LISTA DE DISCIPLINAS

Exercícios

Derivadas parciais

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


2030   

Use a Regra da Cadeia para determinar $\mathrm{d}z/\mathrm{d} t$ ou $\mathrm{d}w/ \mathrm{d}t.$

$w=xe^{y/z}$, $x=t^{2}$, $y=1-t$, $z=1+2t$.



$\displaystyle \frac{dw}{dt} = e^{\frac{y}{z}} \left(2t - \frac{x}{z} - \frac{2xy}{z^{2}} \right).$


2739   

$2x + y + 3z = 6$ é a equação do plano tangente ao gráfico de $f(x,y)$ no ponto $(1,1,1)$.

  1. Calcule $\dfrac{\partial f}{\partial x}(1,1)$ e $\dfrac{\partial f}{\partial y}(1,1)$.

  2. Determine a equação da reta normal no ponto $(1,1,1).$


  1. $\displaystyle \frac{\partial f}{\partial x} (1,1) = -\frac{2}{3}$ e  $\displaystyle \frac{\partial f}{\partial y} (1,1) = -\frac{1}{3}.$

  2. $(x,y,z) = (1,1,1) + \lambda (2,1,3)$.


2666   

Considere a função $z=\dfrac{xy^{2}}{x^{2}+y^{2}}.$ Verifique que $x\dfrac{\partial z}{\partial x}+y\dfrac{\partial z}{\partial y}=z.$


$\displaystyle \frac{\partial z}{\partial x} = \frac{y^{4} - x^{2}y^{2}}{(x^{2} + y^{2})^{2}}\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial z}{\partial y} = \frac{2x^{3}y}{(x^{2} + y^{2})^{2}}.$


2706   

Se $z=\sin(x+\sin{y})$, mostre que $\dfrac{\partial z}{\partial x} \;\dfrac{\partial^{2} z}{\partial x \partial y}=\dfrac{\partial z}{\partial y}\;\dfrac{\partial^{2}z}{\partial x^{2}}$.


$\begin{aligned}[t]\frac{\partial z}{\partial x} &= \cos(x + \sin y),\;\;\; \frac{\partial z}{\partial y} = \cos(x + \sin y) \cos y,\\\frac{\partial z^{2}}{\partial x\partial y} &= -\sin (x + \sin y) \cos y\;\;\text{e}\;\; \frac{\partial^{2} z}{\partial x^{2}} = -\sin (x + \sin y).\end{aligned}$


2760   

Verifique que a função $f(x,y) = \arctan{xy}$ é diferenciável.


As derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ de cada função $f$ existem e são contínuas em todos os pontos do domínio.


2136   

Mostre que cada a equação a seguir define implicitamente pelo menos uma função diferenciável $z=z(x,y)$. 
Expresse $\partial z /\partial x$ e $\partial z/\partial y$ em termos de $x$, $y$ e $z.$
$x^{3}+y^{3}+z^{3}=x+y+z$


 $\displaystyle \frac{\partial z}{\partial x} = -\frac{3x^{2} - 1}{3z^{2} - 1}$ e $\displaystyle \frac{\partial z}{\partial y} = -\frac{3y^{2} - 1}{3z^{2} - 1}.$


2716   

Explique por que a função é diferenciável no ponto dado. A seguir, encontre a linearização $L(x,y)$ da função naquele ponto. $f(x,y) = x\sqrt{y}, \quad (1,4)$.


As derivadas $f_{x}$ e $f_{y}$ de cada $f$ existem e são contínuas no ponto dado, logo $f$ é diferenciável.

$L(x,y) = 2x + \frac{1}{4}y - 1$.


2696   

Calcule todas as derivadas parciais de $2^{\underline{a}}$ ordem de $z=e^{x^{2}-y^{2}}$.


$\begin{aligned}[t]\frac{\partial^{2} z}{\partial x^{2}} &= 2e^{x^{2} - y^{2}}(1 + 2x^{2}),\;\;\;\;\; \frac{\partial^{2} z}{\partial y^{2}}= 2e^{x^{2} - y^{2}}(2y^{2} - 1) \;\;\;\;\;\text{e}\\\frac{\partial^{2} z}{\partial x\partial y} &= \frac{\partial^{2} z}{\partial y\partial x}= -4xye^{x^{2} - y^{2}}.\end{aligned}$


2705   

Considere a função

$$f(x,y)= \begin{cases}\dfrac{xy^{2}}{x^{2}+y^{4}}, & \quad \text{se } (x,y)\neq (0,0),\\0, & \quad \text{se } (x,y)=(0,0).\\\end{cases}$$

  1. A função é contínua em $(0,0)$? Justifique sua resposta.

  2. Determine as derivadas parciais $\dfrac{\partial f}{\partial x}(0,0)$ e $\dfrac{\partial f}{\partial y}(0,0)$.


  1. Não, pois $\lim_{(x,y) \to (0,0)} f(x,y)$ não existe.

  2. $\displaystyle \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$.


2762   

Determine o maior conjunto de pontos em que a função $f(x,y) = \begin{cases}\dfrac{x^3}{x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0),\\0, & \quad \text{se } (x,y) = 0\end{cases}$ é diferenciável. Justifique.


$\mathbb{R}^{2} \setminus \left\lbrace (0,0) \right\rbrace$.


2676   

Calcule as derivadas parciais de $f(x,y,z) = \sin{(x^2 + y^2 + z^2)}$.


$\begin{aligned}[t]\frac{\partial f}{\partial x} &= 2x \cos (x^{2} + y^{2} + z^{2}),\;\;\;\;  \frac{\partial f}{\partial y} = 2y \cos (x^{2} + y^{2} + z^{2}) \;\;\;\;\;\text{e}\\\frac{\partial f}{\partial z} &= 2z \cos (x^{2} + y^{2} + z^{2}).\end{aligned}$


2729   

Determine as equações do plano tangente e da reta normal ao gráfico da função dada, no ponto dado. $f(x,y) = 2x^2y$ em $(1,1,f(1,1))$.


Plano tangente: $z = 4x + 2y - 4$

Reta normal: $(x,y,z) = \left(1,1,2 \right) + \lambda \left(4,2,-1 \right)$.


2735   

Determine o plano que passa pelos pontos $(1,1,2)$ e $(-1,1,1)$ e que seja tangente ao gráfico de $f(x,y) = xy$.


$x + 6y - 2z = 3$.


2732   

Determine as equações do plano tangente e da reta normal ao gráfico da função dada, no ponto dado. $f(x,y) = xe^{x^2 - y^2}$ em $(2,2,f(2,2))$.


Plano tangente: $z = 9x - 8y$

Reta normal: $(x,y,z) = \left(2,2,2 \right) + \lambda \left(9,-8,-1 \right)$.


2184   

No item abaixo: 

  1. expresse $\partial w/\partial u$ e $\partial w/ \partial v$ como funções de $u$ e $v$, usando a Regra da Cadeia e também expressando $w$ diretamente em termos e $u$ e $v$ antes de diferenciar; 
  2. calcule $\partial w/\partial u$ e $\partial w/ \partial v$ no ponto dado $(u,v)$.

$w=xy+yz+xz$,  $x=u+v$, $y=u-v$,  $z=uv$;  $(u,v)=(1/2,1).$


  1. $\displaystyle w(u,v) = u^{2} - v^{2} + 2u^{2}v,$$\displaystyle \frac{\partial w}{\partial u}(u,v) = 2u + 4uv$ e $\displaystyle \frac{\partial w}{\partial v}(u,v) = -2v + 2u^{2}.$
  2. $\displaystyle \frac{\partial w}{\partial u}(-2,0) = 3$ e $\displaystyle \frac{\partial w}{\partial v}(-2,0) = -\frac{3}{2}.$


2032   

Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t.$

$z=\arcsin(x-y)$, $x=s^{2}+t^{2}$,  $y=1-2st$.


$\displaystyle \frac{\partial z}{\partial s} = \displaystyle \frac{\partial z}{\partial t} = \frac{2s + 2t}{\sqrt{1 - (x - y)^{2}}}$.



2737   

Determine o plano que é paralelo ao plano $z = 2x + y$ e tangente ao gráfico de $f(x,y) = x^2 + y^2$.


$z = 2x + y - \frac{5}{4}$.


2754   

A função $f(x,y) = \begin{cases}\dfrac{x^4}{x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0),\\0, & \quad \text{se } (x,y) = (0,0)\\\end{cases}$ é diferenciável em $(0,0)$? Justifique.


Sim.



2665   

Determine as derivadas parciais de $z=\dfrac{x\sin{y}}{\cos(x^{2}+y^{2})}$.


$\begin{aligned}[t]\frac{\partial z}{\partial x} &= \frac{\sin y ( \cos(x^{2} + y^{2}) + 2x^{2} \sin(x^{2} + y^{2}))}{(\cos(x^{2} + y^{2}))^{2}}\;\;\;\;\;\;\text{e}\\\frac{\partial z}{\partial y} &= \frac{x \cos y \cos(x^{2} + y^{2}) + 2xy \sin y \sin(x^{2} + y^{2})}{(\cos(x^{2} + y^{2}))^{2}}.\end{aligned}$


2767   

Encontre o valor de $\partial z/\partial x$ no ponto $(1,1,1)$ sabendo que a equação

$$xy+z^{3}x-2yz=0$$

define $z$ como uma função de duas variáveis independentes $x$ e $y$ e que a derivada parcial existe.


$\displaystyle \frac{\partial z}{\partial x} (1,1,1) = -2$.


2748   

Explique por que a função é diferenciável no ponto dado. $f(x,y) = \dfrac{x}{x+y}, \quad (2,1)$.


As derivadas $f_{x}$ e $f_{y}$ de cada $f$ existem e são contínuas no ponto dado, logo $f$ é diferenciável.


2027   

Use a Regra da Cadeia para determinar $\mathrm{d}z/\mathrm{d} t$ ou $\mathrm{d}w/ \mathrm{d}t.$

$z=\sqrt{x^{2}+y^{2}}$, $x=e^{2t}$, $y=e^{-2t}$.



$\displaystyle \frac{dz}{dt} = \frac{2xe^{2t} - 2ye^{2t}}{\sqrt{x^{2} + y^{2}}}.$


2021   

Seja $g(x,y)=f(x^{2}+y^{2})$, onde $f:\mathbb{R}\rightarrow \mathbb{R}$ é uma função diferenciável. Mostre que 
$$y\frac{\partial g}{\partial x}-x\frac{\partial g}{\partial y}=0.$$



Observe que $f$ é uma função de uma variável. Logo, utilizando a Regra da Cadeia para funções de uma variável, obtemos
$$\frac{\partial g}{\partial x}(x,y) = f'(x^2+y^2) (2x)$$
e
$$\frac{\partial g}{\partial y}(x,y) = f'(x^2+y^2) (2y).$$
Portanto
$$y\frac{\partial g}{\partial x}-x\frac{\partial g}{\partial y}=0.$$


2700   

Verifique que $\dfrac{\partial ^{2}f}{\partial x^{2}}+\dfrac{\partial ^{2}f}{\partial y^{2}}=0$, onde $f(x,y)=\ln(x^{2}+y^{2}).$


$\displaystyle \frac{\partial^{2} f}{\partial x^{2}}= \frac{2 y^{2} - 2 x^{2}}{(x^{2} + y^{2})^{2}}\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial^{2} f}{\partial y^{2}}= \frac{2 x^{2} - 2 y^{2}}{(x^{2} + y^{2})^{2}}.$


2678   

Seja $f(x,y,z) = \dfrac{x}{x^2 + y^2 + z^2}$.

Verifique que

$$x\dfrac{\partial f}{\partial x} + y\dfrac{\partial f}{\partial y} + z\dfrac{\partial f}{\partial z} = -f.$$


$\displaystyle \frac{\partial f}{\partial x} = \frac{-x^{2} + y^{2} + z^{2}}{(x^{2} + y^{2} + z^{2})^{2}},\;\;\;\; \frac{\partial f}{\partial y} = \frac{-2xy}{(x^{2} + y^{2} + z^{2})^{2}} \;\;\;\;\;\text{e}\;\;\;\;\;\frac{\partial f}{\partial z} = \frac{-2xz}{(x^{2} + y^{2} + z^{2})^{2}}.$


2768   

De acordo com o triângulo abaixo:

ma211-list3-ex36.png

  1. Expresse $A$ implicitamente como uma função de $a$, $b$ e $c$ e calcule $\partial A/\partial a$ e $\partial A/ \partial b.$

  2. Expresse $a$ implicitamente como uma função de $A$, $b$ e $B$ e calcule $\partial a/ \partial A$ e $\partial a/ \partial B.$


  1. $\displaystyle a^{2} = b^{2} + c^{2} -2bc\cos(A),\;\;\;\;\frac{\partial A}{\partial a} = \frac{a}{bc \sin (A)}\;\;\;\text{e}\;\;\;\frac{\partial A}{\partial b} = \frac{c \cos(A) - b}{bc \sin(A)}.$

  2. $\displaystyle \frac{a}{\sin(A)} = \frac{b}{\sin(B)},\;\;\;\;\frac{\partial a}{\partial A} = \frac{a\cos(A)}{\sin(A)}\;\;\;\text{e}\;\;\;\frac{\partial a}{\partial B} = - b\csc(B) \cot(B)\sin(A).$


2029   

Use a Regra da Cadeia para determinar $\mathrm{d}z/\mathrm{d} t$ ou $\mathrm{d}w/ \mathrm{d}t.$

$z=\tan^{-1}(x/y)$, $x=e^{t}$, $y=1-e^{-t}$.


