(x)$ \\ \hline
$ 3.1$ & $-0.5686$ \\
$3.01$ & $-0.5968$ \\
$3.001$ & $-0.59968$ \\
\end{tabular}
A tabela parece indicar que $\lim\limits_{x\to3^+}f(x) =-0.6$.
Ao analisar as duas tabelas, parece que $\lim\limits_{x\to3}f(x) =-0.6$.
Uma fonte de imprecisão nos cálculos feitos por computadores é a {\it subtração catastrófica}. Tal erro ocorre quando dois números aproximadamente iguais são subtraídos, e o resultado é usado como parte de outro cálculo.
Um exemplo: $(0,123456789012345-0,123456789012344)\times 10^{15}=1$.
Mas, na calculadora, obteríamos zero como resposta a esse cálculo pois ela armazena apenas 14 dígitos e os 14 primeiros dígitos são idênticos. Por vezes, pode-se evitar a subtração catastrófica fazendo um rearranjo algébrico das fórmulas. De todo modo, o melhor é estar atento à sua ocorrência, portanto, tome cuidado para resolver este exercício.
Seja $f(x)=\dfrac{x-\sin x}{x^3}$. Faça uma conjectura sobre o limite de $f$ quando $x \to 0^+$ calculando $f$ nos pontos $x=0,1$, $0,01$, $0,001$, $0,0001$.
Calcule $f$ nos pontos $x=0,00001$, $0,000001$, $0,0000001$, $0,00000001$, $0,000000001$, $0,0000000001$, e faça outra conjectura.
Que falha isso revela sobre o uso da evidência numérica para fazer conjecturas sobre limites?
Se você dispuser de um sistema de computação algébrica, um programa que pode efetuar cálculos numéricos ou simbólicos, use-o para mostrar que o valor exato desse limite é $\dfrac{1}{6}$. (Aqui, eu não posso pedir para calcular o limite à mão, de fato?)
Classifique as afirmações a seguir como verdadeiras ou falsas:
Se $ \lim\limits_{x\to 5} f(x) = \infty$, então estamos implicitamente afirmando que o limite em questão existe.
Se $ \lim\limits_{x\to \infty} f(x) = 5$, então estamos implicitamente afirmando que o limite em questão existe.
Se $ \lim\limits_{x\to 1^-} f(x) = -\infty$, então $ \lim\limits_{x\to 1^+} f(x) = \infty$.
Se $ \lim\limits_{x\to 5} f(x) = \infty$, então $f$ tem uma assíntota vertical em $x=5$.
$\infty/0$ não é uma forma indeterminada.
Falsa.
Verdadeira
Falsa
Verdadeira
Verdadeira
Resolva os itens:
- Mostre que $\lim\limits_{x\rightarrow 0^{+}}\left( x\ln x\right) =0$;
- Utilize o item anterior para avaliar $\lim\limits_{x\rightarrow 0^{+}}x^{x}.$
Usando os limites fundamentais, encontre o limite $\lim\limits_{x\rightarrow1}\frac{sen(x-1)}{x^{2}+x-2}$.
$1/3$.
Calcule o limite justificando as passagens.
$\lim\limits_{x\rightarrow 0}\dfrac{1-\cos x}{x}$.
Aproxime numericamente o seguinte limite
$ f(x)=\frac{x^2-9 x+18}{x^2-x-6}$
- \begin{array}{cc}
x & f(x) \\ \hline
2.9 & -0.632 \\
2.99 & -0.6032 \\
2.999 & -0.60032 \\
\end{array}
A tabela parece indicar que $\lim\limits_{x\to3^-}f(x) =-0.6$. - \begin{array}{cc}
x & f(x) \\ \hline
3.1 & -0.5686 \\
3.01 & -0.5968 \\
3.001 & -0.59968 \\
\end{array}
A tabela parece indicar que $\lim\limits_{x\to3^+}f(x) =-0.6$. - As tabelas parecem indicar que $\lim\limits_{x\to3}f(x) =-0.6$.
Calcule o seguinte limite
$\lim\limits_{x\rightarrow \infty }\left( 1+\dfrac{1}{x}\right)^{x+2}$.
Seja $f:\mathbb{R} \to \mathbb{R}$ uma função contínua tal que, para todo real x, tenhamos $f(f(f(x))) = x^2 + 1$. Prove que $f$ é par.
Calcule os seguintes limites:
$\lim\limits_{x\rightarrow \infty }\left( 5-3x+4x^{2}-x^{3}\right)$
$\lim\limits_{x\rightarrow \infty }\dfrac{5x^{3}-6x-3}{6x^{3}+2}$
- $-\infty$
- $5/6$
É verdade que, ao se esticar um elástico puxando-o por suas extremidades em direções opostas, algum ponto do elástico permanecerá em sua posição inicial? Justifique sua resposta.
Determine se as afirmações abaixo são verdadeiras ou falsas. Justifique suas respostas ou forneça um contra exemplo.
Se $\lim\limits_{x\rightarrow a}f\left( x\right) =\infty $ e $\lim\limits_{x\rightarrow a}g\left( x\right) =0$, então $ \lim\limits_{x\rightarrow a}\dfrac{f\left( x\right) }{g\left( x\right) } =\infty $.
Sejam $p\left( x\right) $ e $q\left( x\right) $ polinômios de grau $m$ e $n$ respectivamente. Se $\lim\limits_{x\rightarrow \infty }\dfrac{p\left( x\right) }{q\left( x\right) }=0$, então $m\geq n$.
Se $\lim\limits_{x\rightarrow a}\left( f\left( x\right) g\left( x\right) \right) $ existe, então $\lim\limits_{x\rightarrow a}f\left( x\right) $ e $\lim\limits_{x\rightarrow a}g\left( x\right) $ existem e $\lim\limits_{x\rightarrow a}\left( f\left( x\right) g\left( x\right) \right) =\left( \lim\limits_{x\rightarrow a}f\left( x\right) \right) \left( \lim\limits_{x\rightarrow a}g\left( x\right) \right) .$
Se $f\left( x\right) $ e $g\left( x\right) $ são contínuas em $a$, então $\left( f+g\right) \left( x\right) $ também é contínua em $a$.
- Se $f$ é contínua em $c$, então $\lim_{x\to c^+}f(x) = f(c)$.
- Se $f$ é contínua em $c$, então $\lim_{x\to c}f(x)$ existe.
- Se $f$ é definida em um intervalo aberto contendo $c$, e $ \lim_{x\to c}f(x)$ existe, então $f$ é contínua em $c$.
- Verdadeiro
- Verdadeiro
- Falso
Prove que a função $f(x)=\left\{\begin{array}{ll}
x, & \text{se x é racional}\\
-x, & \text{se x é irracional}
\end{array}\right.$ é contínua em $0$.
$\lim\limits_{x\rightarrow 3^{+}}\dfrac{5}{x-3}$
Seja $u=x-3$. Temos que $u$ tende a $0$ por valores positivos se $x$ tende a $3$ por valores maiores do que $3$. Logo, \begin{equation*} \lim\limits_{x\rightarrow 3^{+}}\dfrac{5}{x-3}=\lim\limits_{u\rightarrow 0^{+}}\dfrac{5}{u}\text{.} \end{equation*} Mas dado $M>0$, temos que se $0<u<\dfrac{5}{M},$ então $M<\dfrac{5}{u}$ e temos que, por definição, $\lim\limits_{u\rightarrow 0^{+}}\dfrac{5}{u}=\infty $.
Calcule, pela definição, o limite $ \lim_{x\to 0} \sin x= 0$ (Dica: use o fato que $|\sin x| \leq |x|$, sendo uma igualdade apenas para $x=0$.)
Considere $\epsilon >0$ arbitrário. Queremos encontrar $\delta >0$ tal que quando $|x-0|<\delta$, $|f(x)-0|<\epsilon$. Em termos simples, queremos mostrar que quando $|x|<\delta$, $|\sin x| < \epsilon$.
Considere $\delta = \epsilon$. Podemos presumir que $|x|<\delta$. Usando a dica do enunciado, temos que $|\sin x | < |x| < \delta = \epsilon$. Portanto, se $|x|<\delta$, sabemos imediatamente que $|\sin x| < \epsilon$.
Mostre, usando a definição de limite, que $\displaystyle \lim_{x\to 5} 3-x = -2$
Seja $\epsilon >0$ dado. Queremos encontrar $\delta >0$ tal que, quando$|x-5|<\delta$, $|f(x)-(-2)|<\epsilon$.
Considerando $|f(x)-(-2)|<\epsilon$:
\begin{gather*}
|f(x) + 2 | < \epsilon \\
|(3-x) + 2 |<\epsilon \\
| 5-x | < \epsilon \\
-\epsilon < 5-x < \epsilon \\
-\epsilon < x-5 < \epsilon. \\
\end{gather*}
Isso implica que podemos estabelecer $\delta =\epsilon$. Portanto:
\begin{gather*}
|x-5|<\delta \\
-\delta < x-5 < \delta\\
-\epsilon < x-5 < \epsilon\\
-\epsilon < (x-3)-2 < \epsilon \\
-\epsilon < (-x+3)-(-2) < \epsilon \\
|3-x - (-2)| < \epsilon,
\end{gather*}
que é o que buscávamos provar.
Avalie o limite $\lim\limits_{x\rightarrow p}\dfrac{x^{n}-p^{n}}{x-p}$, onde $n$ é qualquer número natural.
Obtenha as assíntotas verticais de $f(x)=\frac{x^2+1}{(x-1)^2}$.
As assíntotas verticais são os pontos $x$ tais que o limite é infinito.
Para $f(x)=\frac{x^2+1}{(x-1)^2}$ temos que:
$\lim \limits_{x \to 1} \frac{x^2+1}{(x-1)^2} = \infty$,
Logo $x=1$ é uma assíntota vertical de $f$. Como não há mais pontos no domínio de $f$ que podem levar a um limite infinito, esta é a única assíntota.
Calcule o limite a seguir. Justifique as passagens.
$\lim\limits_{x\rightarrow +\infty }\dfrac{-x^{3}+2}{4x^{2}+89}$
- $\lim\limits_{x\rightarrow p} \frac{\sin \left(x^{2}-p^{2}\right) }{x-p}$
- $\lim\limits_{y\rightarrow 3} \frac{\sin \left(y^{2}-9\right) }{y-3}$
- $\lim\limits_{x\rightarrow 4} \frac{\cos \left(x^{2}-16\right) }{x-4}$
Uma importante aplicação do Teorema do Valor Intermediário é o Método da Bissecção.
Suponha que estamos interessados em encontrar as raízes de uma função contínua $f(x)$. O Método da Bissecção é uma alternativa que pode resultar em boas aproximações para as raízes, após sucessivas aplicações do método.
Para iniciar o método, precisamos encontrar dois valores $a$ e $b$ tais que $f(a) \cdot f(b) < 0$.
Sem perda de generalidade, vamos assumir $f(a) < 0$, $f(b) > 0$ e $a<b$. O Teorema do Valor Intermediário afirma que existe um valor $c$ no intervalo $[a,b]$ tal que $f(c) = 0$. O teorema não afirma nada a respeito da localização de $c$ dentro do intervalo, apenas que ele existe.
O Método da Bissecção é, portanto, uma maneira sistemática de obter este valor $c$. Seja $d=\frac{a+b}{2}$ o meio do intervalo. Existem três possibilidades:
- $f(d) = 0 $ - Por sorte, encontramos a raiz e não é necessário prosseguir com o método.
