Exercícios
Regra da cadeia
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Seja $z=f(u-v,v-u)$. Verifique que
$$\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=0.$$
Note que $\displaystyle \frac{\partial z}{\partial u}(u,v) = \frac{\partial f}{\partial x}(u-v,v-u) - \frac{\partial f}{\partial y}(u-v,v - u)$ e $\displaystyle \frac{\partial z}{\partial v}(u,v) = -\frac{\partial f}{\partial x}(u-v,v-u) + \frac{\partial f}{\partial y}(u-v,v - u).$
No item abaixo:
- expresse $\partial w/\partial u$ e $\partial w/ \partial v$ como funções de $u$ e $v$, usando a Regra da Cadeia e também expressando $w$ diretamente em termos e $u$ e $v$ antes de diferenciar;
- calcule $\partial w/\partial u$ e $\partial w/ \partial v$ no ponto dado $(u,v)$.
$w=xy+yz+xz$, $x=u+v$, $y=u-v$, $z=uv$; $(u,v)=(1/2,1).$
- $\displaystyle w(u,v) = u^{2} - v^{2} + 2u^{2}v,$$\displaystyle \frac{\partial w}{\partial u}(u,v) = 2u + 4uv$ e $\displaystyle \frac{\partial w}{\partial v}(u,v) = -2v + 2u^{2}.$
- $\displaystyle \frac{\partial w}{\partial u}(-2,0) = 3$ e $\displaystyle \frac{\partial w}{\partial v}(-2,0) = -\frac{3}{2}.$
O raio $r$ e a altura $h$ de um cilindro circular reto aumentam à razão de $0,01cm/min$ e $0,02cm/min$, respectivamente.
- Ache a taxa de variação do volume quando $r=4cm$ e $h=7cm.$
- A que taxa a área da superfície curva está variando nesse instante?
- $0,88\pi$ cm$^{3}/$min.
- $0,3\pi$ cm$^{2}/$min.
Calcule $\mathrm{d} z/\mathrm{d} t$ por dois processos:
- substituindo as expressões para $x(t)$ e $y(t)$ em $z$ e depois derivando diretamente com relação a $t$
- aplicando a Regra da Cadeia: $\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y }\frac{dy}{dt}$.
$z=x^{2}+3y^{2}$,$x=\sin{t}$ e $y=\cos{t}.$
$\displaystyle \frac{dz}{dt} (t) = -4\sin(t)\cos(t).$
$f(x,y,z)$ e $g(x,y)$ são funções diferenciáveis tais que, para todo $(x,y)$ no domínio de $g,f(x,y,g(x,y))=0$.
Suponha $g(1,1)=3$, $\dfrac{\partial f}{\partial x}(1,1,3)=2$, $\dfrac{\partial f}{\partial y}(1,1,3)=5$ e $\dfrac{\partial f}{\partial z}(1,1,3)=10.$
Determine a equação do plano tangente ao gráfico de $g$ no ponto $(1,1,3).$
$\displaystyle z - 3 = -\frac{1}{5}(x - 1) - \frac{1}{2} (y-1).$
O comprimento $l$, a largura $w$ e a altura $h$ de uma caixa variam com o tempo. Em certo instante, as dimensões da caixa são $l=1m$ e $w=h=2m$. $l$ e $w$ aumentam a uma taxa de $2m/s$, ao passo que $h$ diminui a uma taxa de $3m/s$. Nesse instante, determine as taxas nas quais as seguintes quantidades estão variando.
- O volume.
- A área da superfície.
- O comprimento da diagonal.
- $6$ m$^3$/s.
- $10$ m$^2$/s.
- $0$ m/s.
Calcule $\mathrm{d} z/\mathrm{d} t$ por dois processos:
- substituindo as expressões para $x(t)$ e $y(t)$ em $z$ e depois derivando diretamente com relação a $t$
- aplicando a Regra da Cadeia: $\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y }\frac{dy}{dt}$.
$z=\ln(1+x^{2}+y^{2})$, $x=\sin{3t}$ e $y=\cos{3t}.$
$\displaystyle \frac{dz}{dt} (t) = 0.$
Mostre que cada a equação a seguir define implicitamente pelo menos uma função diferenciável $z=z(x,y)$.
