Exercícios
Funções
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Enuncie o Teorema Fundamental da Álgebra (de Gauss).
"Qualquer polinômio $p(z)$ com coeficientes complexos de uma variável e de grau $n \geq 1$ tem alguma raiz complexa."
Encontre as raízes do polinômio $x^4-10x^3+17x^2-17x+6.$
Sugestão: Utilize o teste das raízes racionais.
Dê os domínios e esboce os gráficos de $f+g$ e $\dfrac{g}{f}$ no seguinte caso:
$f(x)=\left\{\begin{array}{ll}
1, & \text{se x é racional} \\
-1, & \text{se x é irracional} \end{array}\right.$
e
$g(x)=\left\{\begin{array}{ll}
-1, & \text{se x é racional} \\
1, & \text{se x é irracional} \end{array}\right.$
Dê os domínios e esboce os gráficos de $f+g$ e $\dfrac{g}{f}$ nos seguintes casos:
- $f(x)=1$ e $g(x)=\dfrac{1}{(x-2)^2}$.
- $f(x)=1$ e $g(x)=\sqrt{x-1}$.
Resolva a equação $\ln\left( x^{2}+2x+1\right) =3$.
Como a função exponencial é estritamente monótona, temos que $\ln\left( x^{2}+2x+1\right) =3$ se, e somente se, $e^{\ln\left(x^{2}+2x+1\right) }=x^{2}+2x+1=e^{3}$. Mas $ x^{2}+2x+1=\left( x+1\right) ^{2}$. Logo $\ln\left( x^{2}+2x+1\right) =3\Leftrightarrow\left( x+1\right)^{2}=e^{3}\Leftrightarrow x+1=\pm e^{3/2}\Leftrightarrow x=\pm e^{3/2}-1$.
Uma das raízes da equação $x^2-x-a = 0$ é também raiz da equação $x^2+x-(a + 20)=0$. Qual é o valor de $a$?
Calcule:
- $log_3 (36) +log_3 (6)$
- $8^{\frac {2} {3}}+\sqrt{100}+2^{2^3}+2^{(2^3)}$
Na fabricação de um lote de peças de certo produto, o custo total é igual à soma de um valor fixo de $R\$ 400,00$ com o custo de produção unitário de $R\$ 0,50$. Se o preço unitário de venda dessas peças for de $R\$ 0,85$, qual o número mínimo de peças que devem ser fabricadas e vendidas para que se comece a ter lucro?
Uma droga é administrada por via intravenosa para combater a dor. A função
$f(t)=90-52\ ln(1+t), \quad 0 \leq t\leq4$
fornece o número de unidades da droga que permanecem no corpo após $t$ horas.
- Qual foi o número inicial de unidades administradas?
- Quanto estará presente após $2$ horas?
- Esboce o gráfico de $f(t)$
Dê o domínio e esboce o gráfico das seguintes funções:
- $f(x)=2/x$
- $f(x)=\dfrac{2}{x-1}$
Utilizando a aproximação $ln\ 2 \approx 0,7$, pode-se derivar uma regra popular, conhecida como regra dos 70, que diz: "Para estimar quantos anos uma determinada quantia em dinheiro dobre ao ser investida a uma porcentagem $r$ composta continuamente, divida $r$ por $70$". Por exemplo, uma quantia em dinheiro investida a $7\%$ dobrará em cerca de $70/7=10$ anos. Se, em vez disso, você quiser que ela dobre em $5$ anos, deve investí-la a $70/5=14\%$. Mostre a dedução da regra dos 70.
Seja $P(x)$ um polinômio de grau $n$ tal que $P(k)=k/(k+1)$ para $k=0,1,\ldots n$. Encontre $P(n+1)$.
Seja $P(x)$ um polinômio de coeficientes inteiros com grau $d>0$. Seja $n$ o número de inteiros distintos $k$ tais que $(P(k))^2=1$. Prove que $n\leq d+2.$
Utilizando as leis de exponenciação, simplifique a expressão a seguir:
$6^{1/3}\cdot18^{1/6}$
Seja $f\left( x\right) =\left| x\right| -x$. Mostre que $f\left( x\right) =0$ para $x\geq 0$ e $f\left( x\right) =-2x$ para $x<0$. Faça o gráfico dessa função.
Sejam $a_1,a_2,\ldots,a_{100}$, $b_1,b_2,\ldots,b_{100}$ números reais distintos. Uma tabela de dimensões $100\times 100$ é preenchida com esses números tal que o número $a_i+b_j$ é inserido na célula situada exatamente abaixo da interseção da $i$-ésima linha com a $j$-ésima coluna. Dado que em cada coluna o produto de todos os números é igual a $1$, prove que em cada linha o produto de todos os números é $-1$.
