LISTA DE DISCIPLINAS

Exercícios

Derivabilidade e Continuidade

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


1570   

Seja $f(x)=\left\{\begin{array}{ll}
x^2, & \text{se } x \leq 0 \\
-x^2, & \text{se } x>0  
\end{array}\right.$

  1. $f$ é contínua em $0$. Por quê?
  2. $f$ é derivável em $0$. Por quê?


1. Sim.
2. Sim.


516   

Seja $f:\mathbb{R\rightarrow R}$ uma função.

  1. Defina continuidade de $f$ no ponto $p\in \mathbb{R}$.
  2. Defina a derivada de $f$ no ponto $p\in \mathbb{R}$. O que é a função derivada $f^{\prime }\left( x\right) ?$
  3. Calcule, pela definição, a derivada $g^{\prime }\left( 0\right) $ onde    \begin{equation*}    g\left( x\right) =\left\{    \begin{array}{cc}    x^{2}\sin \left( \dfrac{1}{x^{2}}\right)  & \text{se }x\neq 0 \\    0 & \text{ se }x=0    \end{array}    \right.    \end{equation*}



1571   

Seja $f(x)=\left\{\begin{array}{ll}
-x+3, & \text{se } x<3 \\
x-3, & \text{se } x \geq 3  
\end{array}\right.$

  1. $f$ é contínua em $3$. Por quê?
  2. $f$ é derivável em $3$. Por quê?


1. Sim

2. Não


1719   

A função de Heaviside (também conhecida como função degrau), cujo gráfico pode ser visto abaixo, é muito utilizada para modelar chaves que ligam e desligam em circuitos elétricos (e também diversas aplicações). O que você tem a dizer sobre a continuidade dessa função? E sobre a diferenciabilidade?

heaviside.png


1718   

  1. Dê um exemplo de função contínua em seu domínio mas que não é diferenciável em algum(ns) ponto(s).

  2. Qual a relação entre a continuidade e a diferenciabilidade de uma função? Demonstre.


1572   

Prove que se $f$ for derivável em $p$, então $f$ será contínua em $p$. 



Veja Guidorizzi, volume $1$, página $152$.


517   

Calcule, pela definição, a derivada das seguntes funções:

  1. $f\left( x\right) =ax+b$
  2. $g\left( x\right) =ax^{2}+bx+c$.


1. $f'(x)=a$.

2.$f'(x)=2ax+b$.


1569   

Seja $f(x)=\left\{\begin{array}{ll}
x+1, & \text{se } x<2 \\
1, & \text{se } x \geq 2
\end{array}\right.$

  1. $f$ é contínua em $2$. Por quê?
  2. $f$ é derivável em $2$. Por quê?


1. Não.
2. Não