$\displaystyle \frac{dz}{dt} = \frac{xe^{-t} - ye^{t}}{x^{2} + y^{2}}.$


3085   

Mostre que se \(f\) é diferenciável e \(z=xf(x/y)\), então todos os pontos planos tangentes ao gráfico dessa equação passam pela origem.


2652   

Disseram-lhe que existe uma função $f$ cujas derivadas parciais são \[f_{x}(x,y)=x+4y  \quad \mbox{e} \quad f_{y}(x,y)=3x-y,\] e cujas derivadas parciais de segunda ordem são contínuas. Você deve acreditar nisso?


Não, pois pelo Teorema de Clairaut deveria ser verdade que $f_{xy} = f_{yx},$ mas temos $f_{xy} = 4 \neq 3 = f_{yx}.$


2664   

Determine as derivadas parciais de $f(x,y)=\sqrt[3]{x^{3}+y^{2}+3}$.


$\displaystyle \frac{\partial f}{\partial x} = \frac{x^{2}}{\sqrt[3]{(x^{3} + y^{3} + 3)^{2}}}\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial f}{\partial y} = \frac{2y}{3 \sqrt[3]{(x^{3} + y^{3} + 3)^{2}}} .$


2658   

Determine as derivadas parciais de $z=x^{2}\ln(1+x^{2}+y^{2})$.


$\displaystyle \frac{\partial z}{\partial x} = 2x\ln(1+ x^{2} + y^{2}) + \frac{2x^{3}}{1 + x^{2} + y^{2}}\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial z}{\partial y} = \frac{2x^{2}y}{1 + x^{2} + y^{2}}.$


2649   

Verifique que a função $u=1/\sqrt{x^{2}+y^{2}+z^{2}}$ é uma solução da equação de Laplace tridimensional $u_{xx}+u_{yy}+u_{zz}=0.$


$\displaystyle u_{xx} = \frac{2x^{2} - y^{2} - z^{2}}{(x^{2} + y^{2} + z^{2})^{5/2}},\;\;\; u_{yy} = \frac{2y^{2} - x^{2} - z^{2}}{(x^{2} + y^{2} + z^{2})^{5/2}}\;\;\;\text{e}\;\;\;u_{zz} = \frac{2z^{2} - x^{2} - y^{2}}{(x^{2} + y^{2} + z^{2})^{5/2}}$.


2126   

Admita que, para todo $(x,y)$, 

$$4y\frac{\partial f}{\partial x}(x,y)-x\frac{\partial f}{\partial y}(x,y)=0.$$

Prove que $f$ é constante sobre a elipse $\dfrac{x^{2}}{4}+y^{2}=1.$



Note que $\displaystyle \frac{dz}{dt} \left(t \right) = 0,$ para $z = f(x,y),$ $x = t$ e $\displaystyle y = \pm \sqrt{1 - \frac{t^{2}}{4}}.$


2116   

Se $z=f(x,y)$, onde $x=r^{2}+s^{2}$ e $y=2rs$, determine $\partial^{2}z/\partial r\partial s.$ 



$\displaystyle \frac{\partial^{2}z}{\partial r\partial s} = 4rs \frac{\partial^{2}z}{\partial x^{2}} + 4rs \frac{\partial^{2}z}{\partial y^{2}} + (4r^{2} + 4s^{2}) \frac{\partial^{2}z}{\partial x\partial y} +  2 \frac{\partial z}{\partial y}.$ 


3082   

De acordo com a lei dos gases ideais, a pressão, a temperatura e o volume de um gás confinado estão relacionados por \( P=kT/V\), onde \(k\) é uma constante. Use diferenciais para aproximar a variação percentual na pressão se a temperatura de um gás tiver crescido em \(3\%\) e o volume tiver crescido em \(5\%\).


3084   

Suponha que \(f(x,y)\) seja uma função diferenciável no ponto \((x_0,y_0)\) e seja \(z_0=f(x_0,y_0)\). Mostre que a função \(\displaystyle g(x,y,z)=z-f(x,y)\) é diferenciável em \((x_0,y_0,z_0)\).


2114   

Se $z=f(x-y)$, mostre que
$$\dfrac{\partial z}{\partial x}+\dfrac{\partial z}{\partial y}=0.$$



Note que se $u = x - y,$ então $\displaystyle \frac{\partial z}{\partial  x} = \frac{dz}{du}$e$\displaystyle \frac{\partial  z}{\partial  y} = -\frac{dz}{du}.$


2743   

Determine os planos tangentes ao gráfico de $f(x,y) = 2 + x^2 + y^2$ e que contenham o eixo $x$.


$z = 2\sqrt{2} y$ e $z = -2\sqrt{2} y.$


2113   

Se $u=f(x,y)$, onde $x=e^{s}\cos{t}$ e $y=e^{s}\sin{t}$, mostre que
$$\bigg(\dfrac{\partial u}{\partial x}\bigg)^{2}+ \bigg(\dfrac{\partial u}{\partial y}\bigg)^{2}=
e^{-2s}\bigg[ \bigg(\dfrac{\partial u}{\partial s}\bigg)^{2}+\bigg(\dfrac{\partial u}{\partial t}\bigg)^{2}\bigg].$$



Note que $\displaystyle \frac{\partial u}{\partial s} = e^{s} \cos(t) \frac{\partial u}{\partial x}  + e^{s} \sin(t) \frac{\partial u}{\partial y} $e
$\displaystyle \frac{\partial u}{\partial t} = -e^{s} \sin(t) \frac{\partial u}{\partial x}  + e^{s} \cos(t) \frac{\partial u}{\partial y} .$


2070   

Utilize as Equações 

$\dfrac{\partial z}{\partial x}=-\dfrac{\dfrac{\partial F}{\partial x}}{\dfrac{\partial F}{\partial z}}$ e $\dfrac{\partial z}{\partial y}=-\dfrac{\dfrac{\partial F}{\partial y}}{\dfrac{\partial F}{\partial z}}$

para determinar $\partial z/\partial x$ e $\partial z/\partial y$.

$yz=\ln(x+z)$


$\displaystyle \frac{dz}{dx} = \frac{1}{y(x+z)-1}$ e $\displaystyle \frac{dz}{dy} = \frac{z(x+z)}{y(x+z)-1}.$


2037   

Se $z=f(x,y)$, onde $f$ é diferenciável, e $x=g(t)$, $g(3)=2$, $g'(3)=5$, $f_{x}(2,7)=6$, $y=h(t)$, $h(3)=7$, $h'(3)=-4$, $f_{y}(2,7)=-8,$ determine $\mathrm{d}z/ \mathrm{d}t$ quando $t=3.$



$\displaystyle \frac{dz}{dt}(3) = 62.$


2761   

Determine o maior conjunto de pontos em que a função $f(x,y) = \begin{cases}\dfrac{xy}{x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0),\\0, & \quad \text{se } (x,y) = (0,0)\end{cases}$ é diferenciável. Justifique.


$\mathbb{R}^{2} \setminus \left\lbrace (0,0) \right\rbrace$.


2662   

Determine as derivadas parciais de $g(x,y)=x^{y}$.


$\displaystyle \frac{\partial g}{\partial x} = yx^{y - 1}\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial g}{\partial y} = x^{y} \ln x.$


2020   

Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t,$ onde
$$z=\sin{\theta}\cos{\phi}, \quad \theta=st^{2}, \quad \phi=s^{2}t.$$



Utilizando a Regra de Cadeia, obtemos
\begin{eqnarray*}
\frac{\partial z}{\partial s} & = & \frac{\partial z}{\partial \theta}\frac{\partial \theta}{\partial s}+\frac{\partial z}{\partial \phi}\frac{\partial \phi}{\partial s} \\
& = & (\cos{\theta}\cos{\phi})(t^2) + (\sin{\theta}(-\sin{\phi}))(2st) \\
& = & t^2\cos(st^2)\cos(s^2t) - 2st\sin(st^2)\sin(s^2t)
\end{eqnarray*}
e
\begin{eqnarray*}
\frac{\partial z}{\partial t} & = & \frac{\partial z}{\partial \theta}\frac{\partial \theta}{\partial t}+\frac{\partial z}{\partial \phi}\frac{\partial \phi}{\partial t} \\
& = & (\cos{\theta}\cos{\phi})(2st) + (\sin{\theta}(-\sin{\phi}))(s^2) \\
& = & 2st\cos(st^2)\cos(s^2t) - s^2\sin(st^2)\sin(s^2t).
\end{eqnarray*}


2691   

Encontre $f_{x}$, $f_{y}$ e $f_{z}$ para $f(x,y,z)=\ln(x+2y+3z)$.


$\displaystyle f_{x} = \frac{1}{x + 2y + 3z},\;\;\;\; f_{y} = \frac{2}{x + 2y + 3z}\;\;\;\;\text{e}\;\;\;\; f_{z} = \frac{3}{x + 2y + 3z}$.


2036   

Seja $W(s,t)=F(u(s,t),v(s,t))$, onde $F$, $u$ e $v$ são diferenciáveis, e $u(1,0)=2$, $u_{s}(1,0)=-2$, $u_{t}(1,0)=6$, $F_{u}(2,3)=-1$, $v(1,0)=3$, $v_{s}(1,0)=5$, $v_{t}(1,0)=4$, $F_{v}(2,3)=10.$ Determine $W_{s}(1,0)$ e $W_{t}(1,0).$


$W_{s}(1,0) = 52$ e $W_{t}(1,0) = 34.$


2693   

Encontre $f_{x}$, $f_{y}$ e $f_{z}$ para $f(x,y,z)=e^{-xyz}$.


$\displaystyle f_{x} = -yz e^{-xyz},\;\;\;\; f_{y} = -xz e^{-xyz}\;\;\;\;\text{e}\;\;\;\; f_{z} = -xy e^{-xyz}$.


2640   

Determine as derivadas parciais de primeira ordem da função $u=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdot \cdot \cdot +x_{n}^{2}}$.


$\displaystyle \frac{\partial u}{\partial x_{i}}= \frac{x_{i}}{\sqrt{x_{1}^{2}+x_{2}^{2}+\cdot \cdot \cdot +x_{n}^{2}}}$ para todo $i = 1, \cdots, n$.


2040   

Utilize a Regra da Cadeia para determinar as derivadas parciais indicadas.
$z=x^{2}+xy^{3}$, $x=uv^{2}+w^{3}$, $y=u+ue^{w}$;
$\dfrac{\partial z}{\partial u}$, $\dfrac{\partial z}{\partial v}$, $\dfrac{\partial z}{\partial w}$ quando $u=2$,  $v=1$, $w=0$.


$\dfrac{\partial z}{\partial u} = 85$, $\dfrac{\partial z}{\partial v} = 178$, $\dfrac{\partial z}{\partial w} = 54.$


2112   

 Suponha que a equação $F(x,y,z)=0$ defina implicitamente cada uma das três variáveis $x$,$y$ e $z$ como função das outras duas: 
$z=f(x,y)$, $y=g(x,y)$ e $x=h(y,z).$ Se $F$ for diferenciável e $F_{x}$,$F_{y}$ e $F_{z}$ forem todas não nulas, mostre que
$$\frac{\partial z}{\partial x} \frac{\partial x}{\partial y}\frac{\partial y}{\partial z}=-1.$$



Note que$\displaystyle \frac{\partial z}{\partial x} = -\frac{F_{x}}{F_{z}},$$\displaystyle \frac{\partial x}{\partial y} = -\frac{F_{y}}{F_{x}}$e$\displaystyle \frac{\partial y}{\partial z} = -\frac{F_{z}}{F_{y}}.$


2694   

Seja  $w=f(x,y,z)$ uma função de três variáveis independentes. Escreva a definição formal de derivada parcial $\partial f/\partial z$ em $(x_{0},y_{0},z_{0})$. Use essa definição para encontrar $\partial f/\partial z$ em $(1,2,3)$ para $f(x,y,z)=x^{2}yz^{2}.$


$\displaystyle \frac{\partial f}{\partial z}(1,2,3) = 12$.