- $f(d) < 0$ - Como $f(b)>0$, sabemos que há uma raiz no intervalo $[d,b]$. Este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
- $f(d) > 0$ - Como $f(a)<0$, sabemos que há uma raiz no intervalo $[a,d]$. Novamente, este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
O Método da Bissecção é a aplicação sucessiva dos passos descritos até que se esteja próximo o suficiente da raiz de $f(x)$ para a aplicação desejada. Nota-se que para o caso em que $f(a)>0$ e $f(b)<0$ o método ainda funciona, mas no caso 2 o intervalo escolhido seria $[a,d]$ e no caso e $[d,b]$ (por quê?).
Utilize o Método da Bissecção para encontrar as raízes de $f(x) = \sin x - 1/2$ no intervalo $[0.5,0.55]$.
A raiz aproximada é $x=0.52$.
Os intervalos utilizados são:
$[0.5,0.55] \quad [0.5,0.525] \quad [0.5125,0.525]$
$[0.51875,0.525]\quad [0.521875,0.525]$.
Dê um exemplo de uma função definida em $\mathbb{R}$ que não seja contínua em $0$ mas que $\lim\limits_{x\rightarrow0^{+}}f\left( x\right) =\lim\limits_{x\rightarrow 0^{-}}f\left( x\right) .$
Calcule, quando existirem, os seguintes limites (caso um limite tenda a $\pm \infty $ justifique a resposta):
$\lim\limits_{x\rightarrow 2}\dfrac{x^{2}+x-6}{\left( x-2\right) ^{3}}$
$\lim\limits_{x\rightarrow - \infty }\dfrac{5x^{5}+7x^{2}+3x+\pi }{\sqrt{7}x^{5}+4x+2}$
$\lim\limits_{x\rightarrow 0}x^{3}\cos \left( \frac{1}{x}\right)e^{x^{2}+1}$
Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:
- $\lim\limits_{x\rightarrow p}\dfrac{\tan \left( x-p\right) }{x^{2}-p^{2}}$
- $\lim\limits_{x\rightarrow p}\dfrac{\sin x-\sin p}{x-p}$
- $\lim\limits_{x\rightarrow p}\dfrac{\cos x-\cos p}{x-p}$
Avalie os seguintes limites para a função definida por partes
$ f(x) = \left\{\begin{array}{ccc}
\cos x, & & \text{ se } x<\pi \\
\sin x, & & \text{ se } x\geq \pi
\end{array}
\right.$
$ \lim\limits_{x\to \pi^-} f(x)$
$ \lim\limits_{x\to \pi^+} f(x)$
$ \lim\limits_{x\to \pi} f(x)$
$f(\pi)$
- $-1$
- 0
- Não existe.
- 0
Calcule os limites:
$\lim\limits_{x\to\pi/6} cos(sec x)$
$\lim\limits_{x\to0} \ln(1+x)$
Sabe-se que $f$ é contínua em $2$ e que $f(2)=8$. Mostre que existe $\delta>0$ tal que para todo $x \in D_f$ vale $2-\delta<x<2+\delta \rightarrow f(x)>7$.
Considere $\epsilon =1$. Como $f$ é contínua em $2$, sabemos que existe $\delta >0$ tal que, para $|x-2|<\delta $ temos que $|f(x)-f(2)|<\epsilon =1$. Mas $|x-2|<\delta $ se, e somente se, $2-\delta<x<2+\delta$ e $|f(x)-f(2)|=|f(x)-8|<1$ se, e somente se, $7< f(x)<9$.
Avalie os seguintes limites para a função definida por partes
$ f(x) = \left\{\begin{array}{ccc}
1-\cos^2 x, & & \text{ se } x<a \\
\sin^2 x, & & \text{ se } x\geq a
\end{array},
\right.$
sendo que $a$ é um número real.
$ \lim\limits_{x\to a^-} f(x)$
$ \lim\limits_{x\to a^+} f(x)$
$ \lim\limits_{x\to a} f(x)$
$f(a)$
- $1-\cos^2 a = \sin^2 a$
- $\sin^2 a$
- $\sin^2 a$
- $\sin ^2 a$
Mostre que
- o limite de $f(x)=\dfrac{x-2}{|\,x-2|}$, quando $x\to 2$, não existe.
- o limite de $f(x)=\left\{\begin{array}{ll} x^2+2, & x\geq -1 \\ 2x+1, & x<-1 \\ \end{array}\right.$, quando $x\to -1$, não existe.
Calcule os seguintes limites:
$\lim\limits_{x\rightarrow \infty }3^{x}$
$\lim\limits_{x\rightarrow \infty }\left( 2^{x}-3^{x}\right)$
$\lim\limits_{x\rightarrow \infty }\left( 0,27\right) ^{x}$
1. $\infty$.
2. $-1$.
3. $0$.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ f(t) = \sqrt{5t^2-30}$.
$(-\infty,-\sqrt{6}]\cup [\sqrt{6},\infty)$
Considere a função \begin{align*} f\left( x\right) =\left\{ \begin{array}{cc} a-x, & \text{se } x<-1 \\ x, & \text{se } -1\leq x<1 \\ \dfrac{2}{x}+b, & \text{se } 1\leq x \end{array} \right. . \end{align*}
- Encontre os limites laterais a direita e a esquerda de $f$ nos pontos $1$ e $-1.$
- Determine os valores de $a$ e $b$ que tornam $f$ contínua em toda a reta.
- Calcule $\lim\limits_{x\rightarrow \infty }f\left(x\right) $ e $\lim\limits_{x\rightarrow -\;\infty }f\left( x\right) $.
$f$ não é contínua em $x=0$.
Determine os valores de $\lambda$ que tornam contínua a função
\begin{equation*} f\left( x\right) =\left\{ \begin{array} [c]{c} x^{2}+cx\text{ se }x\leq1\\ \left( cx\right) ^{2}-1=c^{2}x^{2}-1\text{ se }x>1 \end{array} \right. \text{.} \end{equation*}
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ h(t) = \cos t$.
$(-\infty,\infty)$
Sabemos que limites que tomam a forma indeterminada ``$\infty-\infty$" exigem um pouco mais de trabalho para serem calculados. Calcule, de forma adequada, o limite $\lim\limits_{x\rightarrow\infty}\left(\sqrt{2x^2-7}-x\right)$.
O limite $\lim_{x\rightarrow +\infty} x^3(1+\sin x)$ existe? Explique.
Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:
$\lim\limits_{x\rightarrow 3^{+}}\dfrac{5}{3-x};$
$\lim\limits_{x\rightarrow 3^{-}}\dfrac{5}{3-x};$
$\lim\limits_{x\rightarrow 0^{+}}\dfrac{5}{x^{2}-x};$
$\lim\limits_{x\rightarrow 0^{-}}\dfrac{5}{x^{2}-x};$
$\lim\limits_{x\rightarrow 0^{+}}\dfrac{\sin x}{x^{3}-x^{2}};$
$\lim\limits_{x\rightarrow -1^{+}}\dfrac{3x^{2}-4}{1-x^{2}}$
Calcule o limite $\lim_{x\rightarrow 1} \frac{\sqrt{x+1}-\sqrt{2}}{\sqrt{x^2+3}-2}$ ou prove que não existe.
Racionalizando e aplicando diferença de quadrados temos:
\begin{equation*}
\frac{\sqrt{x+1}-\sqrt{2}}{\sqrt{x^2+3}-2} = \frac{\sqrt{x+1}-\sqrt{2}}{\sqrt{x^2+3}-2}\cdot \frac{\sqrt{x+1}+\sqrt{2}}{\sqrt{x+1}+\sqrt{2}}\cdot \frac{\sqrt{x^2+3}+2}{\sqrt{x^2+3}+2} =
\frac{x-1}{x^2-1}\cdot\frac{\sqrt{x^2+3}+2}{\sqrt{x+1}+\sqrt{2}}.
\end{equation*}
Logo,
$\lim_{x\rightarrow 1} \frac{\sqrt{x+1}-\sqrt{2}}{\sqrt{x^2+3}-2}=\lim_{x\rightarrow 1}\frac{x-1}{x^2-1}\cdot\frac{\sqrt{x^2+3}+2}{\sqrt{x+1}+\sqrt{2}}=\lim_{x\rightarrow 1}\frac{1}{x+1}\cdot\frac{\sqrt{x^2+3}+2}{\sqrt{x+1}+\sqrt{2}}= \frac{1}{\sqrt{2}}.$
Prove que se $\lim_{x\to 0}\dfrac{f(x)}{x}=l$ e $b\neq 0 $, então $\lim_{x\to 0}\dfrac{f(bx)}{x}=bl$. Dica: Escreva $\dfrac{f(bx)}{x}=b\dfrac{f(bx)}{bx}$.
O que acontece se $b=0$?
O item 1. nos permite determinar $\lim_{x\to 0}\dfrac{\sin(2x)}{x}$ em termos de $\lim_{x\to 0}\dfrac{\sin(x)}{x}$. Determine este limite de um outro modo.
Calcule o limite $\lim\limits_{x\rightarrow \infty }\log _{3}x$.
$\infty$.
Sendo $f(x) = \left\{\begin{array}{cl} \cos x & x\leq 0 \\ x^2+3x+1 & x>0 \end{array}\right.$, calcule $\lim\limits_{x\to 0} f(x)$.
1
Usando os limites fundamentais, encontre o limite $\lim\limits_{x\rightarrow0}\frac{sen(cosx)}{sec(x)}$.
$\sin(1)$.
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow 0}\dfrac{\sin \left(10x\right) }{\sin \left( 5x\right) }$.
$2$.
Mostre que toda equação polinomial de grau ímpar, tem pelo menos uma raiz real.
$f$ é contínua em $x=0$.
- $\lim\limits_{x\rightarrow 4}\sqrt{x}$
- $\lim\limits_{x\rightarrow 0}\dfrac{x^{2}+3x-1}{x^{2}+2}$
- $\lim\limits_{x\rightarrow 1^{+}}\dfrac{\left| x-1\right| }{x-1}$
- $\lim\limits_{x\rightarrow 1^{-}}\dfrac{\left| x-1\right| }{x-1}$
Uma importante aplicação do Teorema do Valor Intermediário é o Método da Bissecção.
Suponha que estamos interessados em encontrar as raízes de uma função contínua $f(x)$. O Método da Bissecção é uma alternativa que pode resultar em boas aproximações para as raízes, após sucessivas aplicações do método.
Para iniciar o método, precisamos encontrar dois valores $a$ e $b$ tais que $f(a) \cdot f(b) < 0$.
Sem perda de generalidade, vamos assumir $f(a) < 0$, $f(b) > 0$ e $a<b$. O Teorema do Valor Intermediário afirma que existe um valor $c$ no intervalo $[a,b]$ tal que $f(c) = 0$. O teorema não afirma nada a respeito da localização de $c$ dentro do intervalo, apenas que ele existe.
O Método da Bissecção é, portanto, uma maneira sistemática de obter este valor $c$. Seja $d=\frac{a+b}{2}$ o meio do intervalo. Existem três possibilidades:
- $f(d) = 0 $ - Por sorte, encontramos a raiz e não é necessário prosseguir com o método.
- $f(d) < 0$ - Como $f(b)>0$, sabemos que há uma raiz no intervalo $[d,b]$. Este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
- $f(d) > 0$ - Como $f(a)<0$, sabemos que há uma raiz no intervalo $[a,d]$. Novamente, este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
O Método da Bissecção é a aplicação sucessiva dos passos descritos até que se esteja próximo o suficiente da raiz de $f(x)$ para a aplicação desejada. Nota-se que para o caso em que $f(a)>0$ e $f(b)<0$ o método ainda funciona, mas no caso 2 o intervalo escolhido seria $[a,d]$ e no caso e $[d,b]$ (por quê?).
Utilize o Método da Bissecção para encontrar as raízes de $f(x) = x^2+2x-4$ no intervalo $[1,1.5]$.
A raiz aproximada é $x=1.23$.
