Exercícios
Função exponencial
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Prove que $\tanh^2(x)+\dfrac{1}{\cosh^2(x)}=1$.
Mostre, diretamente da definição, que $\log_a'(x)=\dfrac{1}{x} \cdot log_a\left(\lim\limits_{k \to 0}(1+k)^{1/k}\right)$.
Prove que $\log_{10} 2$ é irracional.
Utilizando as leis de exponenciação, simplifique a expressão a seguir:
$9^{1/3}\cdot9^{1/6}$
Segundo dados de uma pesquisa, a população de certa região do país vem decrescendo em relação ao tempo t, contado em anos, aproximadamente, segundo a relação $P(t)=P(0) \cdot 2^{-0,25t}$. Sendo $P(0)$ uma constante que representa a população inicial dessa região e $P(t)$ a população $t$ anos após, determine quantos anos se passarão para que essa população fique reduzida à quarta parte da inicial.
Para que essa população fique reduzida à quarta parte da inicial devemos ter:
$P(t) = \dfrac{1}{4} P_0$.
Substituindo a expressão de $P(t)$:
$P_0 2^{-0,25 t} = 0,25 P_0$.
Com essa expressão podemos encontrar o valor de $t$.
$2^{-0,25 t} = 0,25$.
Aplicando $log_2$ dos dois lados:
$\log_2 (2^{-0,25 t}) = \log_2(0,25)$.
Utilizando propriedade de $\log$:
$-0,25 t \log_2 2 = \log_2(0,25)$.
$t = \dfrac{\log_2(0,25)}{-0,25}$.
$t = 8$ anos.
Prove que $1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\ldots+\dfrac{x^n}{n!} \leq e^x$. Conclua que $\lim\limits_{x \to \infty} e^x/x^n=\infty$.
Esboce as curvas exponenciais transladadas:
$y=1-e^x$ e $y=1-e^{-x}$.
Esboce as curvas exponenciais transladadas:
$y=2^x-1$ e $y=2^{-x}-1$.
Esboce juntas as curvas dadas no plano cartesiano e identifique cada uma com sua equação:
$y=3^x$, $y=8^x$,$y=2^{-x}$, e $y=\left( 1/4 \right)^{x}$.
Se Fidelis investisse $R\$1500$ em uma conta aposentadoria que rende $8\%$ de juros compostos anualmente, em quanto tempo este investimento isoladamente aumentará para $R\$5000$?
Prove que $\sinh'(x)=\cosh(x)$.
Utilizando as leis de exponenciação, simplifique a expressão a seguir:
$6^{1/3}\cdot18^{1/6}$
Escreva $a^x$ em função de $e^x$. Use esse resultado para escrever $\log_a(x)$ em função de $\ln(x)$.
Esboce juntas as curvas dadas no plano cartesiano e identifique cada uma com sua equação:
$y=2^x$, $y=4^x$,$y=3^{-x}$, e $y=\left( 1/2 \right)^{x}$.
Prove que $\cosh^2(x)-\sinh^2(x)=1$.
$\begin{array}{rcl} \cosh^2x - \sinh^2 x &=& \left(\dfrac{e^{-x} + e^x}{2}\right)^2 - \left(\dfrac{e^{x} - e^-x}{2}\right)^2 \\ &=& \dfrac{1}{4} (e^{-2x} + 2 e^{-x}e^x + e^{2x}) - \dfrac{1}{4} (e^{2x} - 2 e^xe^{-x} + e^{-2x}) \\ &=& \dfrac{1}{2} + \dfrac{1}{2} \\ &=& 1.\end{array}$
Esboce as curvas exponenciais transladadas:
$y=3^x+2$ e $y=3^{-x}+2$.
Utilizando as leis de exponenciação, simplifique a expressão a seguir:
$16^2\cdot16^{1,75}$
Prove que $\cosh'(x)=\sinh(x)$.