Exercícios
Definição de função contínua
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
$f$ é contínua em $x=0$.
Considere uma função contínua $\phi:\mathbb{R} \to \mathbb{R}$ tal que
\[ \forall \quad {x \in \mathbb{R}},\quad \phi(x)\geq x^2.\]
Mostre que existe $a\geq 0$ tal que $\left[a,+\infty\right[$ é o contradomínio de $\phi$.
Considere a função \begin{align*} f\left( x\right) =\left\{ \begin{array}{cc} a-x, & \text{se } x<-1 \\ x, & \text{se } -1\leq x<1 \\ \dfrac{2}{x}+b, & \text{se } 1\leq x \end{array} \right. . \end{align*}
- Encontre os limites laterais a direita e a esquerda de $f$ nos pontos $1$ e $-1.$
- Determine os valores de $a$ e $b$ que tornam $f$ contínua em toda a reta.
- Calcule $\lim\limits_{x\rightarrow \infty }f\left(x\right) $ e $\lim\limits_{x\rightarrow -\;\infty }f\left( x\right) $.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ f(t) = \sqrt{5t^2-30}$.
$(-\infty,-\sqrt{6}]\cup [\sqrt{6},\infty)$
Suponha que $\left| f\left( x\right) -f\left( 1\right) \right| \leq \left( x-1\right) ^{2}$. Demonstre que $f\left( x\right) $ é contínua em $1$.
Dê um exemplo de uma função tal que $\lim\limits_{x\rightarrow p}\left| f\left( x\right) \right| $ exista mas $\lim\limits_{x\rightarrow p}f\left( x\right) $ não exista.
Para a função a seguir, responda se a mesma é contínua nos pontos abaixo (e, caso não o seja, justifique)
$ f(x) = \left\{\begin{array}{ccc}
\frac{x^2+5x+4}{x^2+3x+2}, & & \text{se } x\neq -1\\
3, & &\text{se } x=-1
\end{array}\right.$
- $x=-1$
- $x=10$
- Sim.
- Sim.
Mostre que a função $f\left( x\right) =x^{n}$ é contínua em seu domínio.
O domínio da função é $\mathbb{R}$. Logo, para $x \in \mathbb{R}$, temos:
$\lim_\limits{x \to a} x^n = a^n$
e
$f(a) = a^n$.
Isto é, $\lim_\limits{x \to a} f(x) = f(a)$, e portanto a função é contínua.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ f(x) = e^x$.
$(-\infty,\infty)$
$f(x)=1, x \neq 0$; $f(0)=2$.
Seja $f:\mathbb{R\rightarrow R}$ a função
definida por
\begin{equation*}
f\left( x\right) =\left\{
\begin{array}{cc}
x^{2}, & \text{se }x\leq 1 \\
2x-1, & \text{se }x>1
\end{array}
\right. ,
\end{equation*}
e defina $g\left( x\right) =\lim\limits_{x \rightarrow h}\dfrac{f \left(x+h \right) -f \left( x\right) }{h}$.
Mostre que $g\left( x\right) $ é contínua.
\begin{eqnarray*} g\left( x\right) &=&\lim\limits_{h\rightarrow 0}\dfrac{f\left( x+h\right) -f\left( x\right) }{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{\left( x+h\right) ^{2}-x^{2}}{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{x^{2}+2hx+h^{2}-x^{2}}{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{2hx+h^{2}}{h} \\ &=&\lim\limits_{h\rightarrow 0}\left( 2x+h\right) =2x. \end{eqnarray*}
Já para $x>1$ temos que
\begin{eqnarray*} g\left( x\right) &=&\lim\limits_{h\rightarrow 0}\dfrac{f\left( x+h\right) -f\left( x\right) }{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{\left[ 2\left( x+h\right) -1\right] - \left[ 2x-1\right] }{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{2h}{h}=2. \end{eqnarray*}
Para $x=1$ temos que
\begin{eqnarray*} \lim\limits_{h\rightarrow 0^{+}}\dfrac{f\left( 1+h\right) -f\left( 1\right) }{h} &=&\lim\limits_{h\rightarrow 0}\dfrac{\left[ 2\left( 1+h\right) -1 \right] -1}{h} \\ &=&\lim\limits_{h\rightarrow 0}\dfrac{2h}{h}=2 \\ \lim\limits_{h\rightarrow 0^{-}}\dfrac{f\left( 1+h\right) -f\left( 1\right) }{h} &=&\lim\limits_{h\rightarrow 0^{-}}\dfrac{\left( 1+h\right) ^{2}-1}{h} \\ &=&\lim\limits_{h\rightarrow 0^{-}}\dfrac{2h+h^{2}}{h} \\ &=&\lim\limits_{h\rightarrow 0^{-}}\left( 2+h\right) =2. \end{eqnarray*}
Temos então que $g$ é bem definida também no ponto $x=1$ e, de modo geral, $g$ pode ser expressa por \begin{equation*} g\left( x\right) =\left\{ \begin{array}{cc} 2x & \text{se }x\leq 1 \\ 2 & \text{se }x>1 \end{array} \right. \text{.} \end{equation*}
Como as funções $h\left( x\right) =2x$ e $p\left( x\right) \equiv 2$ são contínuas, temos que $g\left( x\right) $ é contínua para todo $x\neq 1$.