Expresse $\partial z /\partial x$ e $\partial z/\partial y$ em termos de $x$, $y$ e $z.$
$x^{3}+y^{3}+z^{3}=x+y+z$
$\displaystyle \frac{\partial z}{\partial x} = -\frac{3x^{2} - 1}{3z^{2} - 1}$ e $\displaystyle \frac{\partial z}{\partial y} = -\frac{3y^{2} - 1}{3z^{2} - 1}.$
Mostre que cada a equação a seguir define implicitamente pelo menos uma função diferenciável $y=y(x).$
$y^{4}+x^{2}y^{2}+x^{4}=3$
$\displaystyle \frac{d y}{d x} = - \frac{2xy^{2} + 4x^{3}}{4y^{3} + 2x^{2}y}.$
Se $f(u,v,w)$ é diferenciável, $u=x-y$, $v=y-z$ e $w=z-x$, mostre que
$$\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}=0.$$
Note que $\displaystyle \frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} - \frac{\partial f}{\partial w}, $$\displaystyle \frac{\partial f}{\partial y} = -\frac{\partial f}{\partial u} + \frac{\partial f}{\partial v}$ e $\displaystyle \frac{\partial f}{\partial z} = -\frac{\partial f}{\partial v} + \frac{\partial f}{\partial w}.$
Suponha que, para todo $t$, $f(t^{2},2t)=t^{3}-3t$. Mostre que
$$\dfrac{\partial f}{\partial x}(1,2)=-\dfrac{\partial f}{\partial y}(1,2).$$
Tome $t = 1$ em $\displaystyle \frac{df}{dt}(t^{2},2t) = 2t \frac{\partial f}{\partial x}(t^{2},2t) + 2\frac{\partial f}{\partial y}(t^{2},2t) = 3t^{2} - 3.$
Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t,$ onde
$$z=\sin{\theta}\cos{\phi}, \quad \theta=st^{2}, \quad \phi=s^{2}t.$$
Utilizando a Regra de Cadeia, obtemos
\begin{eqnarray*}
\frac{\partial z}{\partial s} & = & \frac{\partial z}{\partial \theta}\frac{\partial \theta}{\partial s}+\frac{\partial z}{\partial \phi}\frac{\partial \phi}{\partial s} \\
& = & (\cos{\theta}\cos{\phi})(t^2) + (\sin{\theta}(-\sin{\phi}))(2st) \\
& = & t^2\cos(st^2)\cos(s^2t) - 2st\sin(st^2)\sin(s^2t)
\end{eqnarray*}
e
\begin{eqnarray*}
\frac{\partial z}{\partial t} & = & \frac{\partial z}{\partial \theta}\frac{\partial \theta}{\partial t}+\frac{\partial z}{\partial \phi}\frac{\partial \phi}{\partial t} \\
& = & (\cos{\theta}\cos{\phi})(2st) + (\sin{\theta}(-\sin{\phi}))(s^2) \\
& = & 2st\cos(st^2)\cos(s^2t) - s^2\sin(st^2)\sin(s^2t).
\end{eqnarray*}
Use a Regra da Cadeia para determinar $\mathrm{d}z/\mathrm{d} t$ ou $\mathrm{d}w/ \mathrm{d}t.$
$z=\sin{x}\cos{y}$, $x=\pi t$, $y=\sqrt{t}$.
$\displaystyle \frac{dz}{dt} = \pi \cos(x) \cos(y) - \frac{1}{2\sqrt{t}} \sin(x) \sin(y).$
Utilize a Regra da Cadeia para determinar as derivadas parciais indicadas.
$z=x^{2}+xy^{3}$, $x=uv^{2}+w^{3}$, $y=u+ue^{w}$;
$\dfrac{\partial z}{\partial u}$, $\dfrac{\partial z}{\partial v}$, $\dfrac{\partial z}{\partial w}$ quando $u=2$, $v=1$, $w=0$.
$\dfrac{\partial z}{\partial u} = 85$, $\dfrac{\partial z}{\partial v} = 178$, $\dfrac{\partial z}{\partial w} = 54.$
Se $z=f(x,y)$ com $x=u+v$ e $y=u-v$, demonstre que
$$\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=2 \frac{\partial f}{\partial x}.$$
Note que $\displaystyle \frac{\partial z}{\partial u} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$ e $\displaystyle \frac{\partial z}{\partial v} = \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}.$
Suponha que substituamos coordenadas polares $x=r\cos{\theta}$ e $y=r\sin{\theta}$ em uma função diferenciável $w=f(x,y).$
- Mostre que $$\frac{\partial w}{\partial r}=f_{x}\cos{\theta}+f_{y}\sin{\theta}$$ e $$\frac{1}{r}\frac{\partial w}{\partial \theta}=-f_{x}\sin{\theta}+f_{y}\cos{\theta}.$$
- Resolva as equações no item 1. para expressar $f_{x}$ e $f_{y}$ em termos de $\partial w/ \partial r$ e $\partial w/\partial \theta$.
