LISTA DE DISCIPLINAS

Exercícios

Funções trigonométricas

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


926   

Calcule o valor das seguintes expressões:

  1. $sen(45^0)+cos(45^0)$
  1. $\dfrac {cos(30^0)sen(60^0)} {tg(45^0)}$
  1. $[sen^2(71,2^0)+cos^2(71,2^0)] \times cotg(45^0)$



  1. Usando o teorema fundamental da trigonometria sabemos que o valor da expressão $sen(45^0)+cos(45^0)$ é $1$.

  2. Este item se resolve por substituição direta: $cos(30^0)=sen(60^0)=\dfrac{\sqrt{3}}{2}$ e $tg(45^0)=1$:$\dfrac {cos(30^0)sen(60^0)} {tg(45^0)}=\left(\dfrac{\sqrt{3}}{2}\right)^2 \times 1=\dfrac{3}{4}$.

  3. Usando o teorema fundamental da trigonometria sabemos que o valor da expressão $sen^2(71,2^0)+cos^2(71,2^0)$ é $1$. Além disso, temos que $cotg(45^0)=\dfrac{1}{tg(45^0)}=\dfrac{1}{1}=1$. Então:\\ $[sen^2(71,2^0)+cos^2(71,2^0)] \times cotg(45^0)=1 \times 1=1$.



1737   

Usando as fórmulas do seno da soma e do cosseno da soma de dois ângulos, obtenha fórmulas para:

 $\sin(2x), \cos(2x), \sin(3x)$ e $\cos(3x)$.



$\sin(2x) = 2 \sin x \cos x$.

$\cos(2x) = \cos^2 x - \sin^2 x$.

$\sin(3x) = \sin x (2 (\cos^2 x - \sin^2 x) + 1)$.

$\cos(3x) = \cos^3 x - 3 \sin^2 x \cos x$.


1241   

Seja $x(t)$ a posição horizontal e $y(t)$ a posição vertical de um objeto no tempo $t$. Com $x(0)=y(0)=0$ e velocidade iniciais horizontal $v_x$ e vertical $v_y$, a   trajetória do objeto pode ser representada pelas equações $x(t)=v_xt$ e $y(t)=-5t^2+v_y t$. Suponha que o módulo da velocidade inicial seja igual a $1$.  Neste caso, o ângulo $\theta$ entre a linha horizontal (eixo $x$) e a tangente à parábola na origem $(0,0)$ satisfaz $v_x=\cos(\theta)$ e $v_y=\sin(\theta).$


  1. Use a identidade $\sin(\theta_1+\theta_2)=\sin(\theta_1)\cos(\theta_2)+\sin(\theta_2)\cos(\theta_1)$ para provar que $\cos(\theta)\sin(\theta)=\frac{1}{2}\sin(2\theta).$
  2. Para $v_x>0$, $v_y>0$, determine o tempo $t_f>0$ tal que $y(t_f)=0$. Escreva $t_f(\theta)$ como função de $\theta$ com domínio $]0,\frac{\pi}{2}[$.
  3. Definimos uma função $x_f$, também com dominio $]0,\frac{\pi}{2}[$, por $x_f(\theta)=x(t_f(\theta))$. Escreva $t_f(\theta)$ como função de $\theta$ e simplifique.
  4. Qual é a imagem de $x_f$?
  5. Quais são os ângulos $\theta\in\,]0,\frac{\pi}{2}[$ com valores $x_f(\theta)=\frac{\sqrt{3}}{20}$, $x_f(\theta)=\frac{1}{10}$ e $x_f(\theta)=\frac{1}{5}$?



1497   

Sejam $a$ e $b$ reais quaisquer. Verifique que:

  1. $\sin{a}\cos{b}=\dfrac{1}{2}(\sin(a+b)+\sin(a-b))$
  2. $\cos{a}\cos{b}=\dfrac{1}{2}(\cos(a+b)+\cos(a-b))$



  1. $\begin{array}{rcl} \frac{1}{2} ( \sin(a+b) + \sin(a-b) ) &=& \frac{1}{2} ( \sin a \cos b + \sin b \cos a + \sin a \cos b - \sin b \cos a )  \\ &=& \frac{1}{2} ( 2 \sin a \cos b) \\ &=& \sin a \cos b .\end{array}$
  1. $\begin{array}{rcl} \frac{1}{2} ( \cos(a+b) + \cos(a-b) ) &=& \frac{1}{2} ( \cos a \cos b + \sin a \sin b + \cos a \cos b - \sin a \sin b )  \\ &=& \frac{1}{2} ( 2 \cos a \cos b) \\ &=& \cos a \cos b .\end{array}$



677   

Mostre que a equação $\sin x +\cos x =0$ tem exatamente duas raízes reais.


1738   

Usando as fórmulas pra $\sin(2x), \cos(2x), \sin(3x)$ e $\cos(3x)$, calcule $\sin\left(\dfrac{\pi}{4}\right)$, $tg\left(\dfrac{\pi}{4}\right)$, $\sin\left(\dfrac{\pi}{6}\right)$ e $\cos\left(\dfrac{\pi}{6}\right)$. 


$\sin\left(\dfrac{\pi}{4}\right) = \dfrac{1}{\sqrt{2}}$.

$tg\left(\dfrac{\pi}{4}\right) = 1$.

$\sin\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$.

$\cos\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}$. 


927   

A partir de um ponto, observa-se o topo de um prédio sob um ângulo de $30^0$. Caminhando $23$m em direção ao prédio, atingimos outro ponto, de onde se vê o topo do prédio segundo um ângulo de $60^0$. Desprezando a altura do observador, calcule, em metros, a altura do prédio.