Os intervalos utilizados são:
$[1,1.5] \quad [1,1.25] \quad [1.125,1.25]$
$[1.1875,1.25]\quad [1.21875,1.25]\quad [1.234375,1.25]$
$[1.234375,1.2421875]\quad [1.234375,1.2382813]$.
Utilizando o gráfico a seguir, avalie os seguintes limites
- $ \lim\limits_{x\to 0^-} f(x)$
- $ \lim\limits_{x\to 0^+} f(x)$
- $ \lim\limits_{x\to 0} f(x)$
- $f(0)$
- $4$
- $-4$
- Não existe.
- $0$
Dê um exemplo de uma função tal que $\lim\limits_{x\rightarrow p}\left| f\left( x\right) \right| $ exista mas $\lim\limits_{x\rightarrow p}f\left( x\right) $ não exista.
Avalie os seguintes limites de acordo com o gráfico da função:
$f(x) = \cos (x)$
$\lim\limits_{x\to -\infty} f(x)$
$\lim\limits_{x\to \infty} f(x)$
Mostre, usando a definição, que a função $f\left( x\right) =ax+b$ é contínua em seu domínio.
Avalie os seguintes limites para a função definida por partes
$ f(x) = \left\{\begin{array}{ccc}
x+1, & & \text{ se } x<1 \\
1, & & \text{ se } x=1\\
x-1, & & \text{ se } x>1
\end{array}
\right.$
$ \lim\limits_{x\to 1^-} f(x)$
$ \lim\limits_{x\to 1^+} f(x)$
$ \lim\limits_{x\to 1} f(x)$
$f(1)$
- 2
- 0
- Não existe
- 1
Calcule, se existir, o limite $\lim\limits_{x\to 0} \frac{x+1}{x^2+3x}.$
Calcule:
- $ \lim\limits_{x\to 5^-} f(x)$
- $ \lim\limits_{x\to 5^+} f(x)$
- $ \lim\limits_{x\to 5} f(x)$
- $f(5)$
- $f$ é contínua em $x=5$?
1. $20$.
2. $25$.
3. Não existe.
4. $25$
5. Não.
Avalie os seguintes limites para a função definida por partes
$ f(x) = \left\{\begin{array}{ccc}
\frac{|x|}{x}, & & \text{ se } x\neq 0 \\
0, & & \text{ se } x=0
\end{array}
\right.$
- $ \lim\limits_{x\to 0^-} f(x)$
- $ \lim\limits_{x\to 0^+} f(x)$
- $ \lim\limits_{x\to 0} f(x)$
- $f(0)$
- $-1$
- $1$
- Não existe.
- $0$
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow \infty }\log _{3}x$.
$\infty$.
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow -\infty }\left( 2^{x}+2^{-x}\right) $.
$-\infty$.
Embora limites como $\displaystyle \lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n]{n}$ e $\displaystyle \lim_{n \to \infty} a^n$ possam ser avaliados utilizando conhecimentos sobre as funções logaritmo e exponencial, estes não são necessários. Neste exercício vamos calcular esses tipos de limite por meio de argumentos ``elementares''. As ferramentas básicas são desigualdades provenientes do teorema binomial, principalmente:
$$(1+h)^n \geq 1+nh, \text{ para } h > 0.$$
Mostre que $\displaystyle \lim_{n \to \infty} a^n = \infty$ se $a>1$, fazendo $a=1+h$, onde $h>0$.
Mostre que $\displaystyle \lim_{n \to \infty} a^n= 0$ se $0<a<1$.
Utilizando o gráfico a seguir, avalie os seguintes limites
- $ \lim\limits_{x\to -2^-} f(x)$
- $ \lim\limits_{x\to -2^+} f(x)$
- $ \lim\limits_{x\to -2} f(x)$
- $f(-2)$
- $ \lim\limits_{x\to 2^-} f(x)$
- $ \lim\limits_{x\to 2^+} f(x)$
- $ \lim\limits_{x\to 2} f(x)$
- $f(2)$
- $2$
- $2$
- $2$
- $0$
- $2$
- $2$
- $2$
- Indefinido
Utilizando o gráfico a seguir, avalie os seguintes limites
- $ \lim\limits_{x\to 1^-} f(x)$
- $ \lim\limits_{x\to 1^+} f(x)$
- $ \lim\limits_{x\to 1} f(x)$
- $f(1)$
- $ \lim\limits_{x\to 2^-} f(x)$
- $ \lim\limits_{x\to 2^+} f(x)$
- $1$
- $2$
- Não existe.
- $2$
- $0$
- Como $f$ não é definida para $x>2$, esse limite é indefinido.
Foi pedido a um torneiro mecânico que fabricasse um disco de metal circular com área de $1000cm^2$.
- Qual o raio do disco produzido?
- Se for permitido ao torneiro uma tolerância do erro de $\pm 5 cm^2$ na área do disco, quão próximo do raio ideal da parte (a) o torneiro precisa controlar o raio?
- Em termos da definição $\epsilon, \delta$ de $\lim\limits_{x \to a} f(x)=L$, o que é $x$? O que é $f(x)$? O que é $a$? O que é $L$? Qual valor de $\epsilon$ é dado? Qual o valor correspondente de $\delta$?
Classifique as afirmações a seguir como verdadeiras ou falsas:
Se $ \lim\limits_{x\to \infty} f(x) = 5$, então estamos implicitamente afirmando que o limite em questão existe.
$\infty/0$ não é uma forma indeterminada.
Verdadeira
Verdadeira
Calcule o limite $\lim\limits_{x\to e} \ln x$, em que $e$ é o número de Euler.
$1$.
Prove que a função $f(x)=\left\{\begin{array}{ll}
x, & \text{se x é racional} \\
-x, & \text{se x é irracional}
\end{array}\right.$ é contínua em $0$.
Mostre que a função $f\left( x\right) =\dfrac{1}{x}$ é contínua em seu domínio.
- $\lim\limits_{x\rightarrow 1}\dfrac{f\left( x\right) -f\left(1\right) }{x-1}$, onde $f\left( x\right) =\left\{ \begin{array}{cc} x^{2} & \text{se }x\leq 1 \\ 2x-1 & \text{se }x>1 \end{array} \right. $
- $\lim\limits_{x\rightarrow 2}\dfrac{f\left( x\right) -f\left(2\right) }{x-2}$, onde $f\left( x\right) =\left\{ \begin{array}{cc} x & \text{se }x\geq 2 \\ x^{2}/2 & \text{se }x<2 \end{array} \right. $
- $\lim\limits_{h\rightarrow 0}\dfrac{f\left( x+h\right) -f\left( x\right) }{h}$, com $f\left( x\right) =x^{2}-3x$ e $f\left( x\right) =1/x$
Calcule o limite justificando as passagens.
$\lim\limits_{x\rightarrow 3^{+}}\dfrac{5}{x-3}$.
Mostre que a função $f\left( x\right) =x^{n}$ é contínua em seu domínio.
O domínio da função é $\mathbb{R}$. Logo, para $x \in \mathbb{R}$, temos:
$\lim_\limits{x \to a} x^n = a^n$
e
$f(a) = a^n$.
Isto é, $\lim_\limits{x \to a} f(x) = f(a)$, e portanto a função é contínua.
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow 1}\ln \dfrac{x^{2}-1}{x-1}$.
$ln2$.
Se você fosse um professor e seu(sua) aluno(a) te perguntasse ``Por que $\displaystyle \lim_{x \to 0}\dfrac{\sin x}{x}=1$?''
Como você responderia com palavras?
Que bibliografia você recomendaria?
Qual a demonstração formal?
- Se $f$ é contínua em $[0,1)$ e $[1,2)$, então $f$ é contínua em $[0,2)$.
- A soma de funções contínuas também é contínua
- Se $f$ é contínua em $[a,b]$, então $\lim_{x\to a^-}f(x) = f(a)$.
- Falso
- Verdadeiro
- Falso
Dê exemplo de uma função $f$ que seja descontínua, mas tal que $|f|$ seja contínua.
Ache as assíntotas verticais e inclinadas; depois calcule os limites laterais nas assíntotas verticais da função $f\left( x\right) =\frac{x^{3}-3x-1}{x^{2}-x}.$
A afirmação: $`` \lim\limits_{x\rightarrow p^+} f(x) = \lim\limits_{x\rightarrow p^-} f(x)\Rightarrow f \mbox{ contínua em } p. "$ é verdadeira ou falsa? Justifique.
É falsa. Só seria verdadeira se o valor dos limites laterais fosse igual a $f(p)$.
Mostre que a função $f\left( x\right) =\left\{ \begin{array}{cc} \dfrac{x^{3}-8}{x-2}, & \text{se }x\neq 2 \\ 12, & \text{se }x=2 \end{array}\right. $ é contínua em seu domínio.
Encontre os seguintes limites em termos do número $\alpha = \displaystyle \lim_{n \to 0} \dfrac{\sin x}{x}$.
$\displaystyle \lim_{x \to \infty} \dfrac{\sin x}{x}$.
$\displaystyle \lim_{x \to \infty} x \sin \left(\dfrac{1}{x}\right)$.
Calcule os limites:
$\lim\limits_{x\to6} \frac{x^2-4 x-12}{x^2-13 x+42}$
$\lim\limits_{x\to0} \frac{x^2+2 x}{x^2-2 x}$
$\lim\limits_{x\to2} \frac{x^2+6 x-16}{x^2-3 x+2}$
$-8$
$-1$
$10$
Calcule os seguintes limites laterais (justifique cada passo da resolução):
$\lim\limits_{x\rightarrow1^{+}}\dfrac{\sqrt{x^{2}-1}}{x-1}.$
$\lim\limits_{x\rightarrow1^{-}}\dfrac{\sqrt{x^{2}-1}}{x-1}.$
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ f(x) = \sin(e^x+x^2)$.
$(-\infty,\infty)$
Mostre que função $f\left( x\right) =\dfrac{1}{x^2}$ é contínua em seu domínio.
Calcule os limites:
$\lim\limits_{x\to2} \frac{x^2-10 x+16}{x^2-x-2}$
$\lim\limits_{x\to-2} \frac{x^2-5 x-14}{x^2+10 x+16}$
$\lim\limits_{x\to-1} \frac{x^2+9 x+8}{x^2-6 x-7}$
- $-2$
- $-3/2$
- $-7/8$
Calcule os seguintes limites. Pode ser útil usar a relação de inversão que há em relação às funções logarítmicas e exponenciais (isto é, $\ln(x)=y \Leftrightarrow e^y=x$) e/ou gráficos.
$\lim\limits_{x\rightarrow\infty}\log_3 x$
$\lim\limits_{x\rightarrow 0^+}\ln x$
$\lim\limits_{x\rightarrow -\infty}e^x$
Avalie os seguintes limites para a função definida por partes
$ f(x) = \left\{\begin{array}{ccc}
x^2-1, & & \text{ se } x<-1 \\
x^3+1, & & \text{ se } -1\leq x\leq 1\\
x^2+1, & & \text{ se } x>1
\end{array}
\right.$
$ \lim\limits_{x\to -1^-} f(x)$
$ \lim\limits_{x\to -1^+} f(x)$
$ \lim\limits_{x\to -1} f(x)$
$f(-1)$
$ \lim\limits_{x\to 1^-} f(x)$
$ \lim\limits_{x\to 1^+} f(x)$
$ \lim\limits_{x\to 1} f(x)$
$f(1)$
- 0
- 0
- 0
- 0
- 2
- 2
- 2
- 2
O gráfico da função $f(x)=\frac{x^3+2x^2+1}{5-x^2}$ possui alguma assíntota horizontal?
Não possui.
Calcule o limite:
$\lim\limits_{x\rightarrow +\infty }\left( x-\sqrt{x^{2}+4x}\right)$.