Mensalmente, pago pela prestação de minha casa $1/5$ do meu salário; metade do resto gasto em alimento e $1/3$ do que sobra coloco na poupança, restando-me ainda $R\$ 800,00$ para gastos diversos. Qual o valor colocado na poupança?
Sejam $f(x)=\frac{x^{2}-25}{x^{2}-1}$ e $g(x)=\sqrt{x}$. Dê o domínio de cada uma das funções $f$, $g$, $f\circ g$ e $g\circ f$.
Seja $f(x)=x^n+5x^{n-1}+3$, onde $n>1$ é um inteiro. Prove que $f(x)$ não pode ser expressa como um produto de polinômios não constantes com coeficientes inteiros.
Suponha que o número de carteiros necessários para distribuir, em cada dia, as correspondências entre as residências de um bairro seja dado pela função $f(x)=\frac{22x}{500+2x}$, em que $x$ é o número de residências e $f(x)$ é o número de carteiros. Se foram necessários 6 carteiros para distribuir, em um dia, estas correspondências, qual o número de residências desse bairro, que as receberam?
Substituindo $f(x) = 6$ na expressão da função:
$6 = \dfrac{22 x}{500+2x}$
$\Rightarrow 6(500+2x) = 22x$
$\Rightarrow 3000 + 12x = 22x$
$\Rightarrow 10x = 3000$
$\Rightarrow x = 300$ residências.
Determine o domínio da seguinte função:
$f\left( x\right) =\sqrt[4]{\dfrac{x}{x+4}}$.
$\left\{ x\geq 0\right\} \cup \left\{ x<-4\right\} $.
Considere o gráfico da função $f$:
$f\left( x\right) =\left\{\begin{array}{c}-2x-2,-4\leq x\leq -2 \\x+4,-2\leq x\leq 1 \\6-x,1\leq x\leq 4\end{array}\right.$
Esboce, a partir deste, os gráficos das seguintes funções:
$y=f\left( x+4\right) $
$y=f\left( x\right) +4$
$y=2f\left( x\right) $
$y=-\dfrac{1}{2}f\left( x\right) +3.$
Encontre as raízes do polinômio $x^4-6x^3+13x^2-12x+4.$
Sugestão: Utilize o teste das raízes racionais
Se $(ln\ x)/x = (ln\ 2)/2$, é necessário que $x=2$? Se $(ln\ x)/x=-2ln\ 2$, é necessário que $x=\frac{1}{2}$? Justifique suas respostas.
Enuncie e prove o Algoritmo de Briot-Ruffini. Dê exemplos.
Para tranformar graus Fahrenheit em graus centígrados usa-se a fórmula $C=\dfrac{5(F-32)}{9}$, em que $F$ é o número de graus Fahrenheit e $C$ é o número de graus centígrados.
- Transforme $35$ graus centígrados em graus Fahrenheit.
- Qual a temperatura (em graus centígrados) em que o número de graus Fahrenheit é o dobro do número de graus centígrados?
Esboce o gráfico de cada uma das funções abaixo.
$y=\frac{2|x+1|}{3}$
$y=\sqrt{5-x^{2}}$
Prove que $\sinh'(x)=\cosh(x)$.
Prove que $\cosh'(x)=\sinh(x)$.
Mostre que a equação $\sin x +\cos x =0$ tem exatamente duas raízes reais.
Determine $f$ de modo que $g(f(x))=x$ para todo $x \in D_f$, sendo $g$ dada por:
- $g(x)=\dfrac{1}{(x-2)^2}$
- $g(x)=\dfrac{1}{\sqrt{x}}$
Esboce o gráfico de $f(x) = |x-1|+3.$
Sejam $f(x)=log_x(2)$ e $g(x)=log_2(x)$:
- Utilize a propriedade de quociente de logaritmos para expressar $f(x)$ e $g(x)$ em termos de logaritmos naturais.
- Com o auxílio de recursos computacionais, compare os gráficos de $f(x)$ e $g(x)$.
Verifique se as funções abaixo são pares, ímpares ou nenhuma das duas coisas.
$f(x)=x^{3}+x$
$f(x)=x^{4}+2x^{3}+x^{2}$
- $f(-x)=(-x)^{3}+(-x) = -x^3-x = -(x^3+x) = -f(x)$, logo a função é ímpar.
- $f(-x)=(-x)^{4}+2(-x)^{3}+(-x)^{2} = x^4-2x^3+x^2$, que não é igual a $f(x)$ nem $-f(x)$, logo a função não é par nem ímpar.
Dê o domínio e esboce o gráfico das seguintes funções:
- $f(x)=1/x^2$
- $f(x)=\dfrac{1}{(x-1)^2}$
Esboce o gráfico de cada uma das funções abaixo.