Além disto, como $\lim\limits_{x\rightarrow 1^{-}}g\left( x\right) =\lim\limits_{x\rightarrow 1}2x=2=\lim\limits_{x\rightarrow 1^{+}}2=\lim\limits_{x\rightarrow 1^{+}}g\left( x\right) $, segue que $\lim\limits_{x\rightarrow 1}g\left(x\right) =2$. Mas como $g\left( 1\right) =2$, segue que a função $ g\left( x\right) $ também é contínua no ponto $x=1$.
Dê um exemplo para mostrar que o produto de uma função contínua por uma função descontínua, pode ser uma função contínua.
Mostre, usando a definição, que a função dada por $f(x) = 3x$ é contínua para todo $x$ real.
Dê exemplo de uma função $f$ que seja descontínua, mas tal que $|f|$ seja contínua.
Justifique sua resposta.
$c=-1$ ou $c=2$.
Para a função a seguir, responda se a mesma é contínua nos pontos abaixo (e, caso não o seja, justifique)
$ f(x) = \left\{\begin{array}{ccc} 1, & & \text{se } x=0\\ \frac{\sin x}{x}, & &\text{se } x>0 \end{array}\right.$
- $x=0$
- $x=\pi$
- Sim.
- Sim.
Dê um exemplo de uma função definida em $\mathbb{R}$ que não seja contínua em $0$ mas que $\lim\limits_{x\rightarrow0^{+}}f\left( x\right) =\lim\limits_{x\rightarrow 0^{-}}f\left( x\right) .$
Se você investir $1000$ reais em uma aplicação que paga $7$% de juros compostos em $n$ vezes por ano, então em $10$ anos sua aplicação terá no total $1000(1+0,07/n)^{10n}$ reais.
Quanto dinheiro você terá em $10$ anos se a taxa de juros é composta trimestralmente ($n=4$)?
Quanto dinheiro você terá em $10$ anos se a taxa de juros é composta mensalmente ($n=12$)?
Quanto dinheiro você terá em $10$ anos se a taxa de juros é composta mensalmente ($n=365$)?
Pesquise a taxa de juros paga pela poupança, e o período em que ela é composta. Calcule a quantidade de dinheiro que você terá se investir uma certa quantia de dinheiro (pense no dinheiro você tem disponível para investir) em $1$, $2$, $5$ e $10$ anos com essa taxa e período de composição. Interprete os resultados pensando em seu futuro!
Quanto dinheiro você terá em $10$ anos se os juros forem compostos continuamente, isto é, se $n\to\infty$?
Mostre que a função $f\left( x\right) =\left\{ \begin{array}{cc} \dfrac{x^{3}-8}{x-2}, & \text{se }x\neq 2 \\ 12, & \text{se }x=2 \end{array}\right. $ é contínua em seu domínio.
Mostre que a função $f\left( x\right) =\sqrt[n]{x}$ é contínua em seu domínio.
Para a função a seguir, responda se a mesma é contínua nos pontos abaixo (e, caso não o seja, justifique)
$ f(x) = \left\{\begin{array}{ccc}
x^3-x, & & \text{se } x<1\\
x-2, & & \text{se } x\geq 1
\end{array}\right.$
- $x=0$.
- $x=1$.