$-2$.
Calcule o limite $\lim\limits_{x\rightarrow -\infty }\left( 2^{x}+2^{-x}\right)$.
$\infty$.
De acordo com a teoria da relatividade, o comprimento de um objeto parece, a um observador, depender da velocidade relativa entre este e o objeto. Se o observador estabelecer o comprimento do objeto, em repouso, como $L_0$, então o comprimento, a uma velocidade $v$, parecerá:
$L=L_0\sqrt{1-\frac{v^2}{c^2}}$.
Esta equação é chamada Fórmula de Contração de Lorentz, sendo que $c$ é a velocidade da luz no vácuo, em torno de $3\times10^8m/s$. Qual o comportamento de $L$ conforme $v$ aumenta?
Determine $\lim\limits_{v\rightarrow c^- }L$. Por que o limite lateral à esquerda foi necessário, e como esta necessidade se relaciona com as Leis da Física?
Um $n$-ágono regular é um polígono de $n$ lados que possui todos os lados iguais e todos os ângulos de mesma medida.
- Encontre o perímetro de um $n$-ágono regular inscrito num círculo de raio $r$.
- O perímetro do $n$-ágono se aproxima de algum valor quando $n$ cresce?
- Deduza a fórmula do comprimento de uma circunferência de raio $r$.
Use o teorema do valor intermediário para mostrar que $f(x)=4x^3-6x^2+3x-4$ possui um zero no intervalo $[1,2]$.
Como $f(1) = -3 < 0$ e $f(2) = 10 > 0$, temos que a função $f$ muda de sinal no intervalo $[1,2]$, e portanto, pelo teorema do valor intermediário, $f$ possui um zero nesse intervalo.
Encontre as assíntotas horizontais e verticais ao gráfico de $f(x)=\sqrt{\frac{4x^2+1}{x^2-1}}$.
Obtenha as assíntotas verticais de $f(x)=\frac{x^2+1}{x-1}$.
$x=1$.
- $\lim\limits_{x\rightarrow 0^{+}}\log _{\frac{1}{3}}x$
- $\lim\limits_{x\rightarrow 1}\ln \dfrac{x^{2}-1}{x-1}$
- $\lim\limits_{x\rightarrow p}\dfrac{x^{n}-p^{n}}{x-p}$
Sendo $f(x) = \left\{\begin{array}{cl} x^2-x+1 & x\leq 3 \\ 2x+1 & x>3 \end{array}\right.$, calcule $\lim\limits_{x\to 3} f(x)$.
7
Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável cuja derivada é sempre positiva e tal que $f(0)=1$ e $f(4)=2$. Use o TVM para mostrar que $f(2) \neq 2$.
Dê um exemplo de uma função definida em $\mathbb{R}$ que não seja contínua em $2$ mas que $\lim\limits_{x\rightarrow 2^{+}}f\left( x\right) =\lim\limits_{x\rightarrow 2^{-}}f\left( x\right) .$
Avalie os seguintes limites para a função definida por partes
$ f(x) = \left\{\begin{array}{ccc}
2x^2+5x-1, & & \text{ se } x<0 \\
\sin x, & & \text{ se } x\geq 0
\end{array}
\right.$
$ \lim\limits_{x\to 0^-} f(x)$
$ \lim\limits_{x\to 0^+} f(x)$
$ \lim\limits_{x\to 0} f(x)$
$f(0)$
- $-1$
- 0
- Não existe.
- 0
Utilizando o gráfico a seguir, avalie os seguintes limites
Seja $-3\leq a\leq 3$ um número inteiro
- $ \lim\limits_{x\to a^-} f(x)$
- $ \lim\limits_{x\to a^+} f(x)$
- $ \lim\limits_{x\to a} f(x)$
- $f(a)$
- $a-1$
- $a$
- Não existe.
- $a$
Avalie os seguintes limites para a função definida por partes
$ f(x) = \left\{\begin{array}{ccc}
x^2, & & \text{ se } x<2 \\
x+1, & & \text{ se } x=2\\
-x^2+2x+4, & & \text{ se } x>2
\end{array}
\right.$
$ \lim\limits_{x\to 2^-} f(x)$
$ \lim\limits_{x\to 2^+} f(x)$
$ \lim\limits_{x\to 2} f(x)$
$f(2)$
- 4
- 4
- 4
- 3
Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:
$\lim\limits_{x\rightarrow 0}\dfrac{\tan x}{x}$
$\lim\limits_{x\rightarrow 0}\dfrac{x^{3}}{\sin x}$
Calcule o limite:
$\lim\limits_{x\rightarrow p}\dfrac{tg(x-p)}{x^{2}-p^{2}}$.
Calcule, por meio da definição, o limite $\lim_{x\to 2} x^3-1 = 7$.
Considere $\epsilon >0$ arbitrário. Queremos encontrar $\delta >0$ tal que quando $|x-2|<\delta$, $|f(x)-7|<\epsilon$.
Considere $|f(x)-7|<\epsilon$, lembrando que o objetivo é afirmar algo sobre $|x-2|$:
\begin{gather*}
|f(x) -7 | < \epsilon \\
|x^3-1 -7 |<\epsilon \\
| x^3-8 | < \epsilon \\
| x-2 |\cdot|x^2+2x+4| < \epsilon \\
| x-3 | < \epsilon/|x^2+2x+4| \\
\end{gather*}
Como $x$ está próximo de $2$, podemos considerar $1<x<3$. Portanto
\begin{gather*}
1^2+2\cdot1+4<x^2+2x+4<3^2+2\cdot3+4 \\
7 < x^2+2x+4 < 19 \\
\frac{1}{19} < \frac{1}{x^2+2x+4} < \frac{1}{7} \\
\frac{\epsilon}{19} < \frac{\epsilon}{x^2+2x+4} < \frac{\epsilon}{7} \\
\end{gather*}
Seja $\delta =\frac{\epsilon}{19}$. Então:
\begin{gather*}
|x-2|<\delta \\
|x-2| < \frac{\epsilon}{19}\\
|x-2| < \frac{\epsilon}{x^2+2x+4}\\
|x-2|\cdot|x^2+2x+4| < \frac{\epsilon}{x^2+2x+4}\cdot|x^2+2x+4|\\
\end{gather*}
Assumindo $x$ próximo de $2$, $x^2+2x+4$ é positivo e podemos eliminar o módulo do lado direito da equação.
\begin{gather*}
|x-2|\cdot|x^2+2x+4| < \frac{\epsilon}{x^2+2x+4}\cdot(x^2+2x+4)\\
|x^3-8| < \epsilon\\
|(x^3-1) - 7| < \epsilon,
\end{gather*}
que é o que desejávamos provar.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ g(s) = \ln s$.
$(0,\infty)$
Determine os valores para os quais a função \begin{align*} f(x) =\left\{ \begin{array} [c]{c} x^{2}+1,\text{ se }x\leq0 \\ \cos x, \text{ se } 0<x<1 \\ x^{2}+1, \text{ se }1 \leq x \end{array} \right.\end{align*} é contínua. Justifique sua resposta.
Defina ``$\displaystyle \lim_{x \to -\infty} f(x) = l$''.
Ache $\displaystyle \lim_{x \to -\infty} \dfrac{a_n x^n + \ldots + a_0}{b_m x^m + \ldots + b_0}$.
Mostre que $\displaystyle \lim_{x \to \infty} f(x) = \displaystyle \lim_{x \to -\infty} -f(x)$.
Mostre que $\displaystyle \lim_{x \to 0^-} \dfrac{1}{f(x)} = \displaystyle \lim_{x \to -\infty} f(x)$.
Identifique as assíntotas verticais e horizontais, caso existam, da função
$f(x)=\frac{x^2+x-12}{7 x^3-14 x^2-21 x}$.
Assíntota horizontal em $y=0$; assíntotas verticais em $x=-1$ e $x=0$.
Classifique as afirmações a seguir como verdadeiras ou falsas:
- Se $ \lim\limits_{x\to 5} f(x) = \infty$, então estamos implicitamente afirmando que o limite em questão existe.
- Se $ \lim\limits_{x\to 1^-} f(x) = -\infty$, então $ \lim\limits_{x\to 1^+} f(x) = \infty$.
- Se $ \lim\limits_{x\to 5} f(x) = \infty$, então $f$ tem uma assíntota vertical em $x=5$.
- $\infty/0$ não é uma forma indeterminada.
- Falsa.
- Falsa
- Verdadeira
- Verdadeira
Calcule, quando existirem, os seguintes limites:
$\lim\limits_{x\rightarrow 2}\dfrac{x^{2}+x-6}{ \left( x-2\right) ^{3}}$
$\lim\limits_{x\rightarrow 2}\dfrac{\sqrt{6-x}-2}{\sqrt{ 3-x}-1}$
$\lim\limits_{x\rightarrow \infty }\sqrt{3x+4}-\sqrt{3x}.$
Mostre que existem funções $f(x)$, $g(x)$ com $\lim_{x\rightarrow p} f(x) = \lim_{x\rightarrow p} g(x) =0,$ tais que $\lim_{x\rightarrow p} (f(x)/g(x)) =\lambda$, onde $\lambda$ assume qualquer valor em $\mathbb{R} \cup \{+\infty, -\infty\}$. Escolha o ponto $p$ como achar mais conveniente.
Avalie os seguintes limites de acordo com o gráfico da função:
$f(x) = \frac{1}{e^x+1}$
$\lim\limits_{x\to -\infty} f(x)$
$\lim\limits_{x\to \infty} f(x)$
$\lim\limits_{x\to 0^-} f(x)$
$\lim\limits_{x\to 0^+} f(x)$
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ g(x) = \sqrt{x^2-4}$.
$(-\infty,-2]\cup [2,\infty)$
A função $f(x) = \left\{ \begin{array}{ccc} x^2-1 & & x < 3 \\x+5 & & x\geq 3 \end{array}\right.$ é contínua em todo o seu domínio? Justifique.
Sim, é. O único ponto em que não poderia (inicialmente) ser contínua é em $x=3$. Todavia, temos $\lim\limits_{x\to 3^-} f(x)=\lim\limits_{x\to 3^+} f(x)=f(3)=8$.
Em matemática, a função piso, denotada por $\lfloor x\rfloor$, converte um número real ${\displaystyle x}$ no maior número inteiro menor ou igual a ${\displaystyle x}$ Essa função é importante em computação para truncamento ou arredondamento de números. Considere a função $f(x)=\lfloor 1/x\rfloor$, $x \neq 0$. Esboce o gráfico dessa função para $\dfrac{1}{4} \leq x \leq 2$ e também para $-2 \leq x \leq -\dfrac{1}{4}$. Como se comporta $f(x)$ quando $x$ tende a zero pelo lado direito? E pelo lado esquerdo? O limite $\lim\limits_{x \to 0}f(x)$ existe?
Calcule os seguintes limites:
$\lim\limits_{x\rightarrow \infty }\left( x-\sqrt{x^{3}+2}\right)$
$\lim\limits_{x\rightarrow \infty }\left( x-\sqrt{x^{2}+2}\right)$
$\lim\limits_{x\rightarrow \infty }\left( x-\sqrt{x+2}\right)$
- $-\infty$
- $0$
- $\infty$
Suponha que para todo $x$, $\left| f\left( x\right) \right| \leq x^{4}$. Calcule $\lim\limits_{x\rightarrow 0}\dfrac{f\left( x\right) }{x}.$
Seja $f:I \rightarrow \mathbb{R}$, contínua, onde I é um intervalo fechado qualquer. Prove que a imagem de $f$ é um intervalo fechado.
Dê um exemplo de uma função tal que $\lim\limits_{x \rightarrow p}\left| f\left( x\right) \right| $ exista mas $ \lim\limits_{x\rightarrow p}f\left( x\right) $ não exista.