$y=|x|+x$
$y=1-x$ se $x\leq 0$ e $y=\sqrt{1-x^{2}}$ se $0\leq x\leq 1$.
Demonstre a fórmula de Báskhara usada para resolução de equações polinomiais de grau $2$.
Mostre, diretamente da definição, que $\log_a'(x)=\dfrac{1}{x} \cdot log_a\left(\lim\limits_{k \to 0}(1+k)^{1/k}\right)$.
Resolva a equação $e^{ax}=Ce^{bx}$, onde $a\neq b$.
Usando as propriedades básicas da função exponencial temos que:
\begin{align*}
e^{ax} & =Ce^{bx}\\
& \Leftrightarrow e^{-ax}e^{ax}=e^{-ax}Ce^{bx}\\
& \Leftrightarrow1=Ce^{(b-a)x}\\
& \Leftrightarrow\frac{1}{C}=e^{(b-a)x}\\
& \Leftrightarrow\ln\left( \frac{1}{C}\right) =\ln\left( e^{(b-a)x}\right)
=\left( b-a\right) x\\
& \Leftrightarrow\frac{-\ln C}{b-a}=\frac{\ln C}{a-b}=x
\end{align*}
Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.
$y=\sqrt{x^{2}-9}$
$y=\sqrt{-x}$
- $\{x \in \mathbb{R}; x<-3 \text{ ou }x>3\}$.
- $\{x \in \mathbb{R}; x<0\}$.
Seja $x(t)$ a posição horizontal e $y(t)$ a posição vertical de um objeto no tempo $t$. Com $x(0)=y(0)=0$ e velocidade iniciais horizontal $v_x$ e vertical $v_y$, a trajetória do objeto pode ser representada pelas equações $x(t)=v_xt$ e $y(t)=-5t^2+v_y t$. Suponha que o módulo da velocidade inicial seja igual a $1$. Neste caso, o ângulo $\theta$ entre a linha horizontal (eixo $x$) e a tangente à parábola na origem $(0,0)$ satisfaz $v_x=\cos(\theta)$ e $v_y=\sin(\theta).$
- Use a identidade $\sin(\theta_1+\theta_2)=\sin(\theta_1)\cos(\theta_2)+\sin(\theta_2)\cos(\theta_1)$ para provar que $\cos(\theta)\sin(\theta)=\frac{1}{2}\sin(2\theta).$
- Para $v_x>0$, $v_y>0$, determine o tempo $t_f>0$ tal que $y(t_f)=0$. Escreva $t_f(\theta)$ como função de $\theta$ com domínio $]0,\frac{\pi}{2}[$.
- Definimos uma função $x_f$, também com dominio $]0,\frac{\pi}{2}[$, por $x_f(\theta)=x(t_f(\theta))$. Escreva $t_f(\theta)$ como função de $\theta$ e simplifique.
- Qual é a imagem de $x_f$?
- Quais são os ângulos $\theta\in\,]0,\frac{\pi}{2}[$ com valores $x_f(\theta)=\frac{\sqrt{3}}{20}$, $x_f(\theta)=\frac{1}{10}$ e $x_f(\theta)=\frac{1}{5}$?
Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.
$y=\sqrt[3]{x}$
$y=\sqrt[3]{-x}$
- $\mathbb{R}$.
- $\mathbb{R}$.
Usando as fórmulas do seno da soma e do cosseno da soma de dois ângulos, obtenha fórmulas para:
$\sin(2x), \cos(2x), \sin(3x)$ e $\cos(3x)$.
$\sin(2x) = 2 \sin x \cos x$.
$\cos(2x) = \cos^2 x - \sin^2 x$.
$\sin(3x) = \sin x (2 (\cos^2 x - \sin^2 x) + 1)$.
$\cos(3x) = \cos^3 x - 3 \sin^2 x \cos x$.
Prove que $\log_{10} 2$ é irracional.
Esboce as curvas exponenciais transladadas:
$y=1-e^x$ e $y=1-e^{-x}$.
Determine a função inversa de:
- $f(x) = x^2$
- $f(x) = x^3 + 2.$
Esboce os gráficos de $f(x) =x^2-1$ e $ g(x) = x^2 +1.$
Prove que $1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\ldots+\dfrac{x^n}{n!} \leq e^x$. Conclua que $\lim\limits_{x \to \infty} e^x/x^n=\infty$.
Demonstre que $x^{ln(2)}=2^{ln(x)}$ utilizando propriedades de logaritmos e exponenciais. Utilizando recursos computacionais, observe os gráficos das duas funções, assim como a diferença entre elas. Qual seria uma explicação para o comportamento observado no gráfico de $f(x)=x^{ln(2)}-2^{ln(x)}$?