2679   

Seja $s = f(x,y,z,w)$ dada por $s = e^{\frac{x}{y} - \frac{z}{w}}$. Verifique que

$$x\dfrac{\partial s}{\partial x} + y \dfrac{\partial s}{\partial y} + z \dfrac{\partial s}{\partial z} + w \dfrac{\partial s}{\partial w} = 0.$$


$\begin{aligned}[t]\frac{\partial s}{\partial x} &= \frac{1}{y} e^{\frac{x}{y} - \frac{z}{w}},\;\;\;\;\;\frac{\partial s}{\partial y} = -\frac{x}{y^{2}} e^{\frac{x}{y} - \frac{z}{w}},\\\frac{\partial s}{\partial z} &= -\frac{1}{w} e^{\frac{x}{y} - \frac{z}{w}}\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial s}{\partial w} = \frac{z}{w^{2}} e^{\frac{x}{y} - \frac{z}{w}}.\end{aligned}$


2751   

Considere a função

$$f(x,y) = \begin{cases}\dfrac{xy}{x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0),\\0, & \quad \text{se } (x,y) = (0,0).\\\end{cases}$$

Mostre que $f_x(0,0)$ e $f_y(0,0)$ existem, mas $f$ não é diferenciável em $(0,0)$.


$f_{x}(0,0) = f_{y}(0,0) = 0,$ mas $\lim_{(x,y) \to (0,0)} f(x,y)$ não existe, logo $f$ é discontínua em $(0,0)$ e portanto não é diferenciável neste ponto.


2726   

Utilize as diferenciais para estimar a quantidade de estanho em uma lata cilíndrica fechada com $8$ cm de diâmetro e $12$ cm de altura se a espessura da folha de estanho for de $0,04$ cm.


Para $V = \pi r^{2}h$ o volume da lata de raio $r$ e altura $h,$ temos $\Delta V \approx 16$ cm$^{3}.$


2672   

Determine $\dfrac{ \partial f}{\partial x}$ e $\dfrac{\partial f}{\partial y}$, sendo $f(x,y)= \begin{cases}\dfrac{x+y^{4}}{x^{2}+y^{2}}, & \quad \text{se } (x,y)\neq (0,0),\\0, & \quad \text{se } (x,y)=(0,0).\\\end{cases}$


$\begin{aligned}[t]\frac{\partial f}{\partial x} &= \begin{cases}\dfrac{y^{2} - x^{2} - 2xy^{4}}{(x^{2}+y^{2})^{2}}, & \quad \text{se } (x,y)\neq (0,0),\\\text{não existe} & \quad \text{se } (x,y)=(0,0)\\\end{cases} \;\;\;\; \text{e}\\\frac{\partial f}{\partial y} &= \begin{cases}\dfrac{4x^{2}y^{3} + 2y^{5} - 2xy}{x^{2}+y^{2}}, & \quad \text{se } (x,y)\neq (0,0),\\0, & \quad \text{se } (x,y)=(0,0).\\\end{cases}\end{aligned}$


2673   

Calcule as derivadas parciais de $f(x,y,z) = xe^{x - y - z}$.


$\displaystyle \frac{\partial f}{\partial x} = (1 + x)e^{x - y - z},\;\;\;\; \frac{\partial f}{\partial y} = -x e^{x - y - z}\;\;\;\;\;\text{e}\;\;\;\;\;\frac{\partial f}{\partial z} = -x e^{x - y - z}.$


2201   

O raio $r$ e a altura $h$ de um cilindro circular reto aumentam à razão de $0,01cm/min$ e $0,02cm/min$, respectivamente.

  1.  Ache a taxa de variação do volume quando $r=4cm$ e $h=7cm.$
  2.  A que taxa a área da superfície curva está variando nesse instante?


  1.  $0,88\pi$ cm$^{3}/$min.
  2.  $0,3\pi$ cm$^{2}/$min.


2183   

Nos item abaixo: 

  1. expresse $\mathrm{d} w/\mathrm{d} t$ como uma função de $t$, usando a Regra da Cadeia, expressando $w$ em termos de $t$ e diferenciando em relação a $t$;
  2. calcule $\mathrm{d} w/\mathrm{d} t$ no valor dado de $t$.

$w=x^{2}+y^{2}$,  $x=\cos{t}+\sin{t}$,  $y=\cos{t}-\sin{t}$;  $t=0.$



  1. $\displaystyle \frac{dw}{dt}(t) = 0.$
  2. $\displaystyle \frac{dw}{dt}(0) = 0.$


2069   

Utilize as Equações 

$\dfrac{\partial z}{\partial x}=-\dfrac{\dfrac{\partial F}{\partial x}}{\dfrac{\partial F}{\partial z}}$ e $\dfrac{\partial z}{\partial y}=-\dfrac{\dfrac{\partial F}{\partial y}}{\dfrac{\partial F}{\partial z}}$

para determinar $\partial z/\partial x$ e $\partial z/\partial y$.

$xyz=\cos(x+y+z)$


$\displaystyle \frac{dz}{dx} = \frac{yz + \sin(x + y + z)}{xy + \sin(x + y + z)}$ e $\displaystyle \frac{dz}{dy} = \frac{xz + \sin(x + y + z)}{xy + \sin(x + y + z)}.$


2711   

O elipsoide $4x^{2}+2y^{2}+z^{2}=16$ intercepta o plano $y=2$ em uma elipse. Determine as equações paramétricas da reta tangente à elipse no ponto $(1,2,2).$


$x = 1 + t,$ $y = 2,$ $z = 2 - 2t$.


2647   

Determine as derivadas parciais indicadas. $w=\dfrac{x}{y+2z}$; \;\;\;\;$\dfrac{\partial^{3}w}{\partial z\partial y \partial x}$, \;\;\;\;$\dfrac{\partial^{3}w}{\partial x^{2}\partial y}$.


$\displaystyle \frac{\partial^{3}w}{\partial z\partial y \partial x} = \frac{4}{(y + 2z)^{3}}\;\;\;\text{e} \;\;\;\; \frac{\partial^{3}w}{\partial x^{2}\partial y} = 0$.


2039   

Utilize um diagrama em árvore para escrever a Regra da Cadeia para o caso dado. Suponha que todas as funções sejam diferenciáveis.

$t=f(u,v,w)$, onde $u=u(p,q,r,s)$, $v=v(p,q,r,s)$, $w=w(p,q,r,s)$.


$\displaystyle \frac{\partial t}{\partial p} = \frac{\partial t}{\partial u}\frac{\partial u}{\partial p} + \frac{\partial t}{\partial v}\frac{\partial v}{\partial p} + \frac{\partial t}{\partial w}\frac{\partial w}{\partial p},$ $\displaystyle \frac{\partial t}{\partial q} = \frac{\partial t}{\partial u}\frac{\partial u}{\partial q} + \frac{\partial t}{\partial v}\frac{\partial v}{\partial q} + \frac{\partial t}{\partial w}\frac{\partial w}{\partial q},$

$\displaystyle \frac{\partial t}{\partial r} = \frac{\partial t}{\partial u}\frac{\partial u}{\partial r} + \frac{\partial t}{\partial v}\frac{\partial v}{\partial r} + \frac{\partial t}{\partial w}\frac{\partial w}{\partial r}$ e $\displaystyle \frac{\partial t}{\partial s} = \frac{\partial t}{\partial u}\frac{\partial u}{\partial s} + \frac{\partial t}{\partial v}\frac{\partial v}{\partial s} + \frac{\partial t}{\partial w}\frac{\partial w}{\partial s}.$


2746   

Considere a função

$$f(x,y)=\begin{cases}\dfrac{xy}{x^{2}+y^{2}}, & \quad \text{se } (x,y) \neq (0,0),\\0, & \quad \text{se } (x,y)=(0,0).\\\end{cases}$$

  1. A função $f$ é contínua em $(0,0)$? Justifique sua resposta.

  2. Calcule as derivadas parciais $\dfrac{\partial f}{\partial x}(0,0)$ e $\dfrac{\partial f}{\partial y}(0,0).$

  3. Determine $\dfrac{\partial f}{\partial x}(x,y)$ e $\dfrac{\partial f}{\partial y}(x,y)$ para $(x,y)\neq (0,0).$

  4. $f$ é diferenciável em $(0,0)$? Justifique sua resposta.


  1. Não, pois $\displaystyle \lim_{(x,y) \to (0,0)} f(x,y)$ não existe.

  2. $\displaystyle \frac{\partial f}{\partial x}(0,0) = \frac{\partial f}{\partial y}(0,0) = 0$.

  3. $\displaystyle \frac{\partial f}{\partial x} = \frac{y^{3} - x^{2}y}{(x^{2} + y^{2})^{2}}\;\;\;\text{e}\;\;\; \frac{\partial f}{\partial y} = \frac{x^{3} - xy^{2}}{(x^{2} + y^{2})^{2}}$.

  4. Não, pois $f$ não é contínua em $(0,0)$ (ou: pois suas derivadas parciais não são contínuas em $(0,0)$).


2632   

Determine as derivadas parciais de primeira ordem da função $f(r,s)=r\ln(r^{2}+s^{2})$.



Sendo $f(r,s)=r\cdot \ln(r^{2}+s^{2})$, temos que as derivadas parciais em relação a $r$ e $s$, respectivamente, são:

$\bullet f_{r}(r,s)=1\cdot \ln(r^{2}+s^{2})+r\cdot \dfrac{1}{r^{2}+s^{2}}\cdot 2r=\ln(r^{2}+s^{2})+\dfrac{2r^{2}}{r^{2}+s^{2}}.$

$\bullet f_{s}(r,s)=0\cdot \ln(r^{2}+s^{2})+r\cdot \dfrac{1}{r^{2}+s^{2}}\cdot 2s=\dfrac{2rs}{r^{2}+s^{2}}.$


2756   

Verifique que a função $f(x,y) = x^4 + y^3$ é diferenciável.


As derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ de cada função $f$ existem e são contínuas em todos os pontos do domínio.


2137   

A função diferenciável $z=z(x,y)$ é dada implicitamente pela equação  $f\bigg(\dfrac{x}{y},z\bigg)=0$, onde 
$f(u,v)$ é suposta diferenciável e $\dfrac{\partial f}{\partial v}(u,v)\neq 0$. Verifique que 
$$x\frac{\partial z}{\partial x}+y\dfrac{\partial z}{\partial y}=0.$$



Note que $\displaystyle \frac{\partial z}{\partial x} =  - \frac{1}{y} \frac{\partial f}{\partial u} \left(\frac{x}{y},z \right)\left(\frac{\partial f}{\partial v}\left(\frac{x}{y},z \right)\right)^{-1}$  e $\displaystyle \frac{\partial z}{\partial y} =  \frac{x}{y^{2}} \frac{\partial f}{\partial u} \left(\frac{x}{y},z \right)\left(\frac{\partial f}{\partial v}\left(\frac{x}{y},z \right)\right)^{-1}$.


2728   

Quatro números positivos, cada um menor que $50$, são arredondados até a primeira casa decimal e depois multiplicados. Utilize os diferenciais para estimar o máximo erro possível no cálculo do produto que pode resultar do arredondamento.


Se $x,y,z,w$ são os quatro números e $p(x,y,z,w) = xyzw,$ temos $\Delta p \leq 25000.$


2644   

Use a definição de derivadas parciais como limites para encontrar $f_{x}(x,y)$ e $f_{y}(x,y)$, sendo $f(x,y)=x^{2}y-x^{3}y$.


$\displaystyle f_{x} = y^{2} - 3x^{2}y \;\;\;\text{e}\;\;\; f_{y} = 2xy - x^{3}$.


2042   

Utilize a Regra da Cadeia para determinar as derivadas parciais indicadas.
$Y=w\tan^{-1}(uv)$, $u=r+s$,  $v=s+t$; $w=t+r$
$\dfrac{\partial Y}{\partial r}$, $\dfrac{\partial Y}{\partial s}$, $\dfrac{\partial Y}{\partial t}$ quando $r=1$, $s=0$, $t=1$.


$\displaystyle \frac{\partial Y}{\partial r} = 1 + \frac{\pi}{4}$ ,$\dfrac{\partial Y}{\partial s} = 2$, $\displaystyle \dfrac{\partial Y}{\partial t} = 1 + \frac{\pi}{4}.$


2081   

 O comprimento $l$, a largura $w$ e a altura $h$ de uma caixa variam com o tempo. Em certo instante, as dimensões da caixa são $l=1m$ e $w=h=2m$. $l$ e $w$ aumentam a uma taxa de $2m/s$, ao passo que $h$ diminui a uma taxa de $3m/s$. Nesse instante, determine as taxas nas quais as seguintes quantidades estão variando.

  1. O volume.
  2. A área da superfície.
  3. O comprimento da diagonal.


  1. $6$ m$^3$/s.
  2. $10$ m$^2$/s.
  3. $0$ m/s.


2718   

Explique por que a função é diferenciável no ponto dado. A seguir, encontre a linearização $L(x,y)$ da função naquele ponto. $f(x,y) = e^{-xy} \cos{y}, \quad (\pi,0)$.


As derivadas $f_{x}$ e $f_{y}$ de cada $f$ existem e são contínuas no ponto dado, logo $f$ é diferenciável.

$L(x,y) = 1 - \pi y$.