Quais das seguintes funções f têm descontinuidade removível em $a$? Se a descontinuidade for removível em $a$, encontre a função $g$ que é igual a $f$ para $x\neq a$ e contínua em $a$.
$f(x)=\frac{x^{2}+2x-8}{x+2}$, $a=-2$.
$f(x)=\frac{x-7}{\vert x-7 \vert}$, $a=7$.
$f(x)=\frac{3- \sqrt{x}}{9-x}$, $a=9$.
Para a função a seguir, responda se a mesma é contínua nos pontos abaixo (e, caso não o seja, justifique)
$ f(x) = \left\{\begin{array}{ccc}
\frac{x^2-64}{x^2-11 x+24}, & & \text{se } x\neq 8\\
5, & & \text{se } x=8
\end{array}\right.$
- $x=0$
- $x=8$
- Sim.
- Não. $\lim_{x\to 8} f(x) = 16/5 \neq f(8) = 5$.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ g(t) = \frac{1}{\sqrt{1-t^2}}$.
$(-1,1)$
Calcule os limites:
$\lim\limits_{x\to\pi} \frac{3x+1}{1-x}$
$\lim\limits_{x\to\pi} \frac{x^2+3x+5}{5x^2-2x-3}$
$\lim\limits_{x\to\pi} \left(\frac{x-3}{x-5}\right)^7$
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ h(k) = \sqrt{1-k}+\sqrt{k+1}$.
$[-1,1]$
Dê exemplo de duas funções, $f$ e $g$, para ilustrar que se $g(x)\le f(x)$ para todo $x$ suficientemente próximo de $a$, então $\lim\limits_{x\rightarrow a}g(x)\le\lim\limits_{x \rightarrow a}f(x)$.
Use o Teorema do Confronto para demonstrar que $\lim\limits_{x \to 0} \cos{x} = 1$.
É possível que uma função $f:{\mathbb{R} \to \mathbb{R}}$
seja tal que $\lim\limits_{x\rightarrow 2^{+}}f\left( x\right) =\lim\limits_{x\rightarrow 2^{-}}f\left(x\right)$ e ao mesmo tempo não seja contínua em $2$? Justifique e/ou dê um exemplo.
Avalie os seguintes limites de acordo com o gráfico da função:
$f(x) = x^2\sin (\pi x)$
$\lim\limits_{x\to -\infty} f(x)$
$\lim\limits_{x\to \infty} f(x)$
Utilizando o gráfico a seguir, avalie os seguintes limites
- $ \lim\limits_{x\to 1^-} f(x)$
- $ \lim\limits_{x\to 1^+} f(x)$
- $ \lim\limits_{x\to 1} f(x)$
- $f(1)$
- $2$
- $2$
- $2$
- $2$
Calcule os limites:
$\lim\limits_{x\to\pi/4} \cos x\sin x$
$\lim\limits_{x\to0} \ln x$
$\lim\limits_{x\to3} 4^{x^3-8x}$
Seja $f$ uma função contínua em $[-1,1]$ sendo que $f(-1) = -10$ e $f(1) = 10$. Existe um valor $-1<c<1$ tal que $f(c) = 11$? Por quê?
Não se pode dizer. O Teorema do Valor Intermediário apenas se aplica, neste caso, para valores entre $-10$ e $10$; como $11$ não pertence a este intervalo, o teorema não nos permite afirmar nada sobre a possibilidade da existência de $c$.
$2$
$3/2$
Calcule o limite a seguir:
$\lim\limits_{x \to -\infty } e^x \sin(x)$
Observe que $-1 \leq \sin(x) \leq 1$ e, portanto, como $e^x \geq 0$, $-e^x \leq e^x \sin(x) \leq e^x$.
Como $\lim\limits_{x \to -\infty} e^x = 0$ e $\lim\limits_{x \to -\infty} -e^x = 0$, então, pelo Teorema do Confronto temos $\lim\limits_{x \to -\infty} e^x \sin(x) = 0$
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow 0}\dfrac{e^{x^{2}}-1}{x}$.
$0$.
Mostre que a função \begin{align*} f\left( x\right) =\left\{ \begin{array}{cc} \dfrac{x^{3}-4x}{x^{2}-4}, & \text{se } x\neq \pm 2 \\ 2, & \text{se } x=2 \\ -3, & \text{se } x=-2 \end{array} \right. \end{align*} é contínua em todos os pontos, com exceção do ponto $x=-2$.
Um tanque contém 5000 litros de água pura. Água salgada contendo $30$g de sal por litro de água é bombeada para dentro do tanque a uma taxa de $25$ L$/$min. Considerando o tempo $t$ em minutos, mostre que a concentração de sal $C$ em função de $t$ (em gramas por litro) é dada por:$$C(t) = \dfrac{30 t}{200+t}.$$
O que acontece com a concentração para um tempo muito grande, isto é, para $t \to \infty$?
Mostre, usando a definição, que a função dada por $f(x) = 3x$ é contínua para todo $x$ real.
Sabendo que $\lim\limits_{x\to2} f(x) = 3$ e $\lim\limits_{x\to2} g(x) = -1$, calcule os seguintes limites:
$\lim\limits_{x\to2}(f+g)(x)$
$\lim\limits_{x\to2}(fg)(x)$
$\lim\limits_{x\to2}(f/g)(x)$
$\lim\limits_{x\to2}f(x)^{g(x)}$
O gráfico a seguir representa o número de indivíduos de uma população ao longo do tempo.
Pode-se dizer que há uma assíntota horizontal para essa população? Justifique.
O que essa assíntota representa em termos biológicos? (Isto é, qual a interpretação da assíntota em função da população?)
Seja $g$ uma função contínua em $[-3,7]$, sendo que $g(0) = 0$ e $g(2) = 25$. Existe um valor $-3<c<7$ tal que $g(c) = 15$? Por quê?
Sim, pelo Teorema do Valor Intermediário. Na realidade, é possível ser ainda mais preciso e afirmar não só que um valor $c$ existe em $(3,7)$, mas ainda que existe um valor $x$ contido em $(0,2)$.
Embora limites como $\displaystyle \lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n]{n}$ e $\displaystyle \lim_{n \to \infty} a^n$ possam ser avaliados utilizando conhecimentos sobre as funções logaritmo e exponencial, estes não são necessários. Neste exercício vamos calcular esses tipos de limite por meio de argumentos ``elementares''. As ferramentas básicas são desigualdades provenientes do teorema binomial, principalmente:
$$(1+h)^n \geq 1+nh, \text{ para } h > 0,$$
e, para o item 3 a seguir:
$$(1+h)^n \geq 1+nh+\dfrac{n(n-1)}{2}h^2 \geq \dfrac{n(n-1)}{2}h^2, \text{ para } h>0.$$
Mostre que $\displaystyle \lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n]{a}= 1$ se $a>1$, fazendo $\sqrt[\leftroot{-2}\uproot{2}n]{a}=1+h$ e estimando $h$.
Mostre que $\displaystyle \lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n]{a}=1 $ se $1<a<1$.
Mostre que $\displaystyle \lim_{n \to \infty} \sqrt[\leftroot{-2}\uproot{2}n]{n}= 1$.
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow 0^{+}}\log _{\dfrac{1}{3}}x$.
$\infty$.
Sabe-se que $f$ é contínua em $1$ e que $f(1)=2$. Mostre que existe $\delta>0$ tal que para todo $x \in D_f$ vale $1-\delta<x<1+\delta \rightarrow \dfrac{3}{2}<f(x)<\dfrac{5}{2}$.
Dada uma função $f:{\mathbb{R} \to \mathbb{R}}$, defina sua continuidade no ponto $p\in \mathbb{R}.$
Calcule o limite $\lim\limits_{x\rightarrow \infty }\dfrac{1-2^{x}}{1-3^{x}}$.
$0$.
Calcule os limites indicados dividindo o numerador e o denominador por uma potência conveniente de $x$. Como esses limites se relacionam com as mais altas potências do numerador e do denominador?
$\lim\limits_{x\rightarrow\infty}\frac{x^4-2}{3x^4-x^3+1}$
$\lim\limits_{x\rightarrow\infty}\frac{\sqrt{2x^6-2x+1}}{x^3-x^2+2}$
$\lim\limits_{x\rightarrow -\infty}\frac{\sqrt{x^2-3}}{x+1}$
Dê um exemplo para mostrar que o produto de uma função contínua por uma função descontínua, pode ser uma função contínua.
Prove que a única função contínua $f:\mathbb{R} \to \mathbb{R}$ que satisfaz $f(f(f(x)))=x$ é a função identidade $f(x)=x$. (Sugestão: Prove que se uma função é injetiva e contínua então ela é monótona).
Seja $f:[a,b] \to [a,b]$ uma função contínua. Prove que $f$ possui um ponto fixo, ou seja, algum valor de $x$ tal que $f(x)=x$.
Avalie o limite $\lim\limits_{x\rightarrow 0}\dfrac{\sin \left(7x\right) }{\sin \left( 23x\right) }$.
$7/23$.
Determine os valores de $\lambda$ que tornam contínua a função $g: \left( 0,\pi\right)\mathbb{\rightarrow R},$ dada por
\[
g\left( x\right) =\left\{
\begin{array}{c}
\tan \left( x\right) \mbox{ se }x\neq \dfrac{\pi }{2} \\
\lambda \mbox{ se }x = \dfrac{\pi }{2}
\end{array}
\right.
\]
Use o Teorema do Valor Intermediário para provar que a equação $\tan x= 2-4x$ possui uma solução no intervalo $\bigl(-\frac{\pi}{2}, \frac{\pi}{2}\bigr).$
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow 0}\left( 1+2x\right) ^{\dfrac{1}{x}}$.
$e^2$.
Obtenha as assíntotas verticais de $f(x)=\frac{x^2+1}{x}$.
$x=0$.
Calcule o limite a seguir, justificando as passagens.
$\lim\limits_{x\rightarrow 0}\dfrac{1-\cos x}{x}$
0
Para todo $x\neq 0$ temos que
\begin{equation*}
\dfrac{1-\cos x}{x}=\dfrac{1-\cos x}{x}\dfrac{1+\cos x}{1+\cos x}=\dfrac{
1-\cos ^{2}x}{x}\dfrac{1}{1+\cos x}\text{.}
\end{equation*}
Como $1-\cos ^{2}x=\sin ^{2}x$ obtemos
\begin{eqnarray*}
\dfrac{1-\cos x}{x} &=&\dfrac{\sin ^{2}x}{x}\dfrac{1}{1+\cos x} \\
&=&\sin x\dfrac{\sin x}{x}\dfrac{1}{1+\cos x}.
\end{eqnarray*}
Mas
\begin{eqnarray*}
\lim\limits_{x\rightarrow 0}\sin x &=&0\;\text{(pois }\sin x\text{ é contínua)} \\
\lim\limits_{x\rightarrow 0}\dfrac{\sin x}{x} &=&1\;\text{(limite trigonométrico fundamental)} \\
\lim\limits_{x\rightarrow 0}\dfrac{1}{1+\cos x} &=&\dfrac{1}{2}\;\text{(}
\cos x\text{ cont\'{i}nua e }1+\cos \left( 0\right) \neq 0\text{).}
\end{eqnarray*}
Logo,
\begin{equation*}
\lim\limits_{x\rightarrow 0}\dfrac{1-\cos x}{x}=\lim\limits_{x\rightarrow
0}\sin x\lim\limits_{x\rightarrow 0}\dfrac{\sin x}{x}\lim\limits_{x
\rightarrow 0}\dfrac{1}{1+\cos x}=0.