Se Fidelis investisse $R\$1500$ em uma conta aposentadoria que rende $8\%$ de juros compostos anualmente, em quanto tempo este investimento isoladamente aumentará para $R\$5000$?
Sejam $f\left( x\right) =\frac{x^{2}-25}{x^{2}-1}$ e $g\left(x\right) =\sqrt{x}$. Dê o domínio das seguintes funções: $f,$ $g$, $f\circ g$ e $g\circ f$.
Esboce o gráfico das funções $f(x) = \log_2 x $ e $ f(x) = \log_\frac{1}{2} x$ num mesmo sistema cartesiano. Qual relação você observa entre os gráficos? Explique.
Partindo do gráfico de $h(x)=x^2$, esboce os gráficos de $f(x) =(x-1)^2$ e $ g(x) = (x +1)^2.$
Seja $a>0$. Esboce o gráfico das funções $f(x) = \log_a x $ e $ f(x) = \log_\frac{1}{a} x$ num mesmo sistema cartesiano. Qual relação você observa entre os gráficos? Explique.
A área superficial de uma caixa retangular fechada de base quadrada é igual a $20 m^2$. Determine o volume desta caixa em função do comprimento do lado de sua base.
O consumo de combustível de um automóvel é função da sua velocidade média. Para certo automóvel, essa função é aproximadamente dada por $y = 0,03x^2-2x + 20$, sendo $y$ o consumo de combustível, em mililitros por quilômetros por hora. Nessas condições, para esse automóvel, qual velocidade média corresponde a um consumo de $120 ml/km$?
Qual o número de raízes distintas da equação $(x^2 – 14x + 38)^2 = 11^2$?
$3$
Seja $f\left( x\right) =\frac{1+x}{1-x}$. Mostre que $f\left( \frac{1}{1+x}\right) =\frac{2+x}{x}$, $f\left( \frac{1}{1-x}\right) =\frac{x-2}{x}$, $f\left( -x\right) =\frac{1}{f\left( x\right) }$, $f\left( 1/x\right)=-f\left( x\right) $ e que $f\left( f\left( x\right) \right) =-1/x$.
Encontre todas as funções polinomiais $f$ com coeficientes reais tais que $(x-27)f(3x)=27(x-1)f(x)$ para todo número real $x$.
Calcule, apresentando todos os cálculos e/ou justificativas.
- $log_2 (1024)+sen^2(40)+cos^2(40)$
- $log_\pi [sen(30^0)+cos(60^0)]$
Seja $f(x)=\dfrac{1}{1+x}$. Determine:
- $f(f(x))$
- $f\left(\dfrac{1}{x}\right)$
- $f(cx)$
- $f(x+y)$
- $f(x)+f(y)$
Esboce o gráfico de cada uma das funções abaixo.
$y=2-\sqrt{16-x^{2}}$
$y=-1+\sqrt{6-(x-1)^{2}}$
Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.
$y=\sqrt{x^{2}-4x+3}$
$y=\sqrt{x^{2}+3x-10}$
Classifique as afirmações em verdadeiras ou falsas:
Mestre Florindo, raizeiro famoso, vende suas garrafas medicinais por 5 reais, na feira de Caruaru.
Se ele vende $q$ unidades, então $R(q) = 5q$, que é a sua função receita.
Se ele tem um custo em torno de $40\%$ de sua receita, o seu custo pode ser estimado pela equação $C(q) = 2q$.
Se, além disso, o mestre gastou $R\$ 900,00$ em materiais para confecção do seu famoso produto, ele deverá vender $300$ garrafas para recuperar o seu custo total.
O lucro do mestre é dado pela função afim $L(q)=5q-900$.
- Verdadeiro.
- Verdadeiro.
- Verdadeiro, pois o lucro total $L(q)$ é $L(q)=R(q)-C(q)-900=3q-900$ e temos que $T(q)=0$ se $q=300$.
- Falso, $L(q)=3q-900$.
Dê o domínio e esboce o gráfico das seguintes funções:
- $f(x)=-2+ 1/x$
- $f(x)=-\dfrac{1}{x}$
Um encanador $A$ cobra por serviço feito um valor fixo de $R\$ 60,00$, mais $R\$ 10,00$ por hora de trabalho. Um outro encanador $B$ cobra um valor fixo de $R\$40,00$ mais $R\$15,00$ por hora de trabalho. Considerando o menor custo para a realização de um trabalho, avalie a decisão de se contratar um ou outro encanador.
Verifique se as funções abaixo são pares, ímpares ou nenhuma das duas coisas.
