LISTA DE DISCIPLINAS

Exercícios

Modos de representar funções

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


644   

Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.

  1. $y=\sqrt{x+5}$

  2. $y=\sqrt{3-2x}$



  1. $[-5,\infty[$
  2. $]-\infty,\frac{3}{2}]$

635   

Se $f(x+1)=\frac{x-1}{\pi -x},$ ache $f\left( x\right) $ e encontre o domínio de $f$.



Calculando $f((x-1)+1)$:
$f((x-1)+1)=\dfrac{(x-1)-1}{\pi-(x-1)}$
$f(x) = \dfrac{x-2}{\pi+1-x}$.
O domínio de $f$ é o conjunto de números reais menos os pontos em que o denominador é zero. Calculando esses valores:
$\pi + 1 - x  = 0 \Rightarrow x = \pi + 1$.
Portanto o domínio de $f$ é: $\{x \in \mathbb{R}; x \neq \pi + 1\}$.


648   

Verifique se as funções abaixo são pares, ímpares ou nenhuma das duas coisas.

  1. $f(x)=\tan x$

  2. $f(x)=x^{2}+1$


642   

Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.

  1. $y=\sqrt[3]{x}$

  2. $y=\sqrt[3]{-x}$


  1. $\mathbb{R}$.
  2. $\mathbb{R}$.

657   

Seja $f(x)=\frac{1+x}{1-x}$. Mostre que $f\left(\frac{1}{1+x}\right)=\frac{2+x}{x}$, $f\left(\frac{1}{1-x}\right)=\frac{x-2}{x}$, $f(-x)=\frac{1}{f(x)}$, $f(1/x)=-f(x)$,  $f(f(x))=-1/x$.


923   

Esboce o gráfico de $f(x) =x^2+6x+10.$ Use completamento de quadrados.



656   

Esboce o gráfico de cada uma das funções abaixo.

  1. $y=|x|+x$

  2. $y=1-x$ se $x\leq 0$ e $y=\sqrt{1-x^{2}}$ se $0\leq x\leq 1$.


660   

Considere o gráfico da função $f$:


$f\left( x\right) =\left\{\begin{array}{c}-2x-2,-4\leq x\leq -2 \\x+4,-2\leq x\leq 1 \\6-x,1\leq x\leq 4\end{array}\right.$

fig_modos_representar_funcoes_26.png

Esboce, a partir deste, os gráficos das seguintes funções:

  1. $y=f\left( x+4\right) $

  2. $y=f\left( x\right) +4$

  3. $y=2f\left( x\right) $

  4. $y=-\dfrac{1}{2}f\left( x\right) +3.$


655   

Esboce o gráfico de cada uma das funções abaixo.

  1. $y=\sqrt{9-(2-x)^{2}}$

  2. $y=7/2-\sqrt{13-(2+x)^{2}}$


920   

Um fabricante de refrigerante quer produzir latas cilíndricas para seu produto. A lata dever ter um volume de $360 ml$. Expresse a área superficial total da lata em função do seu raio e dê o domínio da função.



Sejam $r$ o raio da base do cilindro e $h$ a sua altura. O volume $V$ do cilindro é dado por $V=\pi r^2 h$. Como $V=360$, obtemos $\pi r^2 h=360$, isto é, $h=\dfrac{360}{\pi r^2}$. A área superficial $A$ do cilindro é $A=2 \pi r^2+2 \pi r h$. Substituindo $h$ por $\dfrac{360}{\pi r^2}$ chegamos a $A=2 \pi r^2+2 \pi r \dfrac{360}{\pi r^2}$, ou seja, $A=2 \pi r^2+ \dfrac{360}{r}$. O domínio da função $A(r)$ é $\mathbb{R}^+$.



924   

Uma caixa retangular aberta com volume de $2 m^3$ tem a base quadrada. Expresse a área superficial da caixa como função de um dos lados da base.




Sejam $x$ a medida do lado da base da caixa e $z$ sua altura. O volume $V$ dessa caixa é dado por $V=x^2z$. Como $V=2$, temos $z=\dfrac{2}{x^2}$. A área superficial $A$ da caixa (sem tampa!) é $A=x^2+4xz$. Substituindo $z$ por $\dfrac{2}{x^2}$ obtemos $A=x^2+\dfrac{8}{x}$. 


643   

Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.

  1. $y=\sqrt[3]{x-2}$

  2. $y=\displaystyle{\frac{1}{x^{2}-4}}$


645   

Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.

  1. $y=\sqrt{x^{2}-4x+3}$

  2. $y=\sqrt{x^{2}+3x-10}$


653   

Esboce o gráfico de cada uma das funções abaixo.