\end{equation*}
Seja $f$ uma função contínua em $[1,5]$, sendo que $f(1) = -2$ e $f(5) = -10$. Existe um valor $1<c<5$ tal que $f(c) = -9$? Por quê?
Sim, pelo Teorema do Valor Intermediário.
Sejam $f,g:\mathbb{R} \to \mathbb{R}$ funções contínuas tais que $f(a)<g(a)$ e $f(b)>g(b)$. Mostre que existe $c \in (a,b)$ tal que $f(c)=g(c)$.
Explique, usando suas palavras, o que significa escrever $\lim\limits_{x\to c} b = b$.
Utilizando o gráfico a seguir, avalie os seguintes limites
- $ \lim\limits_{x\to 1^-} f(x)$
- $ \lim\limits_{x\to 1^+} f(x)$
- $ \lim\limits_{x\to 1} f(x)$
- $f(1)$
- $ \lim\limits_{x\to 0^-} f(x)$
- $ \lim\limits_{x\to 0^+} f(x)$
- $2$
- $2$
- $2$
- $1$
- Como $f$ não é definida para $x<0$, esse limite é indefinido.
- $1$
- $\lim\limits_{x\rightarrow 1}\dfrac{\sqrt{x}-1}{\sqrt{2x+3}-\sqrt{5}}$
- $\lim\limits_{x\rightarrow 3}\dfrac{\sqrt{x}-\sqrt{3}}{x-3}$
- $\lim\limits_{h\rightarrow 0}\dfrac{\sqrt{x+h}-\sqrt{x}}{h}$
Calcule os seguintes limites:
$\lim\limits_{x\rightarrow \infty }\left( x-\sqrt{x^{2}+3}\right)$
$\lim\limits_{x\rightarrow -\infty }\left( x-\sqrt{x^{2}+3}\right)$
$\lim\limits_{x\rightarrow \infty } \left( \sqrt{x+1}-\sqrt{x+3}\right)$
- $0$
- $-\infty$
- $0$
Calcule e justifique os seguintes limites, quando existirem, ou justifique a inexistência:
- $\lim\limits_{x\rightarrow 0}\left( 1+2x\right)^{\dfrac{1}{x}}$
- $\lim\limits_{x\rightarrow 0}\dfrac{e^{2x}-1}{x}$
- $\lim\limits_{x\rightarrow 0}\dfrac{e^{x^{2}}-1}{x}$
Calcule o limite justificando as passagens.
$\lim\limits_{x\rightarrow +\infty }\dfrac{-x^{3}+2}{4x^{2}+89}$.
Avalie os seguintes limites para a função definida por partes
$ f(x) = \left\{\begin{array}{ccc}
a(x-b)^2+c, & & \text{ se } x<b \\
a(x-b)+c, & & x \text{ se } \geq b
\end{array}
\right.,$
sendo que $a$, $b$ e $c$ são números reais.
- $ \lim\limits_{x\to b^-} f(x)$
- $ \lim\limits_{x\to b^+} f(x)$
- $ \lim\limits_{x\to b} f(x)$
- $f(b)$
- $c$
- $c$
- $c$
- $c$
Conforme $x$ aumenta, tanto $1/x$ quanto $1/(ln\ x)$ tendem a zero. Dada a função: $f(x)=\left(\frac{1}{x}\right)^{1/(ln\ x)}$ avalie $f(x)$ para valores cada vez maiores de $x$. Qual o padrão observado? Com o auxílio de recursos computacionais, observe o gráfico de $f(x)$ para valores grandes de $x$.
Sugestão: Procure, no site, o exercício 1527. Compare os resultados obtidos.
Calcule $\lim\limits_{x\rightarrow +\infty }\left( x-\sqrt{x^{2}+4x}\right)$.
$-2$
Calcule o limite $\lim\limits_{x\rightarrow \infty }\dfrac{5x^{4}-2x+1}{4x^{4}+2x+3}$.
$5/4$
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow \infty }\ln \dfrac{x}{x+1}$.
$0$
Use o Teorema do Confronto para calcular $\lim\limits_{x\rightarrow0^{+}}\sqrt{x} \,e^{\sin\left( \pi/x\right) }\text{.}$
Lembre-se de justificar porque o Teorema do Confronto pode ser útil.
Calcule o limite:
$\lim\limits_{x\rightarrow 1}\dfrac{\sqrt{x^{2}+3}-2}{x^{2}-1}$.
Aproxime numericamente o seguinte limite
$ f(x)= \frac{x^2+5 x-36}{x^3-5 x^2+3 x+9}$
- \begin{array}{cc}
x & f(x) \\ \hline
2.9 & -335.64 \\
2.99 & -30350.6 \\
\end{array}
A tabela parece indicar que $\lim\limits_{x\to3^-}f(x) =-\infty$. - \begin{array}{cc}
x & f(x) \\ \hline
3.1 & -265.61 \\
3.01 & -29650.6 \\
\end{array}
A tabela parece indicar que $\lim\limits_{x\to3^+}f(x) =-\infty$. - As tabelas parecem indicar que $\lim\limits_{x\to3}f(x) =-\infty$.
Sejam $f$ uma função contínua num intervalo $I$, $a$ e $b$ valores em $I$. Se $f(a)$ e $f(b)$ são valores com sinais contrários, mostre que a equação $f(x)=0$ tem pelo menos uma raiz real no intervalo $\left[a,b\right]$.
Avalie o limite $\lim\limits_{x\rightarrow p}\ln\left(\dfrac{x^{n}-p^{n}}{x-p}\right)$, onde $n$ é qualquer número natural.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ f(x) = e^x$.
$(-\infty,\infty)$
É possível mostrar que, sob certas condições, a velocidade $v(t)$ de uma gota de chuva caindo no instante $t$ é:
$$v(t) = v^\star \left(1-\exp\left(-\dfrac{gt}{v} \right)\right),$$
onde $g$ é a aceleração da gravidade e $v^\star$ é a velocidade final da gota.
Calcule a velocidade para um tempo muito grande, isto é, calcule $\displaystyle \lim_{t \to \infty} v(t)$.
Considerando $v^\star = 1$m$/$s e $g=9,8$m$/$s$^2$, faça o gráfico de $v(t)$. Quanto tempo levará para a velocidade da gota atingir $99\%$ de sua velocidade final?
Suponha $g(x) \neq 0$, para todo $x \in Dom(g)$, $L \neq 0$ e $\lim\limits_{x \to p}g(x)=L$. Prove que $\lim\limits_{x \to p}\dfrac{1}{g(x)}=\dfrac{1}{L}$.
Veja Guidorizzi, volume $1$, página $87$.
Uma importante aplicação do Teorema do Valor Intermediário é o Método da Bissecção.
Suponha que estamos interessados em encontrar as raízes de uma função contínua $f(x)$. O Método da Bissecção é uma alternativa que pode resultar em boas aproximações para as raízes, após sucessivas aplicações do método.
Para iniciar o método, precisamos encontrar dois valores $a$ e $b$ tais que $f(a) \cdot f(b) < 0$.
Sem perda de generalidade, vamos assumir $f(a) < 0$, $f(b) > 0$ e $a<b$. O Teorema do Valor Intermediário afirma que existe um valor $c$ no intervalo $[a,b]$ tal que $f(c) = 0$. O teorema não afirma nada a respeito da localização de $c$ dentro do intervalo, apenas que ele existe.
O Método da Bissecção é, portanto, uma maneira sistemática de obter este valor $c$. Seja $d=\frac{a+b}{2}$ o meio do intervalo. Existem três possibilidades:
- $f(d) = 0 $ - Por sorte, encontramos a raiz e não é necessário prosseguir com o método.
- $f(d) < 0$ - Como $f(b)>0$, sabemos que há uma raiz no intervalo $[d,b]$. Este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
- $f(d) > 0$ - Como $f(a)<0$, sabemos que há uma raiz no intervalo $[a,d]$. Novamente, este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
O Método da Bissecção é a aplicação sucessiva dos passos descritos até que se esteja próximo o suficiente da raiz de $f(x)$ para a aplicação desejada. Nota-se que para o caso em que $f(a)>0$ e $f(b)<0$ o método ainda funciona, mas no caso 2 o intervalo escolhido seria $[a,d]$ e no caso e $[d,b]$ (por quê?).
Utilize o Método da Bissecção para encontrar as raízes de $f(x) = \cos x -\sin x$ no intervalo $[0.7,0.8]$.
A raiz aproximada é $x=0.78$.
Os intervalos utilizados são:
$[0.7,0.8] \quad [0.75,0.8] \quad [0.775,0.8]$
$[0.775,0.7875]\quad [0.78125,0.7875]$
(Alguns passos a mais mostrariam que $0.79$ é melhor, dado que a raiz é $\pi/4 \approx 0.78539$.)
Admitindo-se que $\lim\limits_{x\rightarrow a}f(x)$ existe, prove que
$\lim\limits_{x\rightarrow a}f(x)=\lim\limits_{h\rightarrow0}f(a+h).$
Dê um exemplo de uma função que seja contínua em todos os pontos da reta, exceto nos pontos da forma $k \pi$, $k \in \mathbb{Z}$.
$f(x)=1$, se $x=k \pi$, $k \in \mathbb{Z}$; $f(x)=0$, caso contrário.
Calcule os limites:
$\lim\limits_{x\to3} x^2-3x+7$
$\lim\limits_{x\to3} x^3-3x-7$
- Como a função está definida em $x=3$, o limite pode ser calculado diretamente por substituição:
$\lim\limits_{x\rightarrow 3} x^2-3x+7 = 3^2 - 3.3 + 7 = 7$. - Como a função está definida em $x=3$, o limite pode ser calculado diretamente por substituição:
$\lim\limits_{x\rightarrow 3} x^3-3x+7 = 3^3 - 3.3 - 7 = 11$.
Avalie o limite $\lim\limits_{x\rightarrow p}\dfrac{x^{8}-p^{8}}{x-p}$.
Calcule o limite $\lim\limits_{x\rightarrow \infty }\dfrac{\sqrt[3]{3x^{3}+2x-1}}{\sqrt{x^{2}+x+4}}$.
$\sqrt[3]{3}$
Justifique sua resposta.
$c=-1$ ou $c=2$.
Determine todas as funções contínuas $f:\mathbb{R} \to \mathbb{R}$ tais que $f(x+y)=f(x)f(y)$ para quaisquer x, y reais.
Considere a função $f(x) = 2^x+10$. Calcule os seguintes limites e, depois, discuta se a função $f(x)$ tem assíntotas horizontais.
$\lim\limits_{x\to -\infty} f(x)$.
$\lim\limits_{x\to \infty} f(x)$.
1. $10$.
2. $\infty$
Possui assíntota horizontal de equação $y=10$,
Seja $f$ uma função definida num intervalo aberto $I$ e $p \in I$. Suponha que $f(x) \leq f(p)$ para todo $x \in I$. Prove que $\lim\limits_{x \to p}\dfrac{f(x)-f(p)}{x-p}=0$, desde que o limite exista.
Estime numericamente os seguintes limites para a função $f(x)=\frac{x^2-11 x+30}{x^3-4 x^2-3 x+18}$:
$\lim\limits_{x \to 3^-} f(x)$
$\lim\limits_{x \to 3^+} f(x)$
$\lim\limits_{x \to 3} f(x)$
\begin{tabular}{cc}
$x$ & $f(x)$ \\ \hline
$2.9$ & $132.857$ \\
$2.99$ & $12124.4$ \\
\end{tabular}
A tabela parece indicar que $\lim\limits_{x\to3^-}f(x) =\infty$.
\begin{tabular}{cc}
$x$ & $f(x)$ \\ \hline
$ 3.1$ & $108.039$ \\
$3.01$ & $11876.4$ \\
\end{tabular}
A tabela parece indicar que $\lim\limits_{x\to3^+}f(x) =\infty$.