2637   

As seguintes superfícies, rotuladas $a$, $b$ e $c$ de cima para baixo, são gráficos de uma função $f$ e de suas derivadas parciais $f_{x}$ e $f_{y}$. Identifique cada superfície e dê razões para sua escolha.

ma211-list3-ex7.png


a) $f_{y},$ b) $f_{x},$ c) $f$.


2703   

Considere a função

$$f(x,y)=\log(9-x^{2}-9y^{2}).$$

  1. Esboce no plano $xy$ o domínio de $f.$

  2. Calcule as derivadas parciais $f_{x}$ e $f_{y}.$


  1. $D_{f} = \left\lbrace (x,y) \in \mathbb{R}^{2};\; x^{2} -9y^{2} < 9 \right\rbrace$.
    ma211-list3-ex43_sol_a.png
  2. $\displaystyle f_{x} = \frac{-2x}{9 - x^{2} - 9y^{2}}  \;\;\;\text{e}\;\;\;f_{y} = \frac{-18y}{9 - x^{2} - 9y^{2}}$.

2755   

Verifique que a função $f(x,y) = e^{x - y^2}$ é diferenciável.


As derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ de cada função $f$ existem e são contínuas em todos os pontos do domínio.


2710   

Determine o plano que é paralelo ao plano $z = 2x + 3y$ e tangente ao gráfico de $f(x,y) = x^2 + xy$.


Considere

$$z-f(x_{0},y_{0})=\frac{\partial f}{\partial x}(x_{0},y_{0})(x-x_{0})+\frac{\partial f}{\partial y}(x_{0},y_{0})(y-y_{0})$$

o plano tangente ao gráfico de $f$. Assim,

$$z=\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot x+\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot y+\bigg[ f(x_{0},y_{0})-\frac{\partial f}{\partial x}(x_{0},y_{0})\cdot x_{0}-\frac{\partial f}{\partial y}(x_{0},y_{0})\cdot y_{0}\bigg].$$

Como tal plano é paralelo ao plano $z=2x+3y$, obtemos que

$$\frac{\partial f}{\partial x}(x_{0},y_{0})=2\;\;\;\;\;\;\; \mbox{e}\;\;\;\;\;\;\; \frac{\partial f}{\partial y}(x_{0},y_{0})=3.$$

Notemos que

$$\frac{\partial f}{\partial x}(x,y)=2x+y\;\;\;\;\;\;\; \mbox{e} \;\;\;\;\;\; \frac{\partial f}{\partial y}(x,y)=x.$$

Assim, temos o seguinte sistema de equações

$$\left \{\begin{array}{cc}2x_{0}+y_{0}=2 \\x_{0}=3\\\end{array}\right.$$

Logo, $x_{0}=3$ e $y_{0}=-4.$ A partir desses valores temos que $f(x_{0},y_{0})=-3$, $\dfrac{\partial f}{\partial x}(x_{0},y_{0})\cdot x_{0}=6$ e

$\dfrac{\partial f}{\partial y}(x_{0},y_{0})\cdot y_{0}=-12.$ Portanto, o plano desejado tem equação

$$z=2x+3y-3-6+12,$$

ou seja,

$$z=2x+3y+3.$$


2713   

Determine uma equação do plano tangente à superfície no ponto especificado.

$z = 3(x-1)^2 + 2(y+3)^2 + 7, \quad (2,-2,12)$.


$z = 6x + 4y + 8$.


2634   

Considere a função dada por $z=x \sin\bigg(\dfrac{x}{y}\bigg).$ Verifique que

$$x\;\dfrac{\partial z}{\partial x}+y\;\dfrac{\partial z}{\partial y}=z.$$



Primeiramente, vamos calcular $\dfrac{\partial z}{\partial x}$ e $\dfrac{\partial z}{\partial }.$ Assim,\\

$\bullet $ $\dfrac{\partial z}{\partial x}=$ $\dfrac{\partial}{\partial x}\bigg[x\cdot \sin\bigg(\dfrac{x}{y}\bigg)\bigg]=

1\cdot \sin\bigg(\dfrac{x}{y}\bigg)+x\cdot \cos \bigg(\dfrac{x}{y}\bigg)\cdot \dfrac{1}{y}$

$$=\sin\bigg(\frac{x}{y}\bigg)+\frac{x}{y}\cdot \cos\bigg(\frac{x}{y}\bigg)$$

$\bullet $ $\dfrac{\partial z}{\partial y}=$ $\dfrac{\partial}{\partial y}\bigg[x\cdot \sin\bigg(\dfrac{x}{y}\bigg)\bigg]=

0\cdot \sin\bigg(\dfrac{x}{y}\bigg)+x\cdot \cos \bigg(\dfrac{x}{y}\bigg)\cdot \bigg(-\dfrac{x}{y^{2}}\bigg)$

$$=-\frac{x^{2}}{y^{2}}\cdot \cos\bigg(\frac{x}{y}\bigg).$$

Então,

$$x\cdot \frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}=x\cdot \bigg[\sin\bigg(\frac{x}{y}\bigg)+\frac{x}{y}\cdot \cos\bigg(\frac{x}{y}\bigg)\bigg] +

y\cdot\bigg[ -\frac{x^{2}}{y^{2}}\cdot \cos\bigg(\frac{x}{y}\bigg)\bigg]$$

$$=x\cdot \sin\bigg(\frac{x}{y}\bigg)+\frac{x^{2}}{y}\cos\bigg(\frac{x}{y}\bigg)-\frac{x^{2}}{y}\cdot \cos\bigg(\frac{x}{y}\bigg)$$

$$x\cdot \sin\bigg(\frac{x}{y}\bigg)=z.$$


3087   

Suponha que a equação \(z=f(x,y)\) seja expressa na forma polar \(z=g(r,\theta)\) através da substituição \(x=r\cos\theta\) e \(y=r\sin\theta\).

  1.  Considere \(r\) e \(\theta\) como funções de \(x\) e \(y\) e use derivação implícita para mostrar que \[ \frac{\partial r}{\partial x} = \cos\theta \quad \text{e}\quad\frac{\partial\theta}{\partial x} =-\frac{\sin\theta}{r}.\]

  2.  Considere \(r\) e \(\theta\) como funções de \(x\) e \(y\) e use derivação implícita para mostrar que \[\dfrac{\partial r}{\partial y}=\sin\theta \quad \text{e}\quad \dfrac{\partial\theta}{\partial y}=\dfrac{\cos\theta}{r}.\]

  3.  Use os resultados anteriores para mostrar que \begin{align*} \dfrac{\partial z}{\partial x} & = \dfrac{\partial z}{\partial r}\cos\theta - \dfrac{1}{r}\dfrac{\partial z}{\partial\theta}\sin\theta \\ \dfrac{\partial z}{\partial y} & = \dfrac{\partial z}{\partial r}\sin\theta + \dfrac{1}{r}\dfrac{\partial z}{\partial\theta}\cos\theta\end{align*}

  4.  Use o resultado do item anterior para mostrar que \[ \left(\dfrac{\partial z}{\partial x}\right)^2 + \left(\dfrac{\partial z}{\partial y}\right)^2 = \left(\dfrac{\partial z}{\partial r}\right)^2 +\dfrac{1}{r^2}\left(\dfrac{\partial z}{\partial\theta}\right)^2. \]

  5.  Ainda usando o resultado do terceiro item, mostre que \(z=f(x,y)\) satisfaz a equação de Laplace \[ \dfrac{\partial^2z}{\partial x^2} + \dfrac{\partial^2z}{\partial y^2}= 0, \] se, e somente se, \(z=g(r,\theta)\) satisfaz a equação \[ \dfrac{\partial^2z}{\partial r^2} + \dfrac{1}{r^2}\dfrac{\partial^2z}{\partial\theta^2}+\dfrac{1}{r}\dfrac{\partial z}{\partial r} = 0. \] A última equação acima é chamada de forma polar da equação de Laplace.


2660   

Determine as derivadas parciais de $f(x,y)=(4xy-3y^{3})^{3}+5x^{2}y$.


$\displaystyle \frac{\partial f}{\partial x} = 12 y (4xy - 3y^{3})^{2} + 10xy\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial f}{\partial y} = 3(4xy - 3y^{2})^{2}(4x - 9y^{2}) + 5x^{2}.$


2115   

Mostre que qualquer função da forma 
$$z=f(x+at)+g(x-at)$$
é uma solução da equação de onda
$$\frac{\partial^{2} z}{\partial t^{2}}=a^{2}\frac{\partial^{2}z}{\partial x^{2}}.$$
(Sugestão: Tome $u=x+at$, $v=x-at$.)



Note que se $u = x + at$ e $v = x - at,$ então $\displaystyle \frac{\partial^{2} z}{\partial t^{2}} = a^{2}f''(u) + a^{2} g''(v)$e\\$\displaystyle \frac{\partial^{2} z}{\partial x^{2}} = f''(u) + g''(v).$


2645   

Determine $\partial z/\partial x$ e $\partial z/\partial y$, sendo $z=f(x)+g(y)$.


$\displaystyle \frac{\partial z}{\partial x} =  f'(x)$

$\frac{\partial z}{\partial y} = g'(y)$.


2714   

Determine uma equação do plano tangente à superfície no ponto especificado.

$z = \sqrt{xy}, \quad (1,1,1)$.


$x + y - 2z = 0$.


2186   

Encontre os valores de $\partial z/ \partial x$ e $\partial z/\partial y$ no ponto indicado.
$z^{3}-xy+yz+y^{3}-2=0$,  $(1,1,1).$



 $\displaystyle \frac{\partial z}{\partial x}(1,1,1) = \frac{1}{4}$ e $\displaystyle \frac{\partial z}{\partial x}(1,1,1) = -\frac{3}{4}.$


2769   

Considere a superfície dada implicitamente por

$$x^{2}+2y^{2}+2z^{2}=-4xyz.$$

  1. Calcule as derivadas $\dfrac{\partial z}{\partial x}$ e $\dfrac{\partial z}{\partial y}$ em um ponto genérico.

  2. Quais os pontos nos quais as derivadas parciais calculadas no item anterior não estão definidas?


  1. $\displaystyle \frac{\partial z}{\partial x} = -\frac{x + 2yz}{2(z + xy)} \;\;\;\text{e}\;\;\; \frac{\partial z}{\partial y} = -\frac{y + xz}{z + xy}.$

  2. $\left\lbrace (x,y,z) \in \mathbb{R}^{3};\; z = -xy \right\rbrace$.


2635   

A temperatura $T$ de uma localidade do Hemisfério Norte depende da longitude $x$, da latitude $y$ e do tempo $t$, de modo que podemos escrever $T=f(x,y,t)$. Vamos medir o tempo em horas a partir do início de Janeiro.

  1. Qual é o significado das derivadas parciais $\partial T/\partial x$, $\partial T/\partial y$ e $\partial T/\partial t$?

  2. Honolulu (você sabe onde fica?) tem longitude de $158^{\circ}W$ e latitude de $21^{\circ}N$. Suponha que às 9 horas em $1^{\circ}$ de Janeiro esteja ventando para nordeste uma brisa quente, de forma que a oeste e a sul o ar esteja quente e a norte e leste o ar esteja mais frio. Você esperaria que $f_{x}(158,21,9)$, $f_{y}(158,21,9)$ e $f_{t}(128,21,9)$ fossem positivas ou negativas? Explique.


  1. $\partial T/\partial x$ é a taxa de variação da temperatura quando a longitude muda, mas a latitude e o tempo são constantes;
    $\partial T/\partial y$ é a taxa de variação da temperatura quando a latitude muda, mas a longitude e o tempo são constantes;
    $\partial T/\partial t$ é a taxa de variação da temperatura quando o tempo muda, mas a longitude e a latitude são constantes.
  2. $f_{x}(158,21,9) > 0,$ $f_{y}(158,21,9) < 0$ e $f_{t}(158,21,9) > 0.$

2741   

Determine a equação do plano que é tangente ao paraboloide $z = 2x^2 + 3y^2$ e paralelo ao plano $4x - 3y - z = 10$.


$4x - 3y - z = -\frac{11}{4}$.


2124   

Suponha que, para todo $x$,$f(3x,x^{3})=\arctan(x)$.

  1.  Calcule $\dfrac{\partial f}{\partial x}(3,1)$ admitindo $\dfrac{\partial f}{\partial y}(3,1)=2$.
  2.  Determine a equação do plano tangente ao gráfico de $f$ no ponto $(3,1,f(3,1))$.


  1.  $\dfrac{\partial f}{\partial x}(3,1) = -\frac{11}{6}.$
  2.  $\displaystyle z - \frac{\pi}{4} = -\frac{11}{6}(x - 3) + 2(y - 1).$


2038   

 Utilize um diagrama em árvore para escrever a Regra da Cadeia para o caso dado. Suponha que todas as funções sejam diferenciáveis.

$w=f(r,s,t)$, onde $r=r(x,y)$, $s=s(x,y)$, $t=t(x,y)$.


