Exercícios
Função exponencial
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Esboce as curvas exponenciais transladadas:
$y=2^x-1$ e $y=2^{-x}-1$.
Prove que $\cosh'(x)=\sinh(x)$.
Utilizando as leis de exponenciação, simplifique a expressão a seguir:
$9^{1/3}\cdot9^{1/6}$
Prove que $\log_{10} 2$ é irracional.
Esboce as curvas exponenciais transladadas:
$y=3^x+2$ e $y=3^{-x}+2$.
Escreva $a^x$ em função de $e^x$. Use esse resultado para escrever $\log_a(x)$ em função de $\ln(x)$.
Prove que $1+x+\dfrac{x^2}{2!}+\dfrac{x^3}{3!}+\ldots+\dfrac{x^n}{n!} \leq e^x$. Conclua que $\lim\limits_{x \to \infty} e^x/x^n=\infty$.
Prove que $\cosh^2(x)-\sinh^2(x)=1$.
$\begin{array}{rcl} \cosh^2x - \sinh^2 x &=& \left(\dfrac{e^{-x} + e^x}{2}\right)^2 - \left(\dfrac{e^{x} - e^-x}{2}\right)^2 \\ &=& \dfrac{1}{4} (e^{-2x} + 2 e^{-x}e^x + e^{2x}) - \dfrac{1}{4} (e^{2x} - 2 e^xe^{-x} + e^{-2x}) \\ &=& \dfrac{1}{2} + \dfrac{1}{2} \\ &=& 1.\end{array}$
Utilizando as leis de exponenciação, simplifique a expressão a seguir:
$6^{1/3}\cdot18^{1/6}$
Segundo dados de uma pesquisa, a população de certa região do país vem decrescendo em relação ao tempo t, contado em anos, aproximadamente, segundo a relação $P(t)=P(0) \cdot 2^{-0,25t}$. Sendo $P(0)$ uma constante que representa a população inicial dessa região e $P(t)$ a população $t$ anos após, determine quantos anos se passarão para que essa população fique reduzida à quarta parte da inicial.
Para que essa população fique reduzida à quarta parte da inicial devemos ter:
$P(t) = \dfrac{1}{4} P_0$.
Substituindo a expressão de $P(t)$:
$P_0 2^{-0,25 t} = 0,25 P_0$.
Com essa expressão podemos encontrar o valor de $t$.
$2^{-0,25 t} = 0,25$.
Aplicando $log_2$ dos dois lados:
$\log_2 (2^{-0,25 t}) = \log_2(0,25)$.
Utilizando propriedade de $\log$:
$-0,25 t \log_2 2 = \log_2(0,25)$.
$t = \dfrac{\log_2(0,25)}{-0,25}$.
$t = 8$ anos.
Se Fidelis investisse $R\$1500$ em uma conta aposentadoria que rende $8\%$ de juros compostos anualmente, em quanto tempo este investimento isoladamente aumentará para $R\$5000$?
Utilizando as leis de exponenciação, simplifique a expressão a seguir:
$16^2\cdot16^{1,75}$
Mostre, diretamente da definição, que $\log_a'(x)=\dfrac{1}{x} \cdot log_a\left(\lim\limits_{k \to 0}(1+k)^{1/k}\right)$.
Esboce as curvas exponenciais transladadas:
$y=1-e^x$ e $y=1-e^{-x}$.
Prove que $\tanh^2(x)+\dfrac{1}{\cosh^2(x)}=1$.
Prove que $\sinh'(x)=\cosh(x)$.
Esboce juntas as curvas dadas no plano cartesiano e identifique cada uma com sua equação:
$y=2^x$, $y=4^x$,$y=3^{-x}$, e $y=\left( 1/2 \right)^{x}$.
Esboce juntas as curvas dadas no plano cartesiano e identifique cada uma com sua equação:
$y=3^x$, $y=8^x$,$y=2^{-x}$, e $y=\left( 1/4 \right)^{x}$.