Exercícios
Fórmula de Taylor
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Mostre que se \(f_x(x,y)=0\) e \(f_y(x,y)=0\) em toda uma região circular, então \(f(x,y)\) é constante nessa região.
A fórmula de Taylor de primeira ordem para $f(\vec{a} + \vec{v})$ pode ser escrita como $ f(\vec{a}) + \nabla f(\vec{a}) \cdot \vec{v}$, já desconsiderando o termo de erro. Calcule-a para $f(x,y) = x^2/2 + y$, $\vec{a} = (0,0)$ e $\vec{v} = (1/2,1/2)$. Calcule também o erro cometido, dizendo se é um erro pequeno ou grande e por quê.
Mostre que se \(f\), \(f_x\) e \(f_y\) são contínuas numa região circular contendo os pontos \(A=(x_0,y_0)\) e \(B=(x_1,y_1)\), então existe um ponto \((x^\ast,y^\ast)\) no segmento que une \(A\) e \(B\) tal que \[ f(x_1,y_1)-f(x_0,y_0) = f_x(x^\ast,y^\ast)(x_1-x_0)+f_y(x^\ast,y^\ast)(y_1-y_0). \] Este resultado é a versão bidimensional do Teorema do Valor Médio. [Sugestão: expresse o segmento de reta unindo \(A\) e \(B\) na forma paramétrica e use o Teorema do Valor Médio para funções de uma variável.]
A fórmula de Taylor de primeira ordem para $f(\vec{a} + \vec{v})$ pode ser escrita como $ f(\vec{a}) + \nabla f(\vec{a}) \cdot \vec{v}$, já desconsiderando o termo de erro. Calcule-a para $f(x,y) = x^2 + y^2$, $\vec{a} = (1,0)$ e $\vec{v} = (2,1)$. Calcule também o erro cometido, dizendo se é um erro pequeno ou grande e por quê.