$\displaystyle \frac{\partial w}{\partial x} = \frac{\partial w}{\partial r}\frac{\partial r}{\partial x} + \frac{\partial w}{\partial s}\frac{\partial s}{\partial x} + \frac{\partial w}{\partial t}\frac{\partial t}{\partial x}$ e $\displaystyle \frac{\partial w}{\partial y} = \frac{\partial w}{\partial r}\frac{\partial r}{\partial y} + \frac{\partial w}{\partial s}\frac{\partial s}{\partial y} + \frac{\partial w}{\partial t}\frac{\partial t}{\partial y}$


2130   

$f(t)$ e $g(x,y)$ são funções diferenciáveis tais que $g(t,f(t))=0$ para todo $t$. Suponha $f(0)=1$, 
$\dfrac{\partial g}{\partial x}(0,1)=2$ e $\dfrac{\partial g}{\partial y}(0,1)=4$. Determine a equação da reta tangente a $\gamma(t)=(t,f(t))$, 
no ponto $\gamma(0).$


$\displaystyle (x,y) = (0,1) + \lambda \left(1, - \frac{1}{2}\right),$ $\lambda \in \mathbb{R}.$


2643   

Determine a derivada parcial $f_{x}(3,4)$, onde $f(x,y)=\ln(x+\sqrt{x^{2}+y^{2}}).$


$f_{x}(3,4) = \frac{1}{5}$.


2702   

Seja $f(x,y)=\dfrac{x^{2}y^{2}}{x^{2}+y^{2}}.$

  1. Calcule as derivadas parciais $\dfrac{\partial f}{\partial x}(x,y)$ e $\dfrac{\partial f}{\partial y}(x,y)$, num ponto  $(x,y)\neq\;(0,0).$

  2. Calcule o limite, se existir.

    $$\lim_{(x,y)\rightarrow (0,0)}\frac{\partial f}{\partial x}(x,y)$$


  1. $\displaystyle \frac{\partial f}{\partial x} = \frac{2xy^{4}}{(x^{2} + y^{2})^{2}} \;\;\;\text{e}\;\;\; \frac{\partial f}{\partial y} = \frac{2x^{4}y}{(x^{2} + y^{2})^{2}}$.

  2. $\displaystyle \lim_{(x,y)\rightarrow (0,0)}\frac{\partial f}{\partial x}(x,y) = 0$.


2704   

Considere a função

$$f(x,y)=\begin{cases}x+y, & \quad \text{se } xy=0,\\\kappa, & \quad \text{caso contrário},\\\end{cases}$$

em que $\kappa$ é um número real. Determine as derivadas parciais de primeira ordem de $f$ em $(0,0).$


$\displaystyle \frac{\partial f}{\partial x} (0,0) = \frac{\partial f}{\partial y} (0,0) = 1$.


2688   

Encontre $f_{x}$, $f_{y}$ e $f_{z}$ para $f(x,y,z)=(x^{2}+y^{2}+z^{2})^{-1/2}$.


$\begin{aligned}[t]f_{x} &= -x(x^{2} + y^{2} + z^{2})^{-3/2},\;\; f_{y} = -y(x^{2} + y^{2} + z^{2})^{-3/2}\;\;\text{e}\\f_{z} &= -z(x^{2} + y^{2} + z^{2})^{-3/2}.\end{aligned}$


2670   

Seja $z=e^{y}\phi(x-y)$, onde $\phi$ é uma função diferenciável de uma variável real. Mostre que $$\dfrac{\partial z}{\partial x}+\dfrac{\partial z}{\partial y}=z.$$


$\displaystyle \frac{\partial z}{\partial x} = e^{y}\phi'(x-y) \;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial z}{\partial y} = e^{y} \phi(x-y) -e^{y}\phi' (x-y).$


3081   

Verifique que a função \(\displaystyle u(x,t)=\sin(x-ct)\) é uma solução da equação da onda unidimensional \[ \dfrac{\partial^2u}{\partial t^2} = c^2\dfrac{\partial^2u}{\partial x^2}, \] onde \(c\) é uma constante que depende das características da onda.



Calculando diretamente as derivadas parciais da função dada, temos

\[\begin{array}{ll} \dfrac{\partial u}{\partial x} = \cos(x-ct),   & \dfrac{\partial^2u}{\partial x^2}= -\sin(x-ct) \\ \dfrac{\partial u}{\partial t} = -c\cos(x-ct), & \dfrac{\partial^2 u}{\partial t^2}= -c^2\sin(x-ct). \end{array}\] Assim, podemos ver que \(u(x,t)\) satisfaz a equação dada.


2121   

Expresse $\partial z/\partial t$ em termos das derivadas parciais de $f$, sendo $z=f(x,y)$ e $x=t^{2}$ e $y=3t.$


$\displaystyle \frac{dz}{dt} (t) = 2t \frac{\partial f}{\partial x}(t^{2},3t) + 3 \frac{\partial f}{\partial y}(t^{2},3t).$


2730   

Determine as equações do plano tangente e da reta normal ao gráfico da função dada, no ponto dado. $f(x,y) = x^2 + y^2$ em $(0,1,f(0,1))$.


Plano tangente: $z = 2y - 1$

Reta normal: $(x,y,z) = \left(0,1,1 \right) + \lambda \left(0,2,-1 \right)$.


2041   

Utilize a Regra da Cadeia para determinar as derivadas parciais indicadas.
$u=\sqrt{r^{2}+s^{2}}$, $r=y+x\;\cos{t}$,  $s=x+y\;\sin{t}$;
$\dfrac{\partial u}{\partial x}$, $\dfrac{\partial u}{\partial y}$, $\dfrac{\partial u}{\partial t}$ quando $x=1$, $y=2$, $t=0$.


$\displaystyle \frac{\partial u}{\partial x} = \frac{4}{\sqrt{10}}$, $\displaystyle \frac{\partial u}{\partial y} = \frac{3}{\sqrt{10}}$, $\displaystyle \frac{\partial u}{\partial t}= \frac{2}{\sqrt{10}}.$


2120   

Seja $g(t)=f(3t,2t^{2}-1).$

  1. Expresse $g^{'}(t)$ em termos das derivadas parciais de $f$.
  2. Calcule $g^{'}(0)$ admitindo $\dfrac{\partial f}{\partial x}(0,-1)=\dfrac{1}{3}.$


  1. $\displaystyle g'(t) =  3\frac{\partial f}{\partial x}(3t,2t^{2} - 1) + 4t \frac{\partial f}{\partial y}(3t,2t^{2} - 1).$
  2. $g'(0) = 1.$


2744   

Considere a função $f(x,y) = x \ g(x^2 - y^2)$, em que $g(u)$ é uma função derivável de uma variável. Mostre que o plano tangente ao gráfico de $f$ no ponto $(a,a,f(a,a))$ passa pela origem.


Note que $a \frac{\partial f}{\partial x} (a,a) + a \frac{\partial f}{\partial y}(a,a) = f(a,a).$



2132   

Seja $g(t)=f(3t^{2},t^{3},e^{2t})$ e suponha $\dfrac{\partial f}{\partial z}(0,0,1)=4.$ 

  1.  Expresse $g^{'}(t)$ em termos das derivadas parciais de $f.$
  2. Calcule $g^{'}(0).$


  1. $\displaystyle g^{'}(t) = 6t \frac{\partial f}{\partial x}(3t^{2},t^{3},e^{2t}) +  3t^{2} \frac{\partial f}{\partial y}(3t^{2},t^{3},e^{2t}) + 2e^{2t} \frac{\partial f}{\partial z}(3t^{2},t^{3},e^{2t}).$ 
  2.  $g^{'}(0) = 8.$


2712   

Determine uma equação do plano tangente à superfície no ponto especificado.

$z = 4x^2 - y^2 + 2y, \quad (-1,2,4)$.


$z = -8x - 2y$.


2182   

Nos item abaixo: 

  1. expresse $\mathrm{d} w/\mathrm{d} t$ como uma função de $t$, usando a Regra da Cadeia, expressando $w$ em termos de $t$ e diferenciando em relação a $t$;
  2. calcule $\mathrm{d} w/\mathrm{d} t$ no valor dado de $t$.


$w=x^{2}+y^{2}$,  $x=\cos{t}$,  $y=\sin{t}$;  $t=\pi.$




  1. $\displaystyle \frac{dw}{dt}(t) = 0.$
  2. $\displaystyle \frac{dw}{dt}(\pi) = 0.$


2633   

Determine as derivadas parciais de primeira ordem da função $f(x,y)=\displaystyle\int_{y}^{x}\cos^2t \ \mathrm{d}t$.



Sendo $f(x,y)=\displaystyle\int_{y}^{x}\cos (t^{2})\,dt$, temos que as derivadas parciais em relação a $x$ e $y$, respectivamente, são:

$\bullet \dfrac{\partial}{\partial x}f(x,y)=\dfrac{\partial}{\partial x}\bigg(\displaystyle\int_{y}^{x}\cos(t^{2})\bigg)=\cos(x^{2}).$

$\bullet \dfrac{\partial}{\partial y}f(x,y)=\dfrac{\partial}{\partial y}\bigg(\displaystyle\int_{y}^{x}\cos(t^{2})\bigg)=\dfrac{\partial}{\partial y}\bigg(-\displaystyle\int_{x}^{y}\cos(t^{2})\bigg)=-\cos(y^{2}).$

Notemos que nas soluções das derivadas parciais acima utilizamos o Teorema Fundamental do Cálculo.


2650   

Verifique que a função $z=\ln(e^{x}+e^{y})$ é uma solução das equações diferenciais

$$\frac{\mathrm{\partial}z}{\mathrm{\partial}x} + \frac{\mathrm{\partial}z}{\mathrm{\partial}y}=1\;\;\;\;\;\;\; e\;\;\;\;\;\;\; \frac{\mathrm{\partial}^{2}z}{\mathrm{\partial}^{2}x}+\frac{\mathrm{\partial}^{2}z}{\mathrm{\partial}^{2}y}-\bigg(\frac{\mathrm{\partial}^{2}z}{\mathrm{\partial}x\mathrm{\partial}y}\bigg)^{2}=0.$$


$\begin{aligned}[t]\frac{\partial z }{\partial x} &= \frac{e^{x}}{e^{x} + e^{y}},\;\;\; \frac{\partial z }{\partial y} = \frac{e^{y}}{e^{x} + e^{y}},\\\frac{\partial^{2} z }{\partial x^{2}} &= \frac{\partial^{2} z }{\partial y^{2}} = \frac{e^{x + y}}{(e^{x} + e^{y})^{2}},\;\;\; \frac{\partial^{2} z }{\partial x \partial y} = -\frac{e^{x + y}}{(e^{x} + e^{y})^{2}}.\end{aligned}$


2698   

Calcule todas as derivadas parciais de $2^{\underline{a}}$ ordem de $g(x,y)=4x^{3}y^{4}+y^{3}$.


$\displaystyle \frac{\partial^{2} g}{\partial x^{2}}= 24xy^{2},\;\;\;\;\; \frac{\partial^{2} g}{\partial y^{2}}= 48x^{3}  y^{2} \;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial^{2} g}{\partial x\partial y}= \frac{\partial^{2} g}{\partial y\partial x}= 48x^{2}y^{3}.$


2204   

Suponha que $u=f(x,y)$ e $v=g(x,y)$ verifiquem as equações de Cauchy- Riemann $u_{x}=v_{y}$ e $u_{y}=-v_{x}$. Se $x=r\cos{\theta}$ e 
$y=r\sin{\theta}$, mostre que 
$$\frac{\partial u}{\partial r}=\frac{1}{r}\frac{\partial v}{\partial \theta}  \text{ e }  \frac{\partial v}{\partial r}=-\frac{1}{r}\frac{\partial u}{\partial \theta}.$$



Note que $\displaystyle \frac{\partial u}{\partial r} = \cos(\theta) u_{x} + \sin (\theta) u_{y},$ $\displaystyle \frac{\partial v}{\partial r} = \cos(\theta) v_{x} + \sin (\theta) v_{y},$ 
$\displaystyle \frac{\partial u}{\partial \theta} = -r\sin(\theta) u_{x} + r \cos(\theta) u_{y}$ e $\displaystyle \frac{\partial v}{\partial \theta} = - r\sin(\theta) v_{x} + r \cos(\theta) v_{y}$.


2045   

Utilize a Equação
$$ \dfrac{dy}{dx}=-\dfrac{\dfrac{\partial F}{\partial x}}{\dfrac{\partial F}{\partial y}}=-\dfrac{F_x}{F_y}$$
para determinar $\mathrm{d}y/\mathrm{d}x$.
$\cos(x-y)=xe^{y}$


$\displaystyle \frac{dy}{dx} = \frac{\sin(x - y) + e^{y} }{\sin(x - y) -x e^{y}} .$


2766   

Use a derivação implicíta para determinar $\partial z/\partial x$ e $\partial z/\partial y$ na expressão $\sin(xyz)=x+2y+3z$.


$\displaystyle \frac{\partial z}{\partial x} = \frac{1 - yz \cos(xyz)}{xy\cos(xyz) - 3}$

$\displaystyle \frac{\partial z}{\partial y} = \frac{2 - xz \cos(xyz)}{xy\cos(xyz) - 3} $.