- Mostre que $$(f_{x})^{2}+(f_{y})^{2}=\bigg(\frac{\partial w}{\partial r}\bigg)^{2}+\frac{1}{r^{2}}\bigg(\frac{\partial w}{\partial \theta}\bigg)^{2}.$$
- $\displaystyle f_{x} = \cos(\theta) \frac{\partial w}{\partial r} - \frac{\sin (\theta)}{r} \frac{\partial w}{\partial \theta}$ e $\displaystyle f_{y} = \sin(\theta) \frac{\partial w}{\partial r} + \frac{\cos (\theta)}{r} \frac{\partial w}{\partial \theta}.$
Use a Regra da Cadeia para determinar $\mathrm{d}z/\mathrm{d} t$ ou $\mathrm{d}w/ \mathrm{d}t.$
$z=x^{2}y+xy^{2}$, $x=2+t^{2}$, $y=1-t^{3}$.
$\displaystyle \frac{dz}{dt} = 4(2xy + y^{2} )^{3} - 3 (x^{2} + 2xy)t^{2}.$
Utilize um diagrama em árvore para escrever a Regra da Cadeia para o caso dado. Suponha que todas as funções sejam diferenciáveis.
$t=f(u,v,w)$, onde $u=u(p,q,r,s)$, $v=v(p,q,r,s)$, $w=w(p,q,r,s)$.
$\displaystyle \frac{\partial t}{\partial p} = \frac{\partial t}{\partial u}\frac{\partial u}{\partial p} + \frac{\partial t}{\partial v}\frac{\partial v}{\partial p} + \frac{\partial t}{\partial w}\frac{\partial w}{\partial p},$ $\displaystyle \frac{\partial t}{\partial q} = \frac{\partial t}{\partial u}\frac{\partial u}{\partial q} + \frac{\partial t}{\partial v}\frac{\partial v}{\partial q} + \frac{\partial t}{\partial w}\frac{\partial w}{\partial q},$
$\displaystyle \frac{\partial t}{\partial r} = \frac{\partial t}{\partial u}\frac{\partial u}{\partial r} + \frac{\partial t}{\partial v}\frac{\partial v}{\partial r} + \frac{\partial t}{\partial w}\frac{\partial w}{\partial r}$ e $\displaystyle \frac{\partial t}{\partial s} = \frac{\partial t}{\partial u}\frac{\partial u}{\partial s} + \frac{\partial t}{\partial v}\frac{\partial v}{\partial s} + \frac{\partial t}{\partial w}\frac{\partial w}{\partial s}.$
Suponha que $w=f(x,y)$ é diferenciável e que exista uma constante $\alpha$ tal que
$x=u\cos(\alpha)-v\sin(\alpha)$
$y=u\sin(\alpha)+v\cos(\alpha).$
Mostre que
$$\bigg(\frac{\partial w}{\partial u}\bigg)^{2}+\bigg(\frac{\partial w}{\partial v}\bigg)^{2}=\bigg(\frac{\partial w}{\partial x}\bigg)^{2}+\bigg(\frac{\partial w}{\partial y}\bigg)^{2}.$$
Note que $\displaystyle \frac{\partial w}{\partial u} = \cos(\alpha) \frac{\partial w}{\partial x} + \sin(\alpha) \frac{\partial w}{\partial y}$ e $\displaystyle \frac{\partial w}{\partial v} = -\sin(\alpha) \frac{\partial w}{\partial x} + \cos(\alpha) \frac{\partial w}{\partial y}.$
Os lados iguais e o ângulo correspondente de um triângulo isósceles estão aumentando à razão de $3cm/h$ e $2^{\circ}/h$, respectivamente. Ache a taxa à qual a área do triângulo está aumentando no instante em que o comprimento de cada um dos
lados iguais é de $6$ metros e o ângulo correspondente é $60^{\circ}.$
$\approx 181559$ cm$^{2}/$h.
Seja $g(t)=f(3t,2t^{2}-1).$
- Expresse $g^{'}(t)$ em termos das derivadas parciais de $f$.
- Calcule $g^{'}(0)$ admitindo $\dfrac{\partial f}{\partial x}(0,-1)=\dfrac{1}{3}.$
- $\displaystyle g'(t) = 3\frac{\partial f}{\partial x}(3t,2t^{2} - 1) + 4t \frac{\partial f}{\partial y}(3t,2t^{2} - 1).$
- $g'(0) = 1.$
Se $z=f(x-y)$, mostre que
$$\dfrac{\partial z}{\partial x}+\dfrac{\partial z}{\partial y}=0.$$
Note que se $u = x - y,$ então $\displaystyle \frac{\partial z}{\partial x} = \frac{dz}{du}$e$\displaystyle \frac{\partial z}{\partial y} = -\frac{dz}{du}.$
Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t.$
$z=\arcsin(x-y)$, $x=s^{2}+t^{2}$, $y=1-2st$.