Ao analisar as duas tabelas, parece que $\lim\limits_{x\to3}f(x) =\infty$.
$f(x)=1, x \neq 0$; $f(0)=2$.
Explique, usando suas palavras, o que significa escrever $\lim\limits_{x\to c} x = c$.
Mostre que a equação
\begin{equation*}
x^{26}+x^{2}-320=0
\end{equation*}
possui ao menos uma raiz real positiva e também uma raiz real negativa.
Seja $f$ uma função definida em $\mathbb{R}$ e suponha que exista $M>0$ tal que $|f(x)-f(p)|\leq M|x-p|$ para todo $x$. Prove que $f$ é contínua em $p$.
Encontre todas as assíntotas horizontais e verticais da função $ f(x)=\frac{\sqrt{3x^2-5x+11}}{4x-7}$.
Verifique que a equação $x^{179}+\frac{163}{1+x^2+\sin^2x}=119$ possui pelo menos uma solução.
Enuncie e demonstre o Teorema do Confronto.
Em matemática e estatística, a função de Heaviside (ou função degrau) é uma função singular e descontínua, com valor zero quando o seu argumento é negativo e valor unitário quando o argumento é positivo. Seja $H$ a função de Heaviside. Prove, usando a definição de limite, que $\lim\limits_{x \to 0}H(x)$ não existe.
Calcule o seguinte limite:
$\lim\limits_{x\rightarrow \infty }\left( 2^{x}-3^{x}\right) $.
$-\infty$.
Calcule, pela definição, o limite $ \lim_{x\to 4} x^2+x-5 = 15$
Considere $\epsilon >0$ arbitrário. Queremos encontrar $\delta >0$ tal que quando $|x-4|<\delta$, $|f(x)-15|<\epsilon$.
Considere $|f(x)-15|<\epsilon$, lembrando que o objetivo é afirmar algo sobre $|x-4|$:
\begin{gather*}
|f(x) -15 | < \epsilon \\
|x^2+x-5 -15 |<\epsilon \\
| x^2+x-20 | < \epsilon \\
| x-4 |\cdot|x+5| < \epsilon \\
| x-4 | < \epsilon/|x+5| \\
\end{gather*}
Assumindo $x$ próximo de $4$, podemos assumir, por exemplo, que, $3<x<5$. Portanto
\begin{gather*}
3+5<x+5<5+5 \\
8 < x+5 < 10 \\
\frac{1}{10} < \frac{1}{x+5} < \frac{1}{8} \\
\frac{\epsilon}{10} < \frac{\epsilon}{x+5} < \frac{\epsilon}{8} \\
\end{gather*}
Seja $\delta =\frac{\epsilon}{10}$. Então:
\begin{gather*}
|x-4|<\delta \\
|x-4| < \frac{\epsilon}{10}\\
|x-4| < \frac{\epsilon}{x+5}\\
|x-4|\cdot|x+5| < \frac{\epsilon}{x+5}\cdot|x+5|\\
\end{gather*}
Assumindo $x$ próximo de 4, $x+5$ é positivo e podemos eliminar o módulo do lado direito da equação.
\begin{gather*}
|x-4|\cdot|x+5| < \frac{\epsilon}{x+5}\cdot(x+5)\\
|x^2+x-20| < \epsilon\\
|(x^2+x-5) -15| < \epsilon,
\end{gather*}
que é o que desejávamos provar.
Calcule os seguintes limites:
$\lim\limits_{x\rightarrow -\infty }\dfrac{5-x}{2x+3}$
$\lim\limits_{x\rightarrow \infty }\dfrac{\sqrt{x}+1}{x+3}$
- $-1/2$
- $0$
Determine todas as assíntotas horizontais da função $f(x) = \frac{x^2-1}{-x^2-1}$.
$y=-1$.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ f(k) = \sqrt{1-e^k}$.
$(-\infty,0]$
Calcule o limite $\lim_{x\rightarrow 0} \dfrac{3x+\tan x}{\sin x + \tan^2 x}.$
Temos que:
$\dfrac{3x+\tan x}{\sin x + \tan^2 x}= \dfrac{x}{\sin x}\cdot\dfrac{3+\dfrac{\tan x}{x}}{1+ \dfrac{\sin x}{\cos^2 x}}.$
Lembramos o limite fundamental $\lim_{x\rightarrow 0}\frac{\sin x}{x}=1$ e, além disso, observamos que
\begin{equation*}
\begin{split}
&\lim_{x\rightarrow 0}\dfrac{\sin x}{\cos^2 x}=0 \\
&\lim_{x\rightarrow 0}\dfrac{\tan x}{x}=\lim_{x\rightarrow 0}\dfrac{\sin x}{x}\cdot\dfrac{1}{\cos x}=1.
\end{split}
\end{equation*}
Então:
$\lim_{x\rightarrow 0}\dfrac{3x+\tan x}{\sin x + \tan^2 x}= \lim_{x\rightarrow 0}\dfrac{x}{\sin x}\cdot\dfrac{3+\dfrac{\tan x}{x}}{1+ \dfrac{\sin x}{\cos^2 x}} = 1\cdot\dfrac{3+1}{1+0}=4.$
Uma das propriedades da potenciação é que $a^0=1$, $\forall a \neq 0$. Além disso, também sabe-se que $0^n=0,\quad \forall n>0$. A extensão destas regras para incluir, respectivamente, $a=0$ e $n=0$ levam a resultados conflitantes quanto ao valor de $0^0$(O que não implica em contradição, dado que as propriedades não foram estabelecidas para $a=0$ e $n=0$).
Sendo assim, avalie $x^x$ para $x=0,1;0,01;0,001;\ldots$. Qual o padrão observado? Com o auxílio de recursos computacionais, observe o gráfico de $y=x^x$ para valores positivos de $x$, se aproximando da origem. Para qual valor a função parece convergir para $x=0$?
Sugestão: Procure, no site, o exercício 1528. Compare os resultados obtidos.
Resolva os itens:
- Prove que existe $r>0$ tal que $\cos{x}-1<\dfrac{\sin{x}}{x}-1<0$ para $0<|x|<r$.
- Calcule $\lim\limits_{x \to 0}\dfrac{x-\sin{x}}{x^2}$.
Calcule o limite justificando as passagens.
$\lim\limits_{x\rightarrow \infty }\dfrac{-x^{4}-2x+1}{2x^{4}+2x+3}$.
Avalie o limite $\lim\limits_{x\rightarrow p}\dfrac{x^{4}-p^{4}}{x-p}$.
Calcule o limite $\lim\limits_{x\rightarrow \infty }\dfrac{5x^{3}-6x-3}{6x^{2}+28x+2}$.
$\infty$
Seja $ f(x)=\left\{\begin{array}{ll} \sqrt{x-4} &\text{ se } x>4\\8-2x&\text{ if } x<4\end{array}\right.$.
Decida se $\lim\limits_{x\rightarrow 4}f(x)$ existe. Se o limite não existe, explique.
O que significa dizer, em termos de limites, que uma função é "bem comportada"?
Sabemos que a troca de calor entre um objeto a uma temperatura $T$ e o ambiente a uma temperatura $T_{a}$ é proporcional a diferença $(T-T_{a})$. Como a variação de temperatura é proporcional a troca de calor, temos a seguinte equação diferencial para $T\left( t\right) $ (temperatura em função do tempo $t$ ):$\frac{dT}{dt}=-\alpha \left( T-T_{a}\right) ,$ onde a constante $\alpha >0$ depende do calor específico e da condutividade térmica do objeto. Ache a solução dessa equação em função de $\alpha $ assumindo que a temperatura do ambiente $T_{a}=20^{o}C$ e a temperatura inicial $T_{0}=100^{o}C$. Qual é o limite $\lim\limits_{t\rightarrow +\infty }T\left( t\right) $?
Responda os itens:
- Dada $f:{\mathbb{R} \to \mathbb{R}}$, defina (em termos de $\varepsilon $ e $\delta $) $\lim\limits_{x\rightarrow p}f\left( x\right) =L.$ Ilustre elaborando um gráfico para uma função genérica.
- Qual é a condição sobre esse limite para que a função seja contínua?
Calcule o limite $\lim\limits_{x\to p}\frac{x^{4}-p^{4}}{x-p}$
$\begin{array}{rcl} \lim\limits_{x\to p}\dfrac{x^{4}-p^{4}}{x-p} &=& \lim\limits_{x\to p} \dfrac{(x^2+p^2)(x^2-p^2)}{x-p} \\ &=& \lim\limits_{x\to p} \dfrac{(x^2+p^2)(x+p)(x-p)}{x-p} \\ &=& \lim\limits_{x\to p} (x^2+p^2)(x+p) \\ &=& (p^2 + p^2)(p+p) \\ &=& 4p^3. \end{array}$
Seja $f:\mathbb{R\rightarrow R}$ a função
definida por
\begin{equation*}
f\left( x\right) =\left\{
\begin{array}{cc}
x^{2}, & \text{se }x\leq 1 \\
2x-1, & \text{se }x>1
\end{array}
\right. ,
\end{equation*}
e defina $g\left( x\right) =\lim\limits_{x \rightarrow h}\dfrac{f \left(x+h \right) -f \left( x\right) }{h}$.
Mostre que $g\left( x\right) $ é contínua.
\begin{eqnarray*} g\left( x\right) &=&\lim\limits_{h\rightarrow 0}\dfrac{f\left( x+h\right) -f\left( x\right) }{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{\left( x+h\right) ^{2}-x^{2}}{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{x^{2}+2hx+h^{2}-x^{2}}{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{2hx+h^{2}}{h} \\ &=&\lim\limits_{h\rightarrow 0}\left( 2x+h\right) =2x. \end{eqnarray*}
Já para $x>1$ temos que
\begin{eqnarray*} g\left( x\right) &=&\lim\limits_{h\rightarrow 0}\dfrac{f\left( x+h\right) -f\left( x\right) }{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{\left[ 2\left( x+h\right) -1\right] - \left[ 2x-1\right] }{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{2h}{h}=2. \end{eqnarray*}
Para $x=1$ temos que
\begin{eqnarray*} \lim\limits_{h\rightarrow 0^{+}}\dfrac{f\left( 1+h\right) -f\left( 1\right) }{h} &=&\lim\limits_{h\rightarrow 0}\dfrac{\left[ 2\left( 1+h\right) -1 \right] -1}{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{2h}{h}=2 \\ \lim\limits_{h\rightarrow 0^{-}}\dfrac{f\left( 1+h\right) -f\left( 1\right) }{h} &=&\lim\limits_{h\rightarrow 0^{-}}\dfrac{\left( 1+h\right) ^{2}-1}{h} \\ &=&\lim\limits_{h\rightarrow 0^{-}}\dfrac{2h+h^{2}}{h} \\ &=&\lim\limits_{h\rightarrow 0^{-}}\left( 2+h\right) =2. \end{eqnarray*}
Temos então que $g$ é bem definida também no ponto $x=1$ e, de modo geral, $g$ pode ser expressa por \begin{equation*} g\left( x\right) =\left\{ \begin{array}{cc} 2x & \text{se }x\leq 1 \\ 2 & \text{se }x>1 \end{array} \right. \text{.} \end{equation*}
Como as funções $h\left( x\right) =2x$ e $p\left( x\right) \equiv 2$ são contínuas, temos que $g\left( x\right) $ é contínua para todo $x\neq 1$.
Além disto, como $\lim\limits_{x\rightarrow 1^{-}}g\left( x\right) =\lim\limits_{x\rightarrow 1}2x=2=\lim\limits_{x\rightarrow 1^{+}}2=\lim\limits_{x\rightarrow 1^{+}}g\left( x\right) $, segue que $\lim\limits_{x\rightarrow 1}g\left(x\right) =2$. Mas como $g\left( 1\right) =2$, segue que a função $ g\left( x\right) $ também é contínua no ponto $x=1$.