2738   

$z = 2x + y$ é a equação do plano tangente ao gráfico de $f(x,y)$ no ponto $(1,1,3)$. Calcule $\dfrac{\partial f}{\partial x}(1,1)$ e $\dfrac{\partial f}{\partial y}(1,1).$


$\displaystyle \frac{\partial f}{\partial x} (1,1) = 2$ e  $\displaystyle \frac{\partial f}{\partial y} (1,1) = 1.$


2677   

Calcule as derivadas parciais de $s = f(x,y,z,w)$ dada por $s = xw \ln{(x^2 + y^2 + z^2 + w^2)}$.


$\begin{aligned}[t]\frac{\partial s}{\partial x} &= w \left( \frac{2x^{2}}{x^{2} + y^{2} + z^{2} + w^{2}} + \ln (x^{2} + y^{2} + z^{2} + w^{2})\right),\\\frac{\partial s}{\partial y} &= \frac{2xyw}{x^{2} + y^{2} + z^{2} + w^{2}},\;\;\;\; \frac{\partial s}{\partial z} = w \frac{2xzw}{x^{2} + y^{2} + z^{2} + w^{2}}\;\;\;\;\;\text{e}\\\frac{\partial s}{\partial w} &= x \left( \frac{2w^{2}}{x^{2} + y^{2} + z^{2} + w^{2}} + \ln (x^{2} + y^{2} + z^{2} + w^{2})\right).\end{aligned}$


2641   

Determine as derivadas parciais de primeira ordem da função $u=te^{w/t}$.


$\displaystyle \frac{\partial u}{\partial t} = e^{w/t} \left( 1 - \frac{w}{t} \right)\;\;\;\text{e}\;\;\; \frac{\partial u}{\partial w} = e^{w/t}$.


2683   

Encontre $\partial f/\partial x$ e $\partial f/\partial y$ para $f(x,y)=e^{-x}\;\sin(x+y)$.


$\displaystyle \frac{\partial f}{\partial x} = -e^{-x} \sin(x + y) + e^{-x}\cos(x + y) \;\;\;\;\text{e}\;\;\;\; \frac{\partial f}{\partial y} = e^{-x}\cos(x + y)$.


2684   

Encontre $\partial f/\partial x$ e $\partial f/\partial y$ para $f(x,y)=e^{xy}\ln{y}$.


$\displaystyle \frac{\partial f}{\partial x} = ye^{xy}\ln y\;\;\;\;\text{e}\;\;\;\; \frac{\partial f}{\partial y} = x e^{xy} \ln y + \frac{e^{xy}}{y}$.


2745   

Mostre que o plano tangente ao parabolóide $z = x^2 + y^2$ no ponto $(1,2,5)$ intercepta o plano $xy$ na reta

$$\begin{cases}2x + 4y - 5 = 0 \\z = 0\end{cases}.$$


Note que o plano tangente no ponto $(1,2,5)$ é $z = 2x + 4y - 5$.


2722   

Determine a diferencial da função $R = \alpha\beta^2 \cos{\lambda}$.


$dR = \beta^{2} \cos(\gamma) d\alpha + 2\gamma \beta \cos (\gamma) d\beta - \alpha \beta^{2} \sin(\gamma) d\gamma$.


3086   

Dado que \(\displaystyle x^3+y^2x-3=0\), determine \(\dfrac{dy}{dx}\) usando derivação implícita.



Derivando implicitamente a equação dada, temos que \(3x^2+y^2+x(2yy')-0=0\). Ou seja,

\[ \frac{dy}{dx}= -\frac{3x^2+y^2}{2xy}.\]


2752   

A função $f(x,y) = \begin{cases}\dfrac{x^2 - y^2}{x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0),\\0, & \quad \text{se } (x,y) = (0,0)\\\end{cases}$ é diferenciável em $(0,0)$? Justifique.


Não.


2686   

Encontre $f_{x}$, $f_{y}$ e $f_{z}$ para $f(x,y,z)=1+xy^{2}-2z^{2}$.


$\displaystyle f_{x} = 1+ y^{2} ,\;\;\;\; f_{y} = 2xy \;\;\;\;\text{e}\;\;\;\; f_{z} = -4z$.


2697   

Calcule todas as derivadas parciais de $2^{\underline{a}}$ ordem de $z=\ln(1+x^{2}+y^{2})$.



$\begin{aligned}[t]\frac{\partial^{2} z}{\partial x^{2}} &= \frac{2 + 2y^{2} - 2x^{2}}{(1 + x^{2} + y^{2})^{2}},\;\;\;\;\; \frac{\partial^{2} z}{\partial y^{2}}= \frac{2 + 2x^{2} - 2y^{2}}{(1 + x^{2} + y^{2})^{2}} \;\;\;\;\;\text{e}\\\frac{\partial^{2} z}{\partial x\partial y} &= \frac{\partial^{2} z}{\partial y\partial x}= \frac{-4xy}{(1 + x^{2} + y^{2})^{2}}.C\end{aligned}$


2131   

$f(x,y,z)$ e $g(x,y)$ são funções diferenciáveis tais que, para todo $(x,y)$ no domínio de $g,f(x,y,g(x,y))=0$. 
Suponha $g(1,1)=3$, $\dfrac{\partial f}{\partial x}(1,1,3)=2$, $\dfrac{\partial f}{\partial y}(1,1,3)=5$ e $\dfrac{\partial f}{\partial z}(1,1,3)=10.$ 
Determine a equação do plano tangente ao gráfico de $g$ no ponto $(1,1,3).$


$\displaystyle z - 3 = -\frac{1}{5}(x - 1) - \frac{1}{2} (y-1).$


2202   

Os lados iguais e o ângulo correspondente de um triângulo isósceles estão aumentando à razão de $3cm/h$ e $2^{\circ}/h$, respectivamente. Ache a taxa à qual a área do triângulo está aumentando no instante em que o comprimento de cada um dos 

lados iguais é de $6$ metros e o ângulo correspondente é $60^{\circ}.$


$\approx 181559$ cm$^{2}/$h.


2719   

Determine a aproximação linear da função $f(x,y) = \sqrt{20 - x^2 - 7y^2}$ em $(2,1)$ e use-a para aproximar $f(1,95; 1,08)$.


$L(x,y) = -\frac{2}{3}x - \frac{7}{3}y + \frac{20}{3}$  e $f(1,95; 1,08) \approx 2.847.$


2656   

Determine as derivadas parciais de $z=\dfrac{x^{3}+y^{2}}{x^{2}+y^{2}}$.


$\displaystyle \frac{\partial z}{\partial x} =  \frac{x^{4} + 3x^{2}y^{2} - 2xy^{2}}{(x^{2} + y^{2})^{2}}\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial z}{\partial y} = \frac{2x^{2}y(1 - x)}{(x^{2} + y^{2})^{2}}.$


2763   

Determine o maior conjunto de pontos em que a função $f(x,y) = \begin{cases}\dfrac{xy^3}{x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0),\\0, & \quad \text{se } (x,y) = 0\end{cases}$ é diferenciável. Justifique.


$\mathbb{R}^{2}$.


2674   

Calcule as derivadas parciais de $w = x^2 \arcsin{\dfrac{y}{z}}$.


$\displaystyle \frac{\partial w}{\partial x} = 2x \arcsin \left( \frac{t}{z}\right),\;\;\;\;  \frac{\partial w}{\partial y} = \frac{x^{2}|z|}{z\sqrt{z^{2} - y^{2}}} \;\;\;\;\;\text{e}\;\;\;\;\;\frac{\partial w}{\partial z} = - \frac{x^{2}y}{|z|\sqrt{z^{2} - y^{2}}}.$


2642   

Determine as derivadas parciais de primeira ordem da função $u=x^{y/z}$.


$\displaystyle \frac{\partial u}{\partial x} = \frac{y}{z} x^{(y/z) - 1},\;\;\; \frac{\partial u}{\partial y} = x^{y/z} \ln x \;\;\;\text{e}\;\;\; \frac{\partial u}{\partial z} = - \frac{yx^{y/z}}{z^{2}} \ln x$.


2701   

Verifique que $x\;\dfrac{\partial ^{2}z}{\partial x \partial y}+y\;\dfrac{\partial ^{2}z}{\partial y^{2}}=0$, onde $z=(x+y)e^{x/y}.$



$\displaystyle \frac{\partial^{2} z}{\partial x \partial y}= \frac{-3xy - x^{2}}{y^{3}}e^{\frac{x}{y}}  \;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial^{2} z}{\partial y^{2}}= \frac{3x^{2}y + x^{3}}{y^{4}}e^{\frac{x}{y}}.$


2695   

Calcule todas as derivadas parciais de $2^{\underline{a}}$ ordem de $f(x,y)=x^{3}y^{2}$.


$\displaystyle \frac{\partial^{2} f}{\partial x^{2}}= 2xy^{2},\;\;\;\;\; \frac{\partial^{2} f}{\partial y^{2}}= 2x^{3}\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial^{2} f}{\partial x\partial y}= \frac{\partial^{2} f}{\partial y\partial x}= 6x^{2}y.$


2663   

Determine as derivadas parciais de $z=(x^{2}+y^{2})\ln(x^{2}+y^{2})$.


$\displaystyle \frac{\partial z}{\partial x} = 2x(1 + \ln(x^{2} + y^ {2}))\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial z}{\partial y} = 2y(1 + \ln(x^{2} + y^ {2})).$


2757   

Verifique que a função $f(x,y) = x^2y$ é diferenciável.


As derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ de cada função $f$ existem e são contínuas em todos os pontos do domínio.


2687   

Encontre $f_{x}$, $f_{y}$ e $f_{z}$ para $f(x,y,z)=x-\sqrt{y^{2}+z^{2}}$.


$\displaystyle f_{x} = 1,\;\;\;\; f_{y} = -\frac{y}{\sqrt{y^{2} + z^{2}}}\;\;\;\;\text{e}\;\;\;\; f_{z} =  -\frac{z}{\sqrt{y^{2} + z^{2}}}$.


2749   

Explique por que a função é diferenciável no ponto dado. $f(x,y) = e^{-xy} \cos{y}, \quad (\pi,0)$.


As derivadas $f_{x}$ e $f_{y}$ de cada $f$ existem e são contínuas no ponto dado, logo $f$ é diferenciável.


2033   

Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t.$

$z=e^{x+2y}$, $x=s/t$, $y=t/s$.


$\displaystyle \frac{\partial z}{\partial s} = e^{x + st}\left(\frac{1}{t} - \frac{2t}{s^{2}} \right) $ e $\displaystyle \frac{\partial z}{\partial t} = e^{x + st}\left(\frac{2}{s} - \frac{s}{t^{2}} \right) $.


2133   

Mostre que cada a equação a seguir define implicitamente pelo  menos uma função diferenciável $y=y(x).$ 
Expresse $\mathrm{d} y/\mathrm{d} x$ em termos de $x$ e $y.$
$x^{2}y+\sin(y)=x$


 $\displaystyle \frac{d y}{d x} = -\frac{2xy - 1}{x^{2} + \cos(y)}.$



2639   

Determine as derivadas parciais de primeira ordem da função $f(x,y)=\dfrac{x-y}{x+y}$.


$\displaystyle \frac{\partial f}{\partial x} = \frac{2y}{(x + y)^{2}}\;\;\;\text{e}\;\;\; \frac{\partial f}{\partial y} = -\frac{2x}{(x + y)^{2}}$.


2185   

No item abaixo: 

  1. expresse $\partial w/\partial u$ e $\partial w/ \partial v$ como funções de $u$ e $v$, usando a Regra da Cadeia e também expressando $w$ diretamente em termos e $u$ e $v$ antes de diferenciar; 
  2. calcule $\partial w/\partial u$ e $\partial w/ \partial v$ no ponto dado $(u,v)$.

$w=\ln(x^{2}+y^{2}+z^{2})$,  $x=ue^{v}\sin{u}$,  $y=ue^{v}\cos{u}$,  $z=ue^{v}$; $(u,v)=(-2,0).$



  1. $\displaystyle w(u,v) = \ln(2) + 2\ln(u) + 2v,$$\displaystyle \frac{\partial w}{\partial u}(u,v) = \frac{2}{u}$ e $\displaystyle \frac{\partial w}{\partial v}(u,v) = 2.$
  2. $\displaystyle \frac{\partial w}{\partial u}(-2,0) = -1$ e $\displaystyle \frac{\partial w}{\partial v}(-2,0) = 2.$


3154   

A fórmula de Taylor de primeira ordem para $f(\vec{a} + \vec{v})$ pode ser escrita como $ f(\vec{a}) + \nabla f(\vec{a}) \cdot \vec{v}$, já desconsiderando o termo de erro. Calcule-a para $f(x,y) = x^2 + y^2$, $\vec{a} = (1,0)$ e $\vec{v} = (2,1)$. Calcule também o erro cometido, dizendo se é um erro pequeno ou grande e por quê.