$f(x)=\tan x$
$f(x)=x^{2}+1$
Reescreva a função $f(x)=|x-1|+|x+2|$ usando desigualdades e representação por partes. Esboce o gráfico de $f$
Encontre todos os pares de inteiros $m,n\geq 3$ tais que existem infinitos inteiros positivos $a$ para os quais
$\frac{a^m+a-1}{a^n+a^2-1}$ é um inteiro.
Um ponto no plano cartesiano é chamado ponto misto se uma de suas coordenadas é racional e a outra irracional. Encontre todos os polinômios com coeficientes reais tais que seus gráficos não contêm nenhum ponto misto.
O quociente $(log_4\ x)/(log_2\ x)$ possui um valor constante. Qual valor é este?
Esboce o gráfico de cada uma das funções abaixo.
$y=\sqrt{9-(2-x)^{2}}$
$y=7/2-\sqrt{13-(2+x)^{2}}$
Calcule, apresentando todos os cálculos e/ou justificativas.
- $log_6 (36) +log_3 (6^4)$
- $8^{\frac {2} {3}}+\sqrt{log_2 (16)}+2^{2^3}+(2^2)^{3}$
Uma pequena indústria vende normalmente, a cada semana, $60$ caixas de certo produto, por $30$ reais a caixa. Foi feita uma experiência e observou-se que cada real de desconto nesse preço fez as vendas aumentarem em $5$ caixas. Assim, a experiência mostrou que, dentro de certos limites, a quantidade $C$ de caixas vendidas é uma função do desconto $x$, em reais. Determine uma expressão para essa função.
Esboce o gráfico de cada uma das funções abaixo.
$y=-\sqrt{7-x^{2}}$
$y=1+\sqrt{10-x^{2}}$
Utilizando as leis de exponenciação, simplifique a expressão a seguir:
$16^2\cdot16^{1,75}$
Segundo dados de uma pesquisa, a população de certa região do país vem decrescendo em relação ao tempo t, contado em anos, aproximadamente, segundo a relação $P(t)=P(0) \cdot 2^{-0,25t}$. Sendo $P(0)$ uma constante que representa a população inicial dessa região e $P(t)$ a população $t$ anos após, determine quantos anos se passarão para que essa população fique reduzida à quarta parte da inicial.
Para que essa população fique reduzida à quarta parte da inicial devemos ter:
$P(t) = \dfrac{1}{4} P_0$.
Substituindo a expressão de $P(t)$:
$P_0 2^{-0,25 t} = 0,25 P_0$.
Com essa expressão podemos encontrar o valor de $t$.
$2^{-0,25 t} = 0,25$.
Aplicando $log_2$ dos dois lados:
$\log_2 (2^{-0,25 t}) = \log_2(0,25)$.
Utilizando propriedade de $\log$:
$-0,25 t \log_2 2 = \log_2(0,25)$.
$t = \dfrac{\log_2(0,25)}{-0,25}$.
$t = 8$ anos.
Resolva os itens:
- Verifique que $\sqrt{1+x^2}-|x|=\dfrac{1}{|x|+\sqrt{1+x^2}}$. Conclua que à medida que $|x|$ resce a diferença $\sqrt{1+x^2}-|x|$ se aproxima de zero.
- Esboce o gráfico de $y=\sqrt{1+x^2}$.
Determine o domínio da seguinte função:
$f\left( x\right) =\sqrt{x-1}+\sqrt{3-x}$.
$\left\{ 1\leq x\leq 3\right\} $.
A intensidade $I$ de um terremoto, medida na escala Richter, é um número que varia de $I=0$ até $I=8,9$ para o maior terremoto conhecido. $I$ é dado pela fórmula $I=\dfrac{2}{3} log {\left(\dfrac{E}{E_0}\right)}$, em que $E$ é a energia liberada pelo terremoto em quilowatt-hora e $E_0=7 \times 10^{-3}$ kwh.
- Qual a energia liberada por um terremoto de intensidade 8 na escala Richter?
- Aumentando uma unidade na intensidade do terremoto, por quanto fica multiplicada a energia liberada?
Calcule o valor das seguintes expressões:
- $sen(45^0)+cos(45^0)$
- $\dfrac {cos(30^0)sen(60^0)} {tg(45^0)}$
- $[sen^2(71,2^0)+cos^2(71,2^0)] \times cotg(45^0)$
- Usando o teorema fundamental da trigonometria sabemos que o valor da expressão $sen(45^0)+cos(45^0)$ é $1$.
- Este item se resolve por substituição direta: $cos(30^0)=sen(60^0)=\dfrac{\sqrt{3}}{2}$ e $tg(45^0)=1$:$\dfrac {cos(30^0)sen(60^0)} {tg(45^0)}=\left(\dfrac{\sqrt{3}}{2}\right)^2 \times 1=\dfrac{3}{4}$.
