Exercícios
Operações com funções
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Determine a função inversa de:
- $f(x) = x^2$
- $f(x) = x^3 + 2.$
Determine $f$ de modo que $g(f(x))=x$ para todo $x \in D_f$, sendo $g$ dada por:
- $g(x)=\dfrac{1}{(x-2)^2}$
- $g(x)=\dfrac{1}{\sqrt{x}}$
Seja $f(x)=\dfrac{1}{1+x}$. Determine:
- $f(f(x))$
- $f\left(\dfrac{1}{x}\right)$
- $f(cx)$
- $f(x+y)$
- $f(x)+f(y)$
Dê os domínios e esboce os gráficos de $f+g$ e $\dfrac{g}{f}$ no seguinte caso:
$f(x)=\left\{\begin{array}{ll}
1, & \text{se x é racional} \\
-1, & \text{se x é irracional} \end{array}\right.$
e
$g(x)=\left\{\begin{array}{ll}
-1, & \text{se x é racional} \\
1, & \text{se x é irracional} \end{array}\right.$
Calcule $f^{-1}$ para a função $f(x)=1+3x.$
Seja $y = f(x)$. Então:
$y = 1 + 3 x$.
Isolando $x$:
$3 x = y - 1$
$x = \dfrac{y-1}{3}$.
Logo:
$f^{-1}(x) = \dfrac{x-1}{3}$.
Se $ f(x) = \sqrt{x} $ e $ g(x) =\sqrt{2-x},$ encontre e determine o domínio das funções:
- $f \circ g (x).$
- $g \circ f(x).$
- $f \circ f (x).$
- $g \circ g(x).$
Dê os domínios e esboce os gráficos de $f+g$ e $\dfrac{g}{f}$ nos seguintes casos:
- $f(x)=x$ e $g(x)=x^2-1$.
- $f(x)=x$ e $g(x)=\dfrac{1}{\sqrt{x}}$.
Dê os domínios e esboce os gráficos de $f+g$ e $\dfrac{g}{f}$ nos seguintes casos:
- $f(x)=1$ e $g(x)=\dfrac{1}{(x-2)^2}$.
- $f(x)=1$ e $g(x)=\sqrt{x-1}$.