2750   

Mostre que a função $f(x,y) = xy - 5y^2$ é diferenciável achando os valores $\varepsilon_1$ e $\varepsilon_2$ que satisfaçam a Definição $7$ da Seção $14.4$ do Stewart.


$\epsilon_{1} = \Delta y$ e $\epsilon_{2} = -5\Delta y$.


2764   

Determine o maior conjunto de pontos em que a função $f(x,y) = \begin{cases}e^{\dfrac{1}{x^2 + y^2 - 1}}, & \quad \text{se } x^2 + y^2 < 1,\\0, & \quad \text{se } x^2 + y^2 \geq 1\end{cases}$ é diferenciável. Justifique.


$\mathbb{R}^{2}$.


2135   

Mostre que cada a equação a seguir define implicitamente pelo menos uma função diferenciável $z=z(x,y)$. 
Expresse $\partial z /\partial x$ e $\partial z/\partial y$ em termos de $x$, $y$ e $z.$
$e^{x+y+z}+xyz=1$


 $\displaystyle \frac{\partial z}{\partial x} = - \frac{e^{x + y + z} + yz}{e^{x + y + z} + xy}$ e $\displaystyle \frac{\partial z}{\partial y} = - \frac{e^{x + y + z} + xz}{e^{x + y + z} + xy}.$


2031   

Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t.$

$z=x^{2}y^{3}$, $x=s\cos{t}$, $y=s\sin{t}$. 


$\displaystyle \frac{\partial z}{\partial s} = 2xy^{3} \cos(t) + 3x^{2}y^{2} \sin(t) $ e $\displaystyle \frac{\partial z}{\partial t} = -2sxy^{3} \sin(t) + 3 sx^{2}y^{2} \cos(t)$. 


2682   

Encontre $\partial f/\partial x$ e $\partial f/\partial y$ para $f(x,y)=1/(x+y)$.


$\displaystyle \frac{\partial f}{\partial x} = \frac{\partial f}{\partial y} = -\frac{1}{(x^{2} + y^{2})^{2}}$.


2168   

A função diferenciável $z=z(x,y)$ é dada implicitamente pela equação $f\bigg(\dfrac{x}{y},\dfrac{z}{x^{\lambda}}\bigg)=0$ ($\lambda\neq 0$ um número real fixo), onde 

$f(u,v)$ é suposta diferenciável e $\dfrac{\partial f}{\partial v}(u,v)\neq 0$. Verifique que 

$$x\frac{\partial z}{\partial x}+y\dfrac{\partial z}{\partial y}=\lambda z.$$


Note que $\displaystyle \frac{\partial z}{\partial x} =   \frac{\lambda z}{x} -\frac{x^{\lambda}}{y} \frac{\partial f}{\partial u} \left(\frac{x}{y},\frac{z}{x^{\lambda}} \right)\left(\frac{\partial f}{\partial v}\left(\frac{x}{y},\frac{z}{x^{\lambda}} \right)\right)^{-1} $  e $\displaystyle \frac{\partial z}{\partial y} =  \frac{x^{\lambda + 1}}{y^{2}} \frac{\partial f}{\partial u} \left(\frac{x}{y},\frac{z}{x^{\lambda}} \right)\left(\frac{\partial f}{\partial v}\left(\frac{x}{y},\frac{z}{x^{\lambda}} \right)\right)^{-1}$.


2082   

Se $z=f(x,y)$, onde $x=r\cos{\theta}$ e $y=r\sin{\theta}$,

  1. Determine $\dfrac{\partial z}{\partial r}$ e $\dfrac{\partial z}{\partial \theta}.$
  2. Mostre que $\bigg(\dfrac{\partial z}{\partial x}\bigg)^{2}+ \bigg(\dfrac{\partial z}{\partial y}\bigg)^{2}=\bigg(\dfrac{\partial z}{\partial r}\bigg)^{2}+\dfrac{1}{r^{2}}\bigg(\dfrac{\partial z}{\partial \theta}\bigg)^{2}$.


  1. $\displaystyle \frac{\partial z}{\partial r} = \cos(\theta) \frac{\partial z}{\partial x}  + \sin(\theta) \frac{\partial z}{\partial y} $e$\displaystyle \frac{\partial z}{\partial \theta} = -r \sin(\theta)\frac{\partial z}{\partial x}  + r\cos(\theta) \frac{\partial z}{\partial y}.$
  2. Use $(a)$ para calcular $\bigg(\dfrac{\partial z}{\partial r}\bigg)^{2}+\dfrac{1}{r^{2}}\bigg(\dfrac{\partial z}{\partial \theta}\bigg)^{2}$.


2035   

Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t.$

$z=\tan(u/v)$, $u=2s+3t$, $v=3s-2t$.


$\displaystyle \frac{\partial z}{\partial s} =  \frac{2u - 3v}{v^{2}} \sec^{2}\left(\frac{u}{v} \right)$ e $\displaystyle \frac{\partial z}{\partial t} = \frac{2u + 3v}{v^{2}} \sec^{2}\left(\frac{u}{v} \right))$.


2125   

Admita que, para todo $(x,y)$, 

$$4y\frac{\partial f}{\partial x}(x,y)-x\frac{\partial f}{\partial y}(x,y)=2.$$

Calcule $g^{'}(t)$, sendo $g(t)=f(2\cos{t},\sin{t})$.


$g^{'}(t) = -1.$


2736   

Determine a equação dos planos tangentes ao gráfico de $f(x,y) =  - x^2 - y^2$ que passam por ambos os pontos $(1,0,7)$ e $(3,0,3)$.


$2x + 2y + z = 9$ e $2x - 2y + z = 9.$


2134   

Mostre que cada a equação a seguir define implicitamente pelo  menos uma função diferenciável $y=y(x).$ 
$y^{4}+x^{2}y^{2}+x^{4}=3$
 


$\displaystyle \frac{d y}{d x} = - \frac{2xy^{2} + 4x^{3}}{4y^{3} + 2x^{2}y}.$


2717   

Explique por que a função é diferenciável no ponto dado. A seguir, encontre a linearização $L(x,y)$ da função naquele ponto. $f(x,y) = \dfrac{x}{x+y}, \quad (2,1)$.


As derivadas $f_{x}$ e $f_{y}$ de cada $f$ existem e são contínuas no ponto dado, logo $f$ é diferenciável.

$L(x,y) = \frac{1}{9}x - \frac{2}{9}y + \frac{2}{3}$.


2740   

Considere a função $f(x,y) = x \ \phi\left(\frac{x}{y}\right)$, em que $\phi(u)$ é uma função derivável de uma variável. Mostre que os planos tangentes ao gráfico de $f$ passam pela origem.


Note que $x \frac{\partial f}{\partial x} (x,y) + y \frac{\partial f}{\partial y}(x,y) = f(x,y).$


3089   

Mostre que se \(f_x(x,y)=0\) e \(f_y(x,y)=0\) em toda uma região circular, então \(f(x,y)\) é constante nessa região.


2034   

Utilize a Regra da Cadeia para determinar $\mathrm{\partial}z/\mathrm{\partial} s$ e $\mathrm{\partial}z/ \mathrm{\partial}t.$

$z=e^{r}\cos{\theta}$, $r=st$, $\theta=\sqrt{s^{2}+t^{2}}$.



$\displaystyle \frac{\partial z}{\partial s} = e^{r} \left( t\cos(\theta) - \frac{s}{\sqrt{s^{2} + t^{2}}} \sin(\theta) \right) $ e $\displaystyle \frac{\partial z}{\partial t} = e^{r} \left( s\cos(\theta) - \frac{t}{\sqrt{s^{2} + t^{2}}} \sin(\theta) \right).$


2118   

Calcule $\mathrm{d} z/\mathrm{d} t$ por dois processos:

  1. substituindo as expressões para $x(t)$ e $y(t)$ em $z$ e depois derivando diretamente com relação a $t$
  2. aplicando a Regra da Cadeia: $\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y }\frac{dy}{dt}$.

$z=x^{2}+3y^{2}$,$x=\sin{t}$ e  $y=\cos{t}.$


$\displaystyle \frac{dz}{dt} (t) = -4\sin(t)\cos(t).$


2723   

Se $z = 5x^2 + y^2$ e $(x,y)$ varia de $(1,2)$ a $(1,05; 2,1)$, compare os valores de $\Delta z$ e $dz$.


$\Delta z = 0.9225$ e $dz = 0.9$.


2653   

Seja

$$f(x,y)=\begin{cases}\dfrac{x^{3}y-xy^{3}}{x^{2}+y^{2}}, & \quad \text{se } (x,y)\neq (0,0),\\0, & \quad \text{se } (x,y)=(0,0).\\\end{cases}$$

  1. Use um computador para traçar o gráfico de $f$.

  2. Determine $f_{x}(x,y)$ e $f_{y}(x,y)$ quando $(x,y)\neq (0,0).$

  3. Determine $f_{x}(0,0)$ e $f_{y}(0,0)$ use a definição das derivadas parciais como limite.

  4. Mostre que $f_{xy}(0,0)=-1$ e $f_{yx}(0,0)=1$

  5. O resultado da parte (d) contradiz o Teorema de Clairaut? Use o gráfico de $f_{xy}$ e $f_{yx}$ para ilustrar sua resposta.


  1. Gráfico de $f$:
    ma211-list3-ex20_sol_a.png
  2. $\displaystyle f_{x} = \frac{x^{4}y + 4x^{2}y^{3} - y^{5}}{(x^{2} + y^{2})^{2}}\;\;\text{e}\;\;f_{y} = \frac{x^{5} - 4x^{3}y^{2} - xy^{4} }{(x^{2} + y^{2})^{2}}$ quando $(x,y)\neq (0,0).$
  3. $f_{x}(0,0) = f_{y}(0,0) = 0$.
  4. Use $\displaystyle f_{xy}(0,0)= \lim_{h \to 0} \frac{f_{x}(0,h) - f_{x}(0,0)}{h}\;\;\text{e}\;\;f_{yx}(0,0)= \lim_{h \to 0} \frac{f_{y}(h,0) - f_{y}(0,0)}{h}$.
  5. Para $(x,y) \neq (0,0),$ $\displaystyle f_{xy} = {x^{6} + 9x^{4}y^{2} - 9x^{2}y^{4} - y^{6}}{(x^{2} + y^{2})^{3}}.$ Como $f_{xy}$ não é contínua na origem, não há uma contradição com o Teorema de Clairaut. Os gráficos de $f_{xy}$ e $f_{yx}$ são idênticos, exceto na origem:
    ma211-list3-ex20_sol_e.png

2699   

Seja $f(x,y)=\dfrac{1}{x^{2}+y^{2}}$. Verifique que

  1. $x\;\dfrac{\partial ^{2}f}{\partial x^{2}}(x,y)+y\;\dfrac{\partial^{2} f}{\partial y \partial x}(x,y)=-3\dfrac{\partial f}{\partial x}(x,y)$

  2. $\dfrac{\partial ^{2}f}{\partial x^{2}}(x,y)+\dfrac{\partial^{2} f}{\partial y^{2}}(x,y)=\dfrac{4}{(x^{2}+y^{2})^{2}}$


$\begin{aligned}[t]\frac{\partial f}{\partial x} &= -\frac{2x}{(x^{2} + y^{2})^{2}},\;\;\;\;\; \frac{\partial^{2} f}{\partial x^{2}}= \frac{6 x^{2} - 2y^{2}}{(x^{2} + y^{2})^{3}},\;\;\;\;\; \frac{\partial^{2} f}{\partial y^{2}}= \frac{6 y^{2} - 2x^{2}}{(x^{2} + y^{2})^{3}} \;\;\;\;\;\text{e}\\ \frac{\partial^{2} f}{\partial y\partial x} &= \frac{8xy}{(x^{2} + y^{2})^{3}}.\end{aligned}$


2671   

Seja $\phi:\mathbb{R}\rightarrow \mathbb{R}$ uma função diferenciável de uma variável real e seja $f(x,y)=(x^{2}+y^{2})\phi \bigg(\dfrac{x}{y}\bigg).$

Mostre que

$$x\;\frac{\partial f}{\partial x}+y\;\frac{\partial f}{\partial y}=2f.$$


$\displaystyle \frac{\partial f}{\partial x} = 2x \phi \left( \frac{x}{y} \right) + \frac{(x^{2} + y^{2})}{y} \phi'\left( \frac{x}{y} \right)\ \;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial f}{\partial y} = 2y \phi \left( \frac{x}{y} \right) - \frac{x(x^{2} + y^{2})}{y^{2}} \phi'\left( \frac{x}{y} \right).$



2651   

A lei dos gases para uma massa fixa $m$ de um gás ideal à temperatura absoluta $T$, pressão $P$ e o volume $V$ é $PV=mRT$, onde $R$ é a constante do gás. Mostre que

$$\frac{\mathrm{\partial}P}{\mathrm{\partial}V}\frac{\mathrm{\partial}V}{\mathrm{\partial}T}\frac{\mathrm{\partial}T}{\mathrm{\partial}P}=-1.$$


$\displaystyle \frac{\partial P}{\partial V} = -\frac{mRT}{V^{2}},\;\;\;\frac{\partial V}{\partial T} = \frac{mR}{P}\;\;\;\text{e}\;\;\; \frac{\partial T}{\partial P} = \frac{V}{mR}.$


2720   

Determine a diferencial da função $z = x^3 \ln{y^2}$.