- Usando o teorema fundamental da trigonometria sabemos que o valor da expressão $sen^2(71,2^0)+cos^2(71,2^0)$ é $1$. Além disso, temos que $cotg(45^0)=\dfrac{1}{tg(45^0)}=\dfrac{1}{1}=1$. Então:\\ $[sen^2(71,2^0)+cos^2(71,2^0)] \times cotg(45^0)=1 \times 1=1$.
Dê os domínios e esboce os gráficos de $f+g$ e $\dfrac{g}{f}$ nos seguintes casos:
- $f(x)=x$ e $g(x)=x^2-1$.
- $f(x)=x$ e $g(x)=\dfrac{1}{\sqrt{x}}$.
A partir de um ponto, observa-se o topo de um prédio sob um ângulo de $30^0$. Caminhando $23$m em direção ao prédio, atingimos outro ponto, de onde se vê o topo do prédio segundo um ângulo de $60^0$. Desprezando a altura do observador, calcule, em metros, a altura do prédio.
Sejam $a$ e $b$ reais quaisquer. Verifique que:
- $\sin{a}\cos{b}=\dfrac{1}{2}(\sin(a+b)+\sin(a-b))$
- $\cos{a}\cos{b}=\dfrac{1}{2}(\cos(a+b)+\cos(a-b))$
- $\begin{array}{rcl} \frac{1}{2} ( \sin(a+b) + \sin(a-b) ) &=& \frac{1}{2} ( \sin a \cos b + \sin b \cos a + \sin a \cos b - \sin b \cos a ) \\ &=& \frac{1}{2} ( 2 \sin a \cos b) \\ &=& \sin a \cos b .\end{array}$
- $\begin{array}{rcl} \frac{1}{2} ( \cos(a+b) + \cos(a-b) ) &=& \frac{1}{2} ( \cos a \cos b + \sin a \sin b + \cos a \cos b - \sin a \sin b ) \\ &=& \frac{1}{2} ( 2 \cos a \cos b) \\ &=& \cos a \cos b .\end{array}$
Uma caixa retangular aberta com volume de $2 m^3$ tem a base quadrada. Expresse a área superficial da caixa como função de um dos lados da base.
Sejam $x$ a medida do lado da base da caixa e $z$ sua altura. O volume $V$ dessa caixa é dado por $V=x^2z$. Como $V=2$, temos $z=\dfrac{2}{x^2}$. A área superficial $A$ da caixa (sem tampa!) é $A=x^2+4xz$. Substituindo $z$ por $\dfrac{2}{x^2}$ obtemos $A=x^2+\dfrac{8}{x}$.
Se $ f(x) = \sqrt{x} $ e $ g(x) =\sqrt{2-x},$ encontre e determine o domínio das funções:
- $f \circ g (x).$
- $g \circ f(x).$
- $f \circ f (x).$
- $g \circ g(x).$
Mostre que $\pi^e < e^\pi$. Sugestão: Analise a função $ln(x)/x$.
$
ln(e^\pi)=\pi
$
e
$
ln(\pi^e) = e\ ln(\pi)
$
Como $\pi > e$, pode-se escrever $\pi = ae,\ a > 1$. Assim, a primeira equação pode ser escrita como:
$
ln(e^\pi)=ae
$
E a segunda equação como:
$
ln(\pi^e) = e\ ln(a\ e) = e\ ln(a)ln(e)=e\ ln(a)
$
Assim, podemos escrever a razão entre as equações como:
$
\frac{ln(\pi^e)}{ln(e^\pi)} = \frac{ln(a)}{a}
$
Analisando a equação $ln(x)/x$, vemos que para $x>1$ ela é estritamente decrescente, dado que em $x=1$ o denominador é igual a um e o numerador igual a zero e como $\frac{d(ln(x))}{dx}=\frac{1}{x}$ e $\frac{d(x)}{dx}=1$, o denominador cresce mais rapidamente para $x>1$. Assim, como $a>1$, sabemos que:
$
\frac{ln(\pi^e)}{ln(e^\pi)} = \frac{ln(a)}{a} < 1
$
Portanto:
$
ln(\pi^e) < ln(e^\pi)
$
Como $\frac{d(ln(x))}{dx}=\frac{1}{x}>0$ para $x>0$, a função logaritmo é monotônica no intervalo desejado, e portanto podemos concluir que:
$\pi^e < e^\pi$
Esboce juntas as curvas dadas no plano cartesiano e identifique cada uma com sua equação:
$y=3^x$, $y=8^x$,$y=2^{-x}$, e $y=\left( 1/4 \right)^{x}$.
Dê o domínio e esboce o gráfico das seguintes funções:
- $f(x)=1+1/x$
- $f(x)=\dfrac{2}{x+1}$
Mostre que a equação $x^2=x$ tem exatamente duas raízes reais.
