LISTA DE DISCIPLINAS

Exercícios

Comprimento de arco

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


1689   

Determine o comprimento da curva a seguir no intervalo especificado.

$y=\int_{-2}^{x}{\sqrt{3t^4-1}dt},\quad -2 \leq x \leq -1$


1902   

Prove que o comprimento de um arco de ciclóide é igual a $8$ vezes o tamanho do raio do seu círculo gerador. A figura abaixo mostra dois arcos e meio de ciclóide.

Cicloide



1903   

Uma hipociclóide de quatro cúspides (também chamada astróide) é a curva dada paramétricamente pelas equações $x=a\cos^3 \theta$ e $y=a \sin^3 \theta$.
  1. Use um recurso gráfico para gerar o gráfico de uma astróide usando $a=1$.
  2. Ache o comprimento exato de uma astróide.



1900   

Ache o comprimento exato do arco formado pela curva $x=\dfrac{1}{8}y^4+\dfrac{1}{4}y^{-2}$ de $y=1$ até $y=4$.



1289   

Utilize a fórmula

  \[
  s\left(  x\right)  =\int_{a}^{x}\sqrt{1+\left(  f^{\prime}\left(  t\right)
  \right)  ^{2}}dt
  \]
para mostrar que o perímetro de uma circunferência de raio $R$ é $2\pi R$.



Uma circunferência de raio $R$ centrada na origem pode ser vista como a união dos gráficos das funções $f\left(t\right)  =\sqrt{R^{2}-t^{2}}$ e  $g\left(  t\right)  =-\sqrt{R^{2}-t^{2}}$, com $t\in\left[  -R,R\right]  $ Por simetria, estes dois arcos têm o mesmo comprimento, digamos $L$, e o perímetro $p$ é dado por $p=2L$.
  Considerando $f\left(  t\right)  =\sqrt{R^{2}-t^{2}}$ temos
  que:
  \[
  f^{\prime}\left(  t\right)  =-\frac{t}{\sqrt{R^{2}-t^{2}}}\text{.}%
  \]
  Usando a fórmula acima temos que:
  \begin{align*}
  L  & =\int_{-R}^{R}\sqrt{1+\left(  f^{\prime}\left(  t\right)  \right)  ^{2}%
  }dt\\
  & =\int_{-R}^{R}\sqrt{1+\frac{t^{2}}{R^{2}-t^{2}}}dt\\
  & =\int_{-R}^{R}\sqrt{\frac{\left(  R^{2}-t^{2}\right)  +t^{2}}{R^{2}-t^{2}}%
  }dt\\
  & =\int_{-R}^{R}\sqrt{\frac{R^{2}}{R^{2}-t^{2}}}dt\\
  & =R\int_{-R}^{R}\frac{1}{\sqrt{R^{2}-t^{2}}}dt
  \end{align*}

  Fazendo a mudança de variável $t=R\sin\theta$, com  $-\pi/2\leq\theta\leq\pi/2$, temos que:
  \begin{align*}
  \sqrt{R^{2}-t^{2}}  & =\sqrt{R^{2}-R^{2}\sin^{2}\theta}\\
  & =R\sqrt{1-\sin^{2}\theta}\\
  & =R\cos\theta,\\
  dt  & =R\cos\theta d\theta
  \end{align*}

  Obtemos assim que:
  \begin{align*}
  L  & =R\int_{-R}^{R}\frac{1}{\sqrt{R^{2}-t^{2}}}dt\\
  & =R\int_{-\pi/2}^{\pi/2}\frac{R\cos\theta}{R\cos\theta}d\theta\\
  & =R\int_{-\pi/2}^{\pi/2}d\theta\\
  & \left.  R\theta\right\vert _{-\pi/2}^{\pi/2}\\
  & =\pi R
  \end{align*}
  e concluimos que:
  \[
  p=2L=2\pi R
  \]


1688   

Determine o comprimento da curva a seguir no intervalo especificado.

$y=(3/4)x^{4/3}-(3/8)x^{2/3}+5,\quad 0 \leq x \leq 3$


1904   

Mostre que o comprimento de arco total da elipse $x=a \cos t$, $y=b \sin t$, $0 \leq t \leq 2\pi$, para $a>b>0$ é dado por $4\displaystyle\int_{0}^{\pi/2} \sqrt{1+3\sin^3 t}dt$.



1686   

Determine o comprimento da curva a seguir no intervalo especificado.

$y=(1/3)\left(x^2+2\right)^{3/2},\quad 0 \leq x \leq 3$


1690   

Existe uma curva continuamente derivável $y=f(x)$ cujo comprimento ao longo do intervalo $0\leq x\leq a$ seja sempre $\sqrt{2}a$?


1687   

Determine o comprimento da curva a seguir no intervalo especificado.

$y=x^{3/2},\quad 0 \leq x \leq 4$


1901   

A ciclóide é um caminho traçado por um ponto na borda de uma roda que gira ao longo de uma reta. Use as equações paramétricas de uma ciclóide para mostrar que o comprimento $L$ de um arco de uma ciclóide é dado pela integral $L=\displaystyle\int_{0}^{2\pi} \sqrt{2(1-\cos\theta)}d \theta$
Cicloide


722   

Lembrando que o comprimento do traçado de um gráfico de uma função $f(x)$ no intervalo $[a,b]$ é dado por $\int_a^b \sqrt{1+(f'(x))^2} dx$, calcule o comprimento da circunferência de raio $r=1$.


1905   

Seja $y=f(x)$ uma curva suave em $\left[a,b\right]$. Prove que se houver números não-negativos $m$ e $M$, tais que $m \leq f'(x) \leq M$ para todo $x$ em $\left[a,b\right]$, então o comprimento de arco $L$ de $y=f(x)$ satisfaz a desigualdade $(b-a)\sqrt{1+m^2} \leq L \leq (b-a) \sqrt{1+M^2}$.