$\displaystyle \frac{\partial z}{\partial s} = \displaystyle \frac{\partial z}{\partial t} = \frac{2s + 2t}{\sqrt{1 - (x - y)^{2}}}$.
Use a Regra da Cadeia para determinar $\mathrm{d}z/\mathrm{d} t$ ou $\mathrm{d}w/ \mathrm{d}t.$
$w=xe^{y/z}$, $x=t^{2}$, $y=1-t$, $z=1+2t$.
$\displaystyle \frac{dw}{dt} = e^{\frac{y}{z}} \left(2t - \frac{x}{z} - \frac{2xy}{z^{2}} \right).$
Expresse $\partial z/\partial t$ em termos das derivadas parciais de $f$, sendo $z=f(x,y)$ e $x=\sin{3t}$ e $y=\cos{2t}.$
$\displaystyle \frac{dz}{dt} (t) = 3 \cos(3t) \frac{\partial f}{\partial x}(\sin(3t),\cos(2t)) - 2\sin(2t) \frac{\partial f}{\partial y}(\sin(3t),\cos(2t)).$
Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t.$
$z=e^{r}\cos{\theta}$, $r=st$, $\theta=\sqrt{s^{2}+t^{2}}$.
$\displaystyle \frac{\partial z}{\partial s} = e^{r} \left( t\cos(\theta) - \frac{s}{\sqrt{s^{2} + t^{2}}} \sin(\theta) \right) $ e $\displaystyle \frac{\partial z}{\partial t} = e^{r} \left( s\cos(\theta) - \frac{t}{\sqrt{s^{2} + t^{2}}} \sin(\theta) \right).$
Suponha que $u=f(x,y)$ e $v=g(x,y)$ verifiquem as equações de Cauchy- Riemann $u_{x}=v_{y}$ e $u_{y}=-v_{x}$. Se $x=r\cos{\theta}$ e
$y=r\sin{\theta}$, mostre que
$$\frac{\partial u}{\partial r}=\frac{1}{r}\frac{\partial v}{\partial \theta} \text{ e } \frac{\partial v}{\partial r}=-\frac{1}{r}\frac{\partial u}{\partial \theta}.$$
Note que $\displaystyle \frac{\partial u}{\partial r} = \cos(\theta) u_{x} + \sin (\theta) u_{y},$ $\displaystyle \frac{\partial v}{\partial r} = \cos(\theta) v_{x} + \sin (\theta) v_{y},$
$\displaystyle \frac{\partial u}{\partial \theta} = -r\sin(\theta) u_{x} + r \cos(\theta) u_{y}$ e $\displaystyle \frac{\partial v}{\partial \theta} = - r\sin(\theta) v_{x} + r \cos(\theta) v_{y}$.
Nos item abaixo:
- expresse $\mathrm{d} w/\mathrm{d} t$ como uma função de $t$, usando a Regra da Cadeia, expressando $w$ em termos de $t$ e diferenciando em relação a $t$;
- calcule $\mathrm{d} w/\mathrm{d} t$ no valor dado de $t$.
$w=x^{2}+y^{2}$, $x=\cos{t}$, $y=\sin{t}$; $t=\pi.$
- $\displaystyle \frac{dw}{dt}(t) = 0.$
- $\displaystyle \frac{dw}{dt}(\pi) = 0.$
No item abaixo:
- expresse $\partial w/\partial u$ e $\partial w/ \partial v$ como funções de $u$ e $v$, usando a Regra da Cadeia e também expressando $w$ diretamente em termos e $u$ e $v$ antes de diferenciar;
- calcule $\partial w/\partial u$ e $\partial w/ \partial v$ no ponto dado $(u,v)$.