A equação pode ser escrita na forma $x^2-x=0$, i.e, $x(x-1)=0$. As suas únicas raízes reais são $x=0$ e $x=1$. Uma outra forma de atacar este problema é perceber que os gráficos de $f(x)=x$ e $g(x)=x^2$ se intersectam exatamente duas vezes!
Esboce as curvas exponenciais transladadas:
$y=3^x+2$ e $y=3^{-x}+2$.
Se $f(x+1)=\frac{x-1}{\pi -x},$ ache $f\left( x\right) $ e encontre o domínio de $f$.
Calculando $f((x-1)+1)$:
$f((x-1)+1)=\dfrac{(x-1)-1}{\pi-(x-1)}$
$f(x) = \dfrac{x-2}{\pi+1-x}$.
O domínio de $f$ é o conjunto de números reais menos os pontos em que o denominador é zero. Calculando esses valores:
$\pi + 1 - x = 0 \Rightarrow x = \pi + 1$.
Portanto o domínio de $f$ é: $\{x \in \mathbb{R}; x \neq \pi + 1\}$.
Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.
$y=\sqrt{x-2}$
$y=\sqrt{2-x}$
- O domínio de $y$ é o conjunto de números reais em que o valor dentro da raiz é positivo. Calculando esses valores:
$x-2 > 0 \Rightarrow x > 2$.
Portanto o domínio de $y$ é: $\{x \in \mathbb{R}; x >2\}$. - O domínio de $y$ é o conjunto de números reais em que o valor dentro da raiz é positivo. Calculando esses valores:
$2-x > 0 \Rightarrow x < 2$.
Portanto o domínio de $y$ é: $\{x \in \mathbb{R}; x <2\}$.
Calcule $f^{-1}$ para a função $f(x)=1+3x.$
Seja $y = f(x)$. Então:
$y = 1 + 3 x$.
Isolando $x$:
$3 x = y - 1$
$x = \dfrac{y-1}{3}$.
Logo:
$f^{-1}(x) = \dfrac{x-1}{3}$.
Usando as fórmulas pra $\sin(2x), \cos(2x), \sin(3x)$ e $\cos(3x)$, calcule $\sin\left(\dfrac{\pi}{4}\right)$, $tg\left(\dfrac{\pi}{4}\right)$, $\sin\left(\dfrac{\pi}{6}\right)$ e $\cos\left(\dfrac{\pi}{6}\right)$.
$\sin\left(\dfrac{\pi}{4}\right) = \dfrac{1}{\sqrt{2}}$.
$tg\left(\dfrac{\pi}{4}\right) = 1$.
$\sin\left(\dfrac{\pi}{6}\right)=\dfrac{1}{2}$.
$\cos\left(\dfrac{\pi}{6}\right)=\dfrac{\sqrt{3}}{2}$.
Verifique se as funções abaixo são pares, ímpares ou nenhuma das duas coisas.
$f(x)=\sin x$
$f(x)=\cos x$
- A função $\sin x$ é ímpar pois $f(-x) = \sin (-x) = -\sin(x) = -f(x)$.
- A função $\cos x$ é par pois $f(-x) = \cos (-x) = \cos(x) = f(x)$.
Esboce as curvas exponenciais transladadas:
$y=2^x-1$ e $y=2^{-x}-1$.
Seja $P(x)=a_0x^n+a_1x^{n-1}+\cdots+a_n$ um polinômio não nulo com coeficientes inteiros tal que $P(r)=P(s)=0$ para certos inteiros $r$ e $s$, com $0<r<s$. Prove que $a_k\leq -s$ para algum $k$.
Se $f(x+1)=\frac{x-1}{\pi -x}$, ache $f(x)$ e encontre o domínio de $f$.
Seja $f(x)=\frac{1+x}{1-x}$. Mostre que $f\left(\frac{1}{1+x}\right)=\frac{2+x}{x}$, $f\left(\frac{1}{1-x}\right)=\frac{x-2}{x}$, $f(-x)=\frac{1}{f(x)}$, $f(1/x)=-f(x)$, $f(f(x))=-1/x$.
Sejam $f(x)=\sqrt{\displaystyle{\frac{x+3}{x-3}}}$ e $g(x)=\displaystyle{\frac{\sqrt{x+3}}{\sqrt{x-3}}}$. Determine o domínio da função $f$ e o domínio da função $g$. É verdade que $f=g$?
Determine o domínio da seguinte função:
$f\left( x\right) =\sqrt{x-\sqrt{x}}$.
$\left\{ x\geq 1\right\} $.
Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.
$y=\sqrt[3]{x-2}$
$y=\displaystyle{\frac{1}{x^{2}-4}}$
Um fabricante de refrigerante quer produzir latas cilíndricas para seu produto. A lata dever ter um volume de $360 ml$. Expresse a área superficial total da lata em função do seu raio e dê o domínio da função.