- Sim.
- Não: Os limites pela direita e pela esquerda não são iguais em $x=1$.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ g(s) = \ln s$.
$(0,\infty)$
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ h(t) = \cos t$.
$(-\infty,\infty)$
- Se $f$ é contínua em $[0,1)$ e $[1,2)$, então $f$ é contínua em $[0,2)$.
- A soma de funções contínuas também é contínua
- Se $f$ é contínua em $[a,b]$, então $\lim_{x\to a^-}f(x) = f(a)$.
- Falso
- Verdadeiro
- Falso
Para a função a seguir, responda se a mesma é contínua nos pontos abaixo (e, caso não o seja, justifique)
$ f(x) = \left\{\begin{array}{ccc}
\frac{x^2-64}{x^2-11 x+24}, & & \text{se } x\neq 8\\
5, & & \text{se } x=8
\end{array}\right.$
- $x=0$
- $x=8$
- Sim.
- Não. $\lim_{x\to 8} f(x) = 16/5 \neq f(8) = 5$.
Dada uma função $f:{\mathbb{R} \to \mathbb{R}}$, defina sua continuidade no ponto $p\in \mathbb{R}.$
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ g(x) = \sqrt{x^2-4}$.
$(-\infty,-2]\cup [2,\infty)$
Calcule:
- $ \lim\limits_{x\to 5^-} f(x)$
- $ \lim\limits_{x\to 5^+} f(x)$
- $ \lim\limits_{x\to 5} f(x)$
- $f(5)$
- $f$ é contínua em $x=5$?
1. $20$.
2. $25$.
3. Não existe.
4. $25$
5. Não.
Conforme $x$ aumenta, tanto $1/x$ quanto $1/(ln\ x)$ tendem a zero. Dada a função: $f(x)=\left(\frac{1}{x}\right)^{1/(ln\ x)}$ avalie $f(x)$ para valores cada vez maiores de $x$. Qual o padrão observado? Com o auxílio de recursos computacionais, observe o gráfico de $f(x)$ para valores grandes de $x$.
Sugestão: Procure, no site, o exercício 1527. Compare os resultados obtidos.
Dê um exemplo de uma função que seja contínua em todos os pontos da reta, exceto nos pontos da forma $k \pi$, $k \in \mathbb{Z}$.
$f(x)=1$, se $x=k \pi$, $k \in \mathbb{Z}$; $f(x)=0$, caso contrário.
Determine os valores para os quais a função \begin{align*} f(x) =\left\{ \begin{array} [c]{c} x^{2}+1,\text{ se }x\leq0 \\ \cos x, \text{ se } 0<x<1 \\ x^{2}+1, \text{ se }1 \leq x \end{array} \right.\end{align*} é contínua. Justifique sua resposta.
- Se $f$ é contínua em $c$, então $\lim_{x\to c^+}f(x) = f(c)$.
- Se $f$ é contínua em $c$, então $\lim_{x\to c}f(x)$ existe.
- Se $f$ é definida em um intervalo aberto contendo $c$, e $ \lim_{x\to c}f(x)$ existe, então $f$ é contínua em $c$.
- Verdadeiro
- Verdadeiro
- Falso
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ g(x) = \frac{1}{1+x^2}$.
$(-\infty,\infty)$
$f$ não é contínua em $x=0$.
Mostre que função $f\left( x\right) =\dfrac{1}{x^2}$ é contínua em seu domínio.
Seja $f$ uma função contínua e decrescente em $\left[a,b\right]$. Mostre que $f$ tem uma inversa decrescente em $\left[f(b),f(a)\right]$.
Mostre que a função \begin{align*} f\left( x\right) =\left\{ \begin{array}{cc} \dfrac{x^{3}-4x}{x^{2}-4}, & \text{se } x\neq \pm 2 \\ 2, & \text{se } x=2 \\ -3, & \text{se } x=-2 \end{array} \right. \end{align*} é contínua em todos os pontos, com exceção do ponto $x=-2$.
A afirmação: $`` \lim\limits_{x\rightarrow p^+} f(x) = \lim\limits_{x\rightarrow p^-} f(x)\Rightarrow f \mbox{ contínua em } p. "$ é verdadeira ou falsa? Justifique.
É falsa. Só seria verdadeira se o valor dos limites laterais fosse igual a $f(p)$.