Mostre que a função $f\left( x\right) =\sqrt[n]{x}$ é contínua em seu domínio.
Mostre que existe um número real que é igual a soma de seu cubo e de seu quadrado mais um. Justifique sua resposta.
Mas $f\left( -2\right) =\left( -2\right)^{3}+\left( -2\right) ^{2}-\left( -2\right) +1=-1$ e $f\left( 0\right)=1$.
Como $f\left( x\right) $ é contínua, pelo Teorema do Valor Intermediário, existe $-2<x<0$ tal que $f\left( x\right) =0$.
Resolução Alternativa:
Uma vez definida $f(x)$, pode-se ver que $\lim_{x\rightarrow+\infty}f\left( x\right)=+\infty$ e $\lim_{x\rightarrow-\infty}f\left( x\right) =-\infty $. Como $f\left( x\right)$ é contínua, pelo Teorema do Valor Intermediário, existe $x$ tal que $f\left(x\right) =0$.
Calcule o limite $\lim\limits_{x\rightarrow -3}\frac{1-x}{\sqrt{x^2+2}}$.
Como a função está definida em $x=-3$, o limite pode ser calculado diretamente por substituição:
$\lim\limits_{x\rightarrow -3}\dfrac{1-x}{\sqrt{x^2+2}} = \dfrac{1-(-3)}{\sqrt{(-3)^2+2}} = \dfrac{4}{\sqrt{11}}$.
f(x)=\frac{\sqrt{1-x^2}}{1-tg x} \end{align*}
- Determine o domínio de $f$.
- Estude $f$ quanto a continuidade.
Seja $f:\mathbb{R} \to \mathbb{R}$ contínua e tal que $f(x).f(f(x))=1$, para todo $x$. Se $f(1000)=999$, calcule $f(500)$.
Calcule, através da definição de limite, $\displaystyle \lim_{x\to 0} e^{2x}-1 = 0$.
Seja $\epsilon >0$ dado. Queremos $\delta >0$ tal que, quO IMECC é responsável pelos cursando $|x-0|<\delta$, $|f(x)-0|<\epsilon$.
Considerando $|f(x)-0|<\epsilon$, lembrando que o objetivo é afirmar algo sobre $|x-0|$ (i.e., $|x|$):
\begin{gather*}
|f(x) -0 | < \epsilon \\
|e^{2x}-1 |<\epsilon \\
-\epsilon< e^{2x}-1 < \epsilon \\
1-\epsilon< e^{2x} < 1+\epsilon \\
\ln (1-\epsilon) < 2x < \ln (1+\epsilon) \\
\frac{\ln (1-\epsilon)}{2} < x < \frac{\ln (1+\epsilon)}{2} \\
\end{gather*}
Seja $\delta = \min\left\{\left|\frac{\ln(1-\epsilon)}{2}\right|,\frac{\ln(1+\epsilon)}{2}\right\}=\frac{\ln(1+\epsilon)}{2}.$
Portanto:
\begin{gather*}
|x| < \delta \\
|x| <\frac{\ln(1+\epsilon)}{2}<\left|\frac{\ln(1-\epsilon)}{2}\right| \\
\frac{\ln(1-\epsilon)}{2} < x < \frac{\ln(1+\epsilon)}{2}\\
\ln(1-\epsilon)< 2x < \ln(1+\epsilon)\\
1-\epsilon < e^{2x} < 1+\epsilon\\
-\epsilon < e^{2x}-1 < \epsilon\\
|e^{2x}-1-(0)| < \epsilon,
\end{gather*}
que é o que buscávamos provar.
- $\lim\limits_{x\rightarrow -1}\sqrt[3]{\dfrac{x^{3}+1}{x+1}}$
- $\lim\limits_{x\rightarrow 1}\dfrac{\sqrt{x^{2}+3}-2}{x^{2}-1}$
- $\lim\limits_{x\rightarrow 1}\dfrac{\sqrt[3]{3x+5}-2}{x^{2}-1}$
Estime numericamente os seguintes limites para a função $f(x)= \frac{x^2+5 x-36}{x^3-5 x^2+3 x+9}$:
$\lim\limits_{x \to 3^-} f(x)$
$\lim\limits_{x \to 3^+} f(x)$
$\lim\limits_{x \to 3} f(x)$
\begin{tabular}{cc}
$x$ & $f(x)$ \\ \hline
$2.9$ & $-335.64$ \\
$2.99$ & $-30350.6$ \\
\end{tabular}
A tabela parece indicar que $\lim\limits_{x\to3^-}f(x) =-\infty$.
\begin{tabular}{cc}
$x$ & $f(x)$ \\ \hline
$ 3.1$ & $-265.61$ \\
$3.01$ & $-29650.6$ \\
\end{tabular}
A tabela parece indicar que $\lim\limits_{x\to3^+}f(x) =-\infty$.
Ao analisar as duas tabelas, parece que $\lim\limits_{x\to3}f(x) =-\infty$.
O que há de errado com a seguinte ``definição'' de limite?
"O limite de $f(x)$, quando $x$ tende a $a$, é $K$'' significa que para qualquer $\delta>0$, existe $\epsilon>0$ tal que $|f(x)-K|< \epsilon$, tem-se $|x-a|<\delta$."
$\epsilon$ deve ser apresentado antes, e a restrição $|x-a|<\delta$ implica em $|f(x)-K|< \epsilon$, e não o contrário.
Identifique as assíntotas verticais e horizontais, caso existam, da função $f(x)=\frac{-3 x^2-9 x-6}{5 x^2-10 x-15}$.
Assíntota horizontal em $y=-3/5$; assíntota vertical em $x=3$.
Construa os gráficos das funções indicadas e calcule os limites:
$ f(x)=x^2$ quando $x\rightarrow\infty$
$ h(x)=3x^5$ quando $x\rightarrow -\infty$
$g(y)=\tan^{-1}(y)$ quando $y\rightarrow\infty$
$f(x)=\frac{1}{x}$ quando $x\rightarrow -\infty$
$f(x)=\frac{1}{x^7}$ quando $x\rightarrow \infty$
$f(x)=\frac{1}{x^{-2}}$ quando $x\rightarrow \infty$
Use um recurso gráfico computacional para gerar os gráficos da função $f(x)=\dfrac{x-\sin x}{x^3}$, vide exercício ID 1703, e veja o que acontece.
Você esperaria que um problema similar ocorresse nos arredores de $x=0$ para a função $f(x)=\dfrac{1-\cos x}{x}$? Verifique se tal ocorre. Vide questão ID 958.
Calcule o limite $\lim\limits_{x\rightarrow \infty }\left( 5+\dfrac{1}{x}+\dfrac{4}{x^{2}}\right)$.
$5$
Para a função a seguir, responda se a mesma é contínua nos pontos abaixo (e, caso não o seja, justifique)
$ f(x) = \left\{\begin{array}{ccc}
\frac{x^2+5x+4}{x^2+3x+2}, & & \text{se } x\neq -1\\
3, & &\text{se } x=-1
\end{array}\right.$
- $x=-1$
- $x=10$
- Sim.
- Sim.
Prove que se $f$ e $g$ são ambas funções contínuas, então $f+g$ é contínua.
Determine um intervalo de comprimento $\pi/2$ cuja equação $$2x^3+3x^2-\sqrt{|\cos(x)|}=0$$ admita uma solução real.
Suponha que $\left| f\left( x\right) -f\left( 1\right) \right| \leq \left( x-1\right) ^{2}$. Demonstre que $f\left( x\right) $ é contínua em $1$.
Estime numericamente os seguintes limites para a função $f(x)=\frac{x^2-1}{x^2-x-6}$:
$\lim\limits_{x \to 3^-} f(x)$
$\lim\limits_{x \to 3^+} f(x)$
$\lim\limits_{x \to 3} f(x)$
\begin{tabular}{cc}
$x$ & $f(x)$ \\ \hline
$2.9$ & $-15.1224$ \\
$2.99$ & $-159.12$ \\
$2.999$ & $-1599.12$
\end{tabular}
A tabela parece indicar que $\lim\limits_{x\to3^-}f(x) =-\infty$.
\begin{tabular}{cc}
$x$ & $f(x)$ \\ \hline
$ 3.1$ & $16.8824$ \\
$3.01$ & $160.88$ \\
$3.001$ & $1600.88$
\end{tabular}
A tabela parece indicar que $\lim\limits_{x\to3^+}f(x) =\infty$.
Ao analisar as duas tabelas, parece que $\lim\limits_{x\to3}f(x)$ não existe.
Utilizando o gráfico a seguir, avalie os seguintes limites
- $ \lim\limits_{x\to 1^-} f(x)$
- $ \lim\limits_{x\to 1^+} f(x)$
- $ \lim\limits_{x\to 1} f(x)$
- $f(1)$
- $ \lim\limits_{x\to 2^-} f(x)$
- $ \lim\limits_{x\to 0^+} f(x)$
- Não existe.
- Não existe.
- Não existe.
- Indefinido.
- $0$
- $0$
Seja $N$ um número positivo tal que, para cada $x$ no intervalo $(N,+\infty)$, os valores da função $f(x)=1/x^2$ estejam no máximo a $0,1$ unidade de $L=0$. Encontre $N$.
Seja $N$ um número positivo tal que, para cada $x$ no intervalo $(N,+\infty)$, os valores da função $f(x)=x/(x+1)$ estejam no máximo a $0,01$ unidade de $L=0$. Encontre $N$.
Seja $N$ um número positivo tal que, para cada $x$ no intervalo $(-\infty,N)$, os valores da função $f(x)=1/x^3$ estejam no máximo a $0,001$ unidade de $L=0$. Encontre $N$.
Seja $N$ um número positivo tal que, para cada $x$ no intervalo $(-\infty,N)$, os valores da função $f(x)=x/(x+1)$ estejam no máximo a $0,001$ unidade de $L=0$. Encontre $N$.
Dê exemplo de uma função definida em $\mathbb{R}$, que não seja contínua em $a$, mas que $\lim\limits_{x \to a^+}f(x)=\lim\limits_{x \to a^-}f(x)$.
Defina $\displaystyle \lim_{x \to a^+} f(x) = \infty$ e $\displaystyle \lim_{x \to a^-} f(x) = \infty$. Se estiver muito difícil, escreva em palavras.
Mostre que $\displaystyle \lim_{x \to 0^+} \dfrac{1}{x} = \infty$.
Mostre que $\displaystyle \lim_{x \to 0^+} f(x) = \infty$ se e somente se $\displaystyle \lim_{x \to \infty} f\left(\dfrac{1}{x}\right) = \infty$.
Se você investir $1000$ reais em uma aplicação que paga $7$% de juros compostos em $n$ vezes por ano, então em $10$ anos sua aplicação terá no total $1000(1+0,07/n)^{10n}$ reais.
Quanto dinheiro você terá em $10$ anos se a taxa de juros é composta trimestralmente ($n=4$)?
Quanto dinheiro você terá em $10$ anos se a taxa de juros é composta mensalmente ($n=12$)?
Quanto dinheiro você terá em $10$ anos se a taxa de juros é composta mensalmente ($n=365$)?
Pesquise a taxa de juros paga pela poupança, e o período em que ela é composta. Calcule a quantidade de dinheiro que você terá se investir uma certa quantia de dinheiro (pense no dinheiro você tem disponível para investir) em $1$, $2$, $5$ e $10$ anos com essa taxa e período de composição. Interprete os resultados pensando em seu futuro!
Quanto dinheiro você terá em $10$ anos se os juros forem compostos continuamente, isto é, se $n\to\infty$?