  1. $y=-\sqrt{7-x^{2}}$

  2. $y=1+\sqrt{10-x^{2}}$


646   

Seja $f\left( x\right) =\frac{1+x}{1-x}$. Mostre que $f\left( \frac{1}{1+x}\right) =\frac{2+x}{x}$, $f\left( \frac{1}{1-x}\right) =\frac{x-2}{x}$, $f\left( -x\right) =\frac{1}{f\left( x\right) }$, $f\left( 1/x\right)=-f\left( x\right) $ e que $f\left( f\left( x\right) \right) =-1/x$.


921   

Esboce os gráficos de $f(x) =x^2-1$ e $ g(x) = x^2 +1.$


922   

Partindo do gráfico de $h(x)=x^2$, esboce os gráficos de $f(x) =(x-1)^2$ e $ g(x) = (x +1)^2.$



640   

Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.

  1. $y=\sqrt{x-2}$

  2. $y=\sqrt{2-x}$



  1. O domínio de $y$ é o conjunto de números reais em que o valor dentro da raiz é positivo. Calculando esses valores:
    $x-2 > 0 \Rightarrow x > 2$.
    Portanto o domínio de $y$ é: $\{x \in \mathbb{R}; x >2\}$.
  2. O domínio de $y$ é o conjunto de números reais em que o valor dentro da raiz é positivo. Calculando esses valores:
    $2-x > 0 \Rightarrow x < 2$.
    Portanto o domínio de $y$ é: $\{x \in \mathbb{R}; x <2\}$.


637   

Dada a função $f\left( x\right) =$ $\left| x\right| -2x$, calcule $f\left( -1\right) $, $f\left( 1/2\right) $, $f\left( -2/3\right) $. Mostre que $f\left( \left| a\right| \right) =-\left| a\right| $.


919   

Esboce o gráfico de $f(x) = |x-1|+3.$



651   

Sejam $f(x)=\frac{x^{2}-25}{x^{2}-1}$ e $g(x)=\sqrt{x}$. Dê o domínio de cada uma das funções $f$, $g$, $f\circ g$ e $g\circ f$.


639   

Sejam $f(x)=\sqrt{\displaystyle{\frac{x+3}{x-3}}}$ e $g(x)=\displaystyle{\frac{\sqrt{x+3}}{\sqrt{x-3}}}$. Determine o domínio da função $f$ e o domínio da função $g$. É verdade que $f=g$?


654   

Esboce o gráfico de cada uma das funções abaixo.

  1. $y=2-\sqrt{16-x^{2}}$

  2. $y=-1+\sqrt{6-(x-1)^{2}}$


652   

Esboce o gráfico de cada uma das funções abaixo.

  1. $y=\frac{2|x+1|}{3}$

  2. $y=\sqrt{5-x^{2}}$


641   

Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.

  1. $y=\sqrt{x^{2}-9}$

  2. $y=\sqrt{-x}$


  1. $\{x \in \mathbb{R}; x<-3 \text{ ou }x>3\}$.
  2. $\{x \in \mathbb{R}; x<0\}$.

649   

Verifique se as funções abaixo são pares, ímpares ou nenhuma das duas coisas.

  1. $f(x)=x^{3}+x$

  2. $f(x)=x^{4}+2x^{3}+x^{2}$



  1. $f(-x)=(-x)^{3}+(-x) = -x^3-x = -(x^3+x) = -f(x)$, logo a função é ímpar.
  1. $f(-x)=(-x)^{4}+2(-x)^{3}+(-x)^{2} = x^4-2x^3+x^2$, que não é igual a $f(x)$ nem $-f(x)$, logo a função não é par nem ímpar.


650   

Se $f(x+1)=\frac{x-1}{\pi -x}$, ache $f(x)$ e encontre o domínio de $f$.


647   

Verifique se as funções abaixo são pares, ímpares ou nenhuma das duas coisas.

  1. $f(x)=\sin x$

  2. $f(x)=\cos x$



  1. A função $\sin x$ é ímpar pois $f(-x) = \sin (-x) = -\sin(x) = -f(x)$.
  1. A função $\cos x$ é par pois $f(-x) = \cos (-x) = \cos(x) = f(x)$.


925   

A área superficial de uma caixa retangular fechada de base quadrada é igual a $20 m^2$. Determine o volume desta caixa em função do comprimento do lado de sua base.


638   

Seja $f\left( x\right) =\left| x\right| -x$. Mostre que $f\left( x\right) =0$ para $x\geq 0$ e $f\left( x\right) =-2x$ para $x<0$. Faça o gráfico dessa função.


636   

Sejam $f\left( x\right) =\frac{x^{2}-25}{x^{2}-1}$ e $g\left(x\right) =\sqrt{x}$. Dê o domínio das seguintes funções: $f,$ $g$, $f\circ g$ e $g\circ f$.