$w=\ln(x^{2}+y^{2}+z^{2})$, $x=ue^{v}\sin{u}$, $y=ue^{v}\cos{u}$, $z=ue^{v}$; $(u,v)=(-2,0).$
- $\displaystyle w(u,v) = \ln(2) + 2\ln(u) + 2v,$$\displaystyle \frac{\partial w}{\partial u}(u,v) = \frac{2}{u}$ e $\displaystyle \frac{\partial w}{\partial v}(u,v) = 2.$
- $\displaystyle \frac{\partial w}{\partial u}(-2,0) = -1$ e $\displaystyle \frac{\partial w}{\partial v}(-2,0) = 2.$
Encontre $\partial w/ \partial r$ quando $r=1$, $s=-1$ se $w=(x+y+z)^{2}$, $x=r-s$, $y=\cos(r+s)$, $z=\sin(r+s).$
$\displaystyle \frac{\partial w}{\partial r}(x(1,-1),y(1,-1),z(-1,1)) = 12.$
Se $z=f(x,y)$, onde $f$ é diferenciável, e $x=g(t)$, $g(3)=2$, $g'(3)=5$, $f_{x}(2,7)=6$, $y=h(t)$, $h(3)=7$, $h'(3)=-4$, $f_{y}(2,7)=-8,$ determine $\mathrm{d}z/ \mathrm{d}t$ quando $t=3.$
$\displaystyle \frac{dz}{dt}(3) = 62.$
$f(t)$ e $g(x,y)$ são funções diferenciáveis tais que $g(t,f(t))=0$ para todo $t$. Suponha $f(0)=1$,
$\dfrac{\partial g}{\partial x}(0,1)=2$ e $\dfrac{\partial g}{\partial y}(0,1)=4$. Determine a equação da reta tangente a $\gamma(t)=(t,f(t))$,
no ponto $\gamma(0).$
$\displaystyle (x,y) = (0,1) + \lambda \left(1, - \frac{1}{2}\right),$ $\lambda \in \mathbb{R}.$
Admita que, para todo $(x,y)$,
$$4y\frac{\partial f}{\partial x}(x,y)-x\frac{\partial f}{\partial y}(x,y)=0.$$
Prove que $f$ é constante sobre a elipse $\dfrac{x^{2}}{4}+y^{2}=1.$
Note que $\displaystyle \frac{dz}{dt} \left(t \right) = 0,$ para $z = f(x,y),$ $x = t$ e $\displaystyle y = \pm \sqrt{1 - \frac{t^{2}}{4}}.$
Utilize a Regra da Cadeia para determinar as derivadas parciais indicadas.
$u=\sqrt{r^{2}+s^{2}}$, $r=y+x\;\cos{t}$, $s=x+y\;\sin{t}$;
$\dfrac{\partial u}{\partial x}$, $\dfrac{\partial u}{\partial y}$, $\dfrac{\partial u}{\partial t}$ quando $x=1$, $y=2$, $t=0$.
$\displaystyle \frac{\partial u}{\partial x} = \frac{4}{\sqrt{10}}$, $\displaystyle \frac{\partial u}{\partial y} = \frac{3}{\sqrt{10}}$, $\displaystyle \frac{\partial u}{\partial t}= \frac{2}{\sqrt{10}}.$
A função diferenciável $z=z(x,y)$ é dada implicitamente pela equação $f\bigg(\dfrac{x}{y},z\bigg)=0$, onde
$f(u,v)$ é suposta diferenciável e $\dfrac{\partial f}{\partial v}(u,v)\neq 0$. Verifique que
$$x\frac{\partial z}{\partial x}+y\dfrac{\partial z}{\partial y}=0.$$
Note que $\displaystyle \frac{\partial z}{\partial x} = - \frac{1}{y} \frac{\partial f}{\partial u} \left(\frac{x}{y},z \right)\left(\frac{\partial f}{\partial v}\left(\frac{x}{y},z \right)\right)^{-1}$ e $\displaystyle \frac{\partial z}{\partial y} = \frac{x}{y^{2}} \frac{\partial f}{\partial u} \left(\frac{x}{y},z \right)\left(\frac{\partial f}{\partial v}\left(\frac{x}{y},z \right)\right)^{-1}$.
Seja $g(x,y)=f(x^{2}+y^{2})$, onde $f:\mathbb{R}\rightarrow \mathbb{R}$ é uma função diferenciável. Mostre que
$$y\frac{\partial g}{\partial x}-x\frac{\partial g}{\partial y}=0.$$
Observe que $f$ é uma função de uma variável. Logo, utilizando a Regra da Cadeia para funções de uma variável, obtemos
$$\frac{\partial g}{\partial x}(x,y) = f'(x^2+y^2) (2x)$$
e
$$\frac{\partial g}{\partial y}(x,y) = f'(x^2+y^2) (2y).$$
Portanto
$$y\frac{\partial g}{\partial x}-x\frac{\partial g}{\partial y}=0.$$
Se $z=f(x,y)$, onde $x=r\cos{\theta}$ e $y=r\sin{\theta}$,
- Determine $\dfrac{\partial z}{\partial r}$ e $\dfrac{\partial z}{\partial \theta}.$
- Mostre que $\bigg(\dfrac{\partial z}{\partial x}\bigg)^{2}+ \bigg(\dfrac{\partial z}{\partial y}\bigg)^{2}=\bigg(\dfrac{\partial z}{\partial r}\bigg)^{2}+\dfrac{1}{r^{2}}\bigg(\dfrac{\partial z}{\partial \theta}\bigg)^{2}$.