Seja $f:\mathbb{R\rightarrow R}$ a função
definida por
\begin{equation*}
f\left( x\right) =\left\{
\begin{array}{cc}
x^{2} & \text{se }x\leq 1 \\
2x-1 & \text{se }x>1
\end{array}
\right. ,
\end{equation*}
e defina $g\left( x\right) =\lim\limits_{x\rightarrow h}\dfrac{f\left(
x+h\right) -f\left( x\right) }{h}$. Mostre que $g\left( x\right) $ é contínua.
Uma das propriedades da potenciação é que $a^0=1$, $\forall a \neq 0$. Além disso, também sabe-se que $0^n=0,\quad \forall n>0$. A extensão destas regras para incluir, respectivamente, $a=0$ e $n=0$ levam a resultados conflitantes quanto ao valor de $0^0$(O que não implica em contradição, dado que as propriedades não foram estabelecidas para $a=0$ e $n=0$).
Sendo assim, avalie $x^x$ para $x=0,1;0,01;0,001;\ldots$. Qual o padrão observado? Com o auxílio de recursos computacionais, observe o gráfico de $y=x^x$ para valores positivos de $x$, se aproximando da origem. Para qual valor a função parece convergir para $x=0$?
Sugestão: Procure, no site, o exercício 1528. Compare os resultados obtidos.
Mostre que a função $f\left( x\right) =\dfrac{1}{x}$ é contínua em seu domínio.
É possível que uma função $f:{\mathbb{R} \to \mathbb{R}}$
seja tal que $\lim\limits_{x\rightarrow 2^{+}}f\left( x\right) =\lim\limits_{x\rightarrow 2^{-}}f\left(x\right)$ e ao mesmo tempo não seja contínua em $2$? Justifique e/ou dê um exemplo.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$f(x) = x^2-3x+9$.
$(-\infty,\infty)$
f(x)=\frac{\sqrt{1-x^2}}{1-tg x} \end{align*}
- Determine o domínio de $f$.
- Estude $f$ quanto a continuidade.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ g(t) = \frac{1}{\sqrt{1-t^2}}$.
$(-1,1)$
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ f(x) = \sin(e^x+x^2)$.
$(-\infty,\infty)$
Mostre, usando a definição, que a função $f\left( x\right) =ax+b$ é contínua em seu domínio.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ f(k) = \sqrt{1-e^k}$.
$(-\infty,0]$
Responda os itens:
- Dada $f:{\mathbb{R} \to \mathbb{R}}$, defina (em termos de $\varepsilon $ e $\delta $) $\lim\limits_{x\rightarrow p}f\left( x\right) =L.$ Ilustre elaborando um gráfico para uma função genérica.
- Qual é a condição sobre esse limite para que a função seja contínua?
Calcule $\displaystyle\lim_{x\rightarrow 0}\frac{\frac{2}{x} - 5\cos(\frac{1}{x^2+2x})}{-\frac{5}{x} + 2\cos(\frac{1}{x^2+2x})}$.
Existe algum número real $a$ tal que a função $f(x) = \left\{\begin{array}{ccl}\displaystyle\frac{\frac{2}{x} - 5\cos(\frac{1}{x^2+2x})}{-\frac{5}{x} + 2\cos(\frac{1}{x^2+2x})},& \mbox{se} & x\neq 0\\ a, & \mbox{se} & x=0 \end{array} \right.$ seja contínua?
A função pode tender a valores diferentes pela esquerda e pela direita, a função pode crescer de maneira ilimitada, ou a função pode oscilar em torno de um valor.
Para a função a seguir, dê os intervalos nos quais ela é contínua:
$ h(k) = \sqrt{1-k}+\sqrt{k+1}$.
$[-1,1]$
É verdade que, ao se esticar um elástico puxando-o por suas extremidades em direções opostas, algum ponto do elástico permanecerá em sua posição inicial? Justifique sua resposta.
Prove que se $f$ e $g$ são ambas funções contínuas, então $f+g$ é contínua.
Dê um exemplo de uma função definida em $\mathbb{R}$ que não seja contínua em $2$ mas que $\lim\limits_{x\rightarrow 2^{+}}f\left( x\right) =\lim\limits_{x\rightarrow 2^{-}}f\left( x\right) .$