Sejam $r$ o raio da base do cilindro e $h$ a sua altura. O volume $V$ do cilindro é dado por $V=\pi r^2 h$. Como $V=360$, obtemos $\pi r^2 h=360$, isto é, $h=\dfrac{360}{\pi r^2}$. A área superficial $A$ do cilindro é $A=2 \pi r^2+2 \pi r h$. Substituindo $h$ por $\dfrac{360}{\pi r^2}$ chegamos a $A=2 \pi r^2+2 \pi r \dfrac{360}{\pi r^2}$, ou seja, $A=2 \pi r^2+ \dfrac{360}{r}$. O domínio da função $A(r)$ é $\mathbb{R}^+$.
Prove que $\cosh^2(x)-\sinh^2(x)=1$.
$\begin{array}{rcl} \cosh^2x - \sinh^2 x &=& \left(\dfrac{e^{-x} + e^x}{2}\right)^2 - \left(\dfrac{e^{x} - e^-x}{2}\right)^2 \\ &=& \dfrac{1}{4} (e^{-2x} + 2 e^{-x}e^x + e^{2x}) - \dfrac{1}{4} (e^{2x} - 2 e^xe^{-x} + e^{-2x}) \\ &=& \dfrac{1}{2} + \dfrac{1}{2} \\ &=& 1.\end{array}$
Encontre todos os números naturais $k$ para os quais a seguinte afirmação é verdadeira: Se $F(x)$ é um polinômio com coeficientes inteiros que satisfaz $0\leq F(c)\leq k$ para todo $c\in\{0,1,\ldots,k+1\}$ então $F(0)=F(1)=\cdots=F(k+1).$
Encontre as raízes do polinômio $x^4-7x^3+35x^2-50x+24.$
Calcule:
- $log_2 (8)$
- $log_3 (27)$
- $\log_2(8) = x$
$2^x = 8$
$2^x = 2^3$
$x = 3$. - $\log_3(27) = x$
$3^x = 27$
$3^x = 3^3$
$x = 3$.
Dada a função $f\left( x\right) =$ $\left| x\right| -2x$, calcule $f\left( -1\right) $, $f\left( 1/2\right) $, $f\left( -2/3\right) $. Mostre que $f\left( \left| a\right| \right) =-\left| a\right| $.
Seja $P(x)$ um polinômio com coeficientes inteiros. Suponha que existam quatro inteiros distintos $a,b,c$ e $d$ tais que $P(a)=P(b)=P(c)=P(d)=5$. Prove que não existe inteiro $k$ tal que $P(k)=8$.
Dê o domínio e esboce o gráfico das seguintes funções:
- $f(x)=|x|+1/x$
- $f(x)=\sqrt{|x|}$
Encontre o número de polinômios de grau $5$ com coeficientes distintos pertencentes ao conjunto $\{1,2,\ldots,9\}$ que são divisíveis por $x^2-x+1$.
Se $a$, $b$, $c$ são as raízes de $x^3-x-1=0$, calcule o valor de $\frac{1+a}{1-a}+\frac{1+b}{1-b}+\frac{1+c}{1-c}.$
Escreva $a^x$ em função de $e^x$. Use esse resultado para escrever $\log_a(x)$ em função de $\ln(x)$.
Esboce juntas as curvas dadas no plano cartesiano e identifique cada uma com sua equação:
$y=2^x$, $y=4^x$,$y=3^{-x}$, e $y=\left( 1/2 \right)^{x}$.
Uma das raízes da equação $x^2+mx+m^2-m-12=0$ é nula, e a outra é positiva. Qual o valor do parâmetro $m$?
Prove que $\tanh^2(x)+\dfrac{1}{\cosh^2(x)}=1$.
Nos exercícios abaixo determine o domínio máximo de definição de cada uma das funções dadas.
$y=\sqrt{x+5}$
$y=\sqrt{3-2x}$
- $[-5,\infty[$
- $]-\infty,\frac{3}{2}]$
Duas pequenas fábricas de calçados, $A$ e $B$, têm fabricado, respectivamente, $3000$ e $1100$ pares de sapatos por mês. Se, a partir de janeiro, a fábrica $A$ aumentar sucessivamente a produção em $70$ pares por mês e a fábrica $B$ aumentar sucessivamente a produção em $290$ pares por mês, em que mês a produção da fábrica $B$ superará a produção de $A$ pela primeira vez?
Utilizando as leis de exponenciação, simplifique a expressão a seguir:
$9^{1/3}\cdot9^{1/6}$
Esboce o gráfico de $f(x) =x^2+6x+10.$ Use completamento de quadrados.