- $\displaystyle \frac{\partial z}{\partial r} = \cos(\theta) \frac{\partial z}{\partial x} + \sin(\theta) \frac{\partial z}{\partial y} $e$\displaystyle \frac{\partial z}{\partial \theta} = -r \sin(\theta)\frac{\partial z}{\partial x} + r\cos(\theta) \frac{\partial z}{\partial y}.$
- Use $(a)$ para calcular $\bigg(\dfrac{\partial z}{\partial r}\bigg)^{2}+\dfrac{1}{r^{2}}\bigg(\dfrac{\partial z}{\partial \theta}\bigg)^{2}$.
Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t.$
$z=\tan(u/v)$, $u=2s+3t$, $v=3s-2t$.
$\displaystyle \frac{\partial z}{\partial s} = \frac{2u - 3v}{v^{2}} \sec^{2}\left(\frac{u}{v} \right)$ e $\displaystyle \frac{\partial z}{\partial t} = \frac{2u + 3v}{v^{2}} \sec^{2}\left(\frac{u}{v} \right))$.
Mostre que qualquer função da forma
$$z=f(x+at)+g(x-at)$$
é uma solução da equação de onda
$$\frac{\partial^{2} z}{\partial t^{2}}=a^{2}\frac{\partial^{2}z}{\partial x^{2}}.$$
(Sugestão: Tome $u=x+at$, $v=x-at$.)
Note que se $u = x + at$ e $v = x - at,$ então $\displaystyle \frac{\partial^{2} z}{\partial t^{2}} = a^{2}f''(u) + a^{2} g''(v)$e\\$\displaystyle \frac{\partial^{2} z}{\partial x^{2}} = f''(u) + g''(v).$
Suponha que, para todo $x$,$f(3x,x^{3})=\arctan(x)$.
- Calcule $\dfrac{\partial f}{\partial x}(3,1)$ admitindo $\dfrac{\partial f}{\partial y}(3,1)=2$.
- Determine a equação do plano tangente ao gráfico de $f$ no ponto $(3,1,f(3,1))$.
- $\dfrac{\partial f}{\partial x}(3,1) = -\frac{11}{6}.$
- $\displaystyle z - \frac{\pi}{4} = -\frac{11}{6}(x - 3) + 2(y - 1).$
Seja $W(s,t)=F(u(s,t),v(s,t))$, onde $F$, $u$ e $v$ são diferenciáveis, e $u(1,0)=2$, $u_{s}(1,0)=-2$, $u_{t}(1,0)=6$, $F_{u}(2,3)=-1$, $v(1,0)=3$, $v_{s}(1,0)=5$, $v_{t}(1,0)=4$, $F_{v}(2,3)=10.$ Determine $W_{s}(1,0)$ e $W_{t}(1,0).$
$W_{s}(1,0) = 52$ e $W_{t}(1,0) = 34.$
Mostre que cada a equação a seguir define implicitamente pelo menos uma função diferenciável $y=y(x).$
Expresse $\mathrm{d} y/\mathrm{d} x$ em termos de $x$ e $y.$
$x^{2}y+\sin(y)=x$
$\displaystyle \frac{d y}{d x} = -\frac{2xy - 1}{x^{2} + \cos(y)}.$
Admita que, para todo $(x,y)$,
$$4y\frac{\partial f}{\partial x}(x,y)-x\frac{\partial f}{\partial y}(x,y)=2.$$
Calcule $g^{'}(t)$, sendo $g(t)=f(2\cos{t},\sin{t})$.
$g^{'}(t) = -1.$
Mostre que cada a equação a seguir define implicitamente pelo menos uma função diferenciável $z=z(x,y)$.
Expresse $\partial z /\partial x$ e $\partial z/\partial y$ em termos de $x$, $y$ e $z.$
$e^{x+y+z}+xyz=1$
$\displaystyle \frac{\partial z}{\partial x} = - \frac{e^{x + y + z} + yz}{e^{x + y + z} + xy}$ e $\displaystyle \frac{\partial z}{\partial y} = - \frac{e^{x + y + z} + xz}{e^{x + y + z} + xy}.$
Quando o tamanho das moléculas e suas forças de atração são levadas em conta, a pressão $P$, o volume $V$ e a temperatura $T$
de um mol de gás confinado estão relacionados pela {\it equação de van der Waals}
$$\bigg(P+\frac{a}{V^{2}}\bigg)(V-b)=kT,$$
em que $a$, $b$ e $k$ são constantes positivas. Se $t$ é o tempo, estabeleça uma fórmula para $\mathrm{d}T/ \mathrm{d}t$ em termos de $\mathrm{d}P/\mathrm{d} t$,
$\mathrm{d} V/\mathrm{d}t$, $P$ e $V$.
$\displaystyle \frac{dT}{dt} = \frac{1}{k} \left( \left(\frac{dP}{dt} - \frac{2a}{V^{3}} \frac{dV}{dt}\right)(V - b) + \left( P + \frac{a}{V^{2}} \right) \frac{dV}{dt} \right).$
Seja $z=f(u+2v,u^{2}-v)$. Expresse $\partial z/\partial u$ e $\partial z/\partial v$ em termos das
derivadas parciais de $f$.
$\displaystyle \frac{\partial z}{\partial u}(u,v) = \frac{\partial f}{\partial x}(u + 2v,u^{2} - v) + 2u \frac{\partial f}{\partial y}(u + 2v,u^{2} - v)$ e\\ $\displaystyle \frac{\partial z}{\partial v}(u,v) = 2 \frac{\partial f}{\partial x}(u + 2v,u^{2} - v) - \frac{\partial f}{\partial y}(u + 2v,u^{2} - v).$
Expresse $\partial z/\partial t$ em termos das derivadas parciais de $f$, sendo $z=f(x,y)$ e $x=t^{2}$ e $y=3t.$
$\displaystyle \frac{dz}{dt} (t) = 2t \frac{\partial f}{\partial x}(t^{2},3t) + 3 \frac{\partial f}{\partial y}(t^{2},3t).$
Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t.$
$z=x^{2}y^{3}$, $x=s\cos{t}$, $y=s\sin{t}$.
$\displaystyle \frac{\partial z}{\partial s} = 2xy^{3} \cos(t) + 3x^{2}y^{2} \sin(t) $ e $\displaystyle \frac{\partial z}{\partial t} = -2sxy^{3} \sin(t) + 3 sx^{2}y^{2} \cos(t)$.
Calcule $\mathrm{d} z/\mathrm{d} t$ por dois processos:
- substituindo as expressões para $x(t)$ e $y(t)$ em $z$ e depois derivando diretamente com relação a $t$
- aplicando a Regra da Cadeia: $\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y }\frac{dy}{dt}$.
$z=\sin(xy)$, $x=3t$ e $y=t^{2}.$
$\displaystyle \frac{dz}{dt} (t) = 9t^{2}\cos(3t^{3}).$
Seja $g(t)=f(3t^{2},t^{3},e^{2t})$ e suponha $\dfrac{\partial f}{\partial z}(0,0,1)=4.$
- Expresse $g^{'}(t)$ em termos das derivadas parciais de $f.$
- Calcule $g^{'}(0).$
- $\displaystyle g^{'}(t) = 6t \frac{\partial f}{\partial x}(3t^{2},t^{3},e^{2t}) + 3t^{2} \frac{\partial f}{\partial y}(3t^{2},t^{3},e^{2t}) + 2e^{2t} \frac{\partial f}{\partial z}(3t^{2},t^{3},e^{2t}).$
- $g^{'}(0) = 8.$
Utilize um diagrama em árvore para escrever a Regra da Cadeia para o caso dado. Suponha que todas as funções sejam diferenciáveis.
$w=f(r,s,t)$, onde $r=r(x,y)$, $s=s(x,y)$, $t=t(x,y)$.
$\displaystyle \frac{\partial w}{\partial x} = \frac{\partial w}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial w}{\partial s}\frac{\partial s}{\partial x} + \frac{\partial w}{\partial t}\frac{\partial t}{\partial x}$ e $\displaystyle \frac{\partial w}{\partial y} = \frac{\partial w}{\partial r}\frac{\partial r}{\partial y} + \frac{\partial w}{\partial s}\frac{\partial s}{\partial y} + \frac{\partial w}{\partial t}\frac{\partial t}{\partial y}$
Use a Regra da Cadeia para determinar $\mathrm{d}z/\mathrm{d} t$ ou $\mathrm{d}w/ \mathrm{d}t.$
$z=\sqrt{x^{2}+y^{2}}$, $x=e^{2t}$, $y=e^{-2t}$.
$\displaystyle \frac{dz}{dt} = \frac{2xe^{2t} - 2ye^{2t}}{\sqrt{x^{2} + y^{2}}}.$
Use a Regra da Cadeia para determinar $\mathrm{d}z/\mathrm{d} t$ ou $\mathrm{d}w/ \mathrm{d}t.$
$z=\tan^{-1}(x/y)$, $x=e^{t}$, $y=1-e^{-t}$.
$\displaystyle \frac{dz}{dt} = \frac{xe^{-t} - ye^{t}}{x^{2} + y^{2}}.$
Se $u=f(x,y)$, onde $x=e^{s}\cos{t}$ e $y=e^{s}\sin{t}$, mostre que
$$\bigg(\dfrac{\partial u}{\partial x}\bigg)^{2}+ \bigg(\dfrac{\partial u}{\partial y}\bigg)^{2}=
e^{-2s}\bigg[ \bigg(\dfrac{\partial u}{\partial s}\bigg)^{2}+\bigg(\dfrac{\partial u}{\partial t}\bigg)^{2}\bigg].$$
Note que $\displaystyle \frac{\partial u}{\partial s} = e^{s} \cos(t) \frac{\partial u}{\partial x} + e^{s} \sin(t) \frac{\partial u}{\partial y} $e
$\displaystyle \frac{\partial u}{\partial t} = -e^{s} \sin(t) \frac{\partial u}{\partial x} + e^{s} \cos(t) \frac{\partial u}{\partial y} .$
Considere a função $F(x,y)=f\bigg(\dfrac{x}{y},\dfrac{y}{x}\bigg)$. Mostre que
$$x\dfrac{\partial F}{\partial x}+y\dfrac{\partial F}{\partial y}=0.$$
Note que$\displaystyle \frac{\partial F}{\partial x} = \frac{1}{y}\frac{\partial f}{\partial x}\left(\frac{x}{y}, \frac{y}{x} \right) - \frac{y}{x^{2}} \frac{\partial f}{\partial y}\left(\frac{x}{y}, \frac{y}{x} \right)$ e $\displaystyle \frac{\partial F}{\partial y} = -\frac{x}{y^{2}} \frac{\partial f}{\partial x}\left(\frac{x}{y}, \frac{y}{x} \right) + \frac{1}{x} \frac{\partial f}{\partial y}\left(\frac{x}{y}, \frac{y}{x} \right).$
Nos item abaixo:
- expresse $\mathrm{d} w/\mathrm{d} t$ como uma função de $t$, usando a Regra da Cadeia, expressando $w$ em termos de $t$ e diferenciando em relação a $t$;
- calcule $\mathrm{d} w/\mathrm{d} t$ no valor dado de $t$.
$w=x^{2}+y^{2}$, $x=\cos{t}+\sin{t}$, $y=\cos{t}-\sin{t}$; $t=0.$
- $\displaystyle \frac{dw}{dt}(t) = 0.$
- $\displaystyle \frac{dw}{dt}(0) = 0.$
Se $z=f(x,y)$, onde $x=r^{2}+s^{2}$ e $y=2rs$, determine $\partial^{2}z/\partial r\partial s.$
$\displaystyle \frac{\partial^{2}z}{\partial r\partial s} = 4rs \frac{\partial^{2}z}{\partial x^{2}} + 4rs \frac{\partial^{2}z}{\partial y^{2}} + (4r^{2} + 4s^{2}) \frac{\partial^{2}z}{\partial x\partial y} + 2 \frac{\partial z}{\partial y}.$
Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t.$
$z=e^{x+2y}$, $x=s/t$, $y=t/s$.
$\displaystyle \frac{\partial z}{\partial s} = e^{x + st}\left(\frac{1}{t} - \frac{2t}{s^{2}} \right) $ e $\displaystyle \frac{\partial z}{\partial t} = e^{x + st}\left(\frac{2}{s} - \frac{s}{t^{2}} \right) $.
Utilize a Regra da Cadeia para determinar as derivadas parciais indicadas.
$Y=w\tan^{-1}(uv)$, $u=r+s$, $v=s+t$; $w=t+r$
$\dfrac{\partial Y}{\partial r}$, $\dfrac{\partial Y}{\partial s}$, $\dfrac{\partial Y}{\partial t}$ quando $r=1$, $s=0$, $t=1$.
$\displaystyle \frac{\partial Y}{\partial r} = 1 + \frac{\pi}{4}$ ,$\dfrac{\partial Y}{\partial s} = 2$, $\displaystyle \dfrac{\partial Y}{\partial t} = 1 + \frac{\pi}{4}.$