$dz = 3x^{2} \ln (y^{2})dx + \frac{2x^{3}}{y} dy$.


2753   

A função $f(x,y) = \begin{cases}\dfrac{x^2y}{x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0),\\0, & \quad \text{se } (x,y) = (0,0)\\\end{cases}$ é diferenciável em $(0,0)$? Justifique.


Não.


2198   

Encontre $\partial w/ \partial r$ quando $r=1$, $s=-1$ se $w=(x+y+z)^{2}$, $x=r-s$, $y=\cos(r+s)$, $z=\sin(r+s).$



$\displaystyle \frac{\partial w}{\partial r}(x(1,-1),y(1,-1),z(-1,1)) = 12.$


2390   

A função diferenciável $z = f(x,y)$ é dada implicitamente pela equação $x^3 + y^3 + z^3 = 10$. Determine a equação do plano tangente ao gráfico de $f$ no ponto $(1,1,f(1,1))$.


 $x + y + 4z = 10.$


2765   

Use a derivação implicíta para determinar $\partial z/\partial x$ e $\partial z/\partial y$ na expressão $x-z=\arctan(yz)$.


$\displaystyle \frac{\partial z}{\partial x} = \frac{1 + y^{2}z^{2}}{1 + y + y^{2}z^{2}}$

$\displaystyle \frac{\partial z}{\partial y} = -\frac{z}{1 + y + y^{2}z^{2}}$.


2068   

Utilize as Equações 

$\dfrac{\partial z}{\partial x}=-\dfrac{\dfrac{\partial F}{\partial x}}{\dfrac{\partial F}{\partial z}}$ e $\dfrac{\partial z}{\partial y}=-\dfrac{\dfrac{\partial F}{\partial y}}{\dfrac{\partial F}{\partial z}}$

para determinar $\partial z/\partial x$ e $\partial z/\partial y$.

$x^{2}+y^{2}+z^{2}=3xyz$


$\displaystyle \frac{dz}{dx} = \frac{3yz - 2x}{2z - 3xy}$ e $\displaystyle \frac{dz}{dy} = \frac{3xz - 2y}{2z - 3xy} .$


3083   

A resistência total \(R\) de três resistores \(R_1\), \(R_2\) e \(R_3\) ligados em paralelo é dada por \[ \frac{1}{R}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}. \] Suponha que \(R_1\), \(R_2\) e \(R_3\) tenham sido medidos como \(100\ \Omega\), \(200\  \Omega\) e \(300\  \Omega\), respectivamente, com um erro máximo de \(10\%\) em cada um e sendo \(\Omega\)(Ohm) a unidade de medida no sistema internacional de unidades. Use diferenciais para aproximar o erro percentual máximo no valor calculado de \(R\).


2123   

Suponha que, para todo $t$, $f(t^{2},2t)=t^{3}-3t$. Mostre que 
$$\dfrac{\partial f}{\partial x}(1,2)=-\dfrac{\partial f}{\partial y}(1,2).$$


Tome $t = 1$ em $\displaystyle \frac{df}{dt}(t^{2},2t) = 2t \frac{\partial f}{\partial x}(t^{2},2t) + 2\frac{\partial f}{\partial y}(t^{2},2t) = 3t^{2} - 3.$


2669   

A função $p=p(V,T)$ é dada implicitamente pela equação $pV=nRT$, onde $n$ e $R$ são constantes não-nulas (Lei dos Gases Ideais). Calcule $\dfrac{\partial p}{\partial V}$ e $\dfrac{\partial p}{\partial T}.$


$\displaystyle \frac{\partial p}{\partial V} = -\frac{nRT}{V^{2}}\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial p}{\partial T} = \frac{nR}{V}.$


2667   

Seja $\phi:\mathbb{R}\rightarrow \mathbb{R}$ uma função de uma variável real, diferenciável e tal que $\phi '(1)=4.$ Seja $g(x,y)=\phi\bigg(\dfrac{x}{y}\bigg).$ Calcule

  1. $\dfrac{\partial g}{\partial x}(1,1)$.

  2. $\dfrac{\partial g}{\partial y}(1,1)$.


  1. $\displaystyle \frac{\partial g}{\partial x} = \frac{1}{y} \phi'\left( \frac{x}{y} \right)$

  2. $\displaystyle \frac{\partial g}{\partial y} = -\frac{x}{y^{2}} \phi' \left( \frac{x}{y} \right).$


2709   

Determine a aproximação linear da função $f(x,y,z) = \sqrt{x^2 + y^2 + z^2}$ em $(3,2,6)$ e use-a para aproximar o número $\sqrt{(3,02)^2 + (1,97)^2 + (5,99)^2}$.


Vamos determinar a aproximação  linear da função $f$ em $(3,2,6)$. Primeiramente, calculamos as derivadas parcias $f_{x}$, $f_{y}$ e $f_{z}$, para todo $(x,y,z).$
$\bullet f_{x}(x,y,z)=\dfrac{1}{2}(x^{2}+y^{2}+z^{2})^{-1/2}\cdot 2x=\dfrac{x}{\sqrt{x^{2}+y^{2}+z^{2}}}.$
$\bullet f_{y}(x,y,z)=\dfrac{1}{2}(x^{2}+y^{2}+z^{2})^{-1/2}\cdot 2y=\dfrac{y}{\sqrt{x^{2}+y^{2}+z^{2}}}.$
$\bullet f_{z}(x,y,z)=\dfrac{1}{2}(x^{2}+y^{2}+z^{2})^{-1/2}\cdot 2z=\dfrac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}.$
Agora, calculamos as derivadas parciais de $f$ no ponto $(3,2,6)$, então
$\bullet f_{x}(3,2,6)=\dfrac{3}{\sqrt{3^{2}+2^{2}+6^{2}}}=\dfrac{3}{7}.$
$\bullet f_{x}(3,2,6)=\dfrac{2}{\sqrt{3^{2}+2^{2}+6^{2}}}=\dfrac{2}{7}.$
$\bullet f_{x}(3,2,6)=\dfrac{6}{\sqrt{3^{2}+2^{2}+6^{2}}}=\dfrac{6}{7}.$
Assim, a aproximação linear da função $f$ em $(3,2,6)$ é
\begin{array}{rcl}f(x,y,z)&\approx & f(3,2,6)+f_{x}(3,2,6)(x-3)+f_{y}(3,2,6)(y-2)+f_{z}(3,2,6)(z-6)\\&=&7+\dfrac{3}{7}(x-3)+\frac{2}{7}(y-2)+\frac{6}{7}(z-6)\\&=&\dfrac{3}{7}x+\frac{2}{7}y+\frac{6}{7}z+\bigg(7-\dfrac{9}{7}-\dfrac{4}{7}-\dfrac{36}{7}\bigg)\\&=&\dfrac{3}{7}x+\frac{2}{7}y+\frac{6}{7}z.\end{array}
Agora, vamos aproximar o número $\sqrt{(3,02)^2 + (1,97)^2 + (5,99)^2}.$ Assim,
\begin{array}{rcl}\sqrt{(3,02)^2 + (1,97)^2 + (5,99)^2}&=&f(3,02\,,\,1,97\,,\,5,99)\\&\approx& \frac{3}{7}(3,02)+\frac{2}{7}(1,97)+\frac{6}{7}(5,99)\\&\approx& 6,9914.\end{array}


2122   

Expresse $\partial z/\partial t$ em termos das derivadas parciais de $f$, sendo $z=f(x,y)$ e $x=\sin{3t}$ e $y=\cos{2t}.$


 $\displaystyle \frac{dz}{dt} (t) = 3 \cos(3t) \frac{\partial f}{\partial x}(\sin(3t),\cos(2t)) - 2\sin(2t) \frac{\partial f}{\partial y}(\sin(3t),\cos(2t)).$


2648   

São mostradas as curvas de nível de uma função $f.$ Determine se as seguintes derivadas parciais são positivas ou negativas no ponto $P.$

ma211-list3-ex14.png

  1. $f_{x}$

  2. $f_{xx}$

  3. $f_{yy}$$f_{y}$

  4. $f_{xy}$


  1. Negativa

  2. Positiva

  3. Positiva

  4. Negativa

  5. Positiva


2203   

Quando o tamanho das moléculas e suas forças de atração são levadas em conta, a pressão $P$, o volume $V$ e a temperatura $T$ 
de um mol de gás confinado estão relacionados pela {\it equação de van der Waals}
$$\bigg(P+\frac{a}{V^{2}}\bigg)(V-b)=kT,$$
em que $a$, $b$ e $k$ são constantes positivas. Se $t$ é o tempo, estabeleça uma fórmula para $\mathrm{d}T/ \mathrm{d}t$ em termos de $\mathrm{d}P/\mathrm{d} t$, 
$\mathrm{d} V/\mathrm{d}t$, $P$ e $V$.


$\displaystyle \frac{dT}{dt} = \frac{1}{k} \left( \left(\frac{dP}{dt} - \frac{2a}{V^{3}} \frac{dV}{dt}\right)(V - b) + \left( P + \frac{a}{V^{2}} \right) \frac{dV}{dt} \right).$


2129   

Considere a função $F(x,y)=f\bigg(\dfrac{x}{y},\dfrac{y}{x}\bigg)$. Mostre que

$$x\dfrac{\partial F}{\partial x}+y\dfrac{\partial F}{\partial y}=0.$$



Note que$\displaystyle \frac{\partial F}{\partial x} = \frac{1}{y}\frac{\partial f}{\partial x}\left(\frac{x}{y}, \frac{y}{x} \right) - \frac{y}{x^{2}} \frac{\partial f}{\partial y}\left(\frac{x}{y}, \frac{y}{x} \right)$ e $\displaystyle \frac{\partial F}{\partial y} = -\frac{x}{y^{2}} \frac{\partial f}{\partial x}\left(\frac{x}{y}, \frac{y}{x} \right) + \frac{1}{x} \frac{\partial f}{\partial y}\left(\frac{x}{y}, \frac{y}{x} \right).$ 


2668   

Seja $\phi:\mathbb{R}\rightarrow \mathbb{R}$ uma função de uma variável real, diferenciável e tal que $\phi '(1)=4.$ Seja $g(x,y)=\phi\bigg(\dfrac{x}{y}\bigg).$ Verifique que, para todo $(x,y)\in \mathbb{R}^{2}$, com $y\neq 0$, temos que

$$x\;\dfrac{\partial g}{\partial x}(x,y)+y\;\dfrac{\partial g}{\partial y}(x,y)=0.$$


2199   

 Se $f(u,v,w)$ é diferenciável, $u=x-y$, $v=y-z$ e $w=z-x$, mostre que 
$$\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}=0.$$


Note que $\displaystyle \frac{\partial f}{\partial x} = \frac{\partial f}{\partial u} - \frac{\partial f}{\partial w}, $$\displaystyle \frac{\partial f}{\partial y} = -\frac{\partial f}{\partial u} + \frac{\partial f}{\partial v}$ e $\displaystyle \frac{\partial f}{\partial z} = -\frac{\partial f}{\partial v} + \frac{\partial f}{\partial w}.$


2727   

Se $R$ é a resistência equivalente de três resistores conectados em paralelo, com resistências $R_1, R_2, R_3$, então

$$\dfrac{1}{R} = \dfrac{1}{R_1} + \dfrac{1}{R_2} + \dfrac{1}{R_3}.$$

Se as resistências medem, em ohms, $R_1 = 25  \Omega$, $R_2 = 40 \Omega$, $R_3 = 50 \Omega$, com margem de erro de $0,5\%$ em cada uma, estime o erro máximo no valor calculado de $R$.


$\Delta R \approx 0.059 \Omega$.


2715   

Determine uma equação do plano tangente à superfície no ponto especificado.

$z = y \ \mbox{cos}(x-y), \quad (2,2,2)$.


$z = y$.


2733   

Determine as equações do plano tangente e da reta normal ao gráfico da função dada, no ponto dado. $f(x,y) = \arctan{(x - 2y)}$ em $\left(2, \dfrac{1}{2},f\left(2,\dfrac{1}{2}\right)\right)$.


Plano tangente: $4z = 2x - 4y + (\pi - 2)$

Reta normal: $(x,y,z) = \left(2,\frac{1}{2},\frac{\pi}{4} \right) + \lambda \left(\frac{1}{2},-1,-1 \right)$.


2725   

O comprimento e a largura de um retângulo foram medidos como $30$ cm e $24$ cm, respectivamente, com um erro de medida de, no máximo, $0,1$ cm. Utilize as diferenciais para estimar o erro máximo cometido no cálculo da área do retângulo.


$\Delta A \approx 5.4$ cm$^{2}$.


2205   

Suponha que $w=f(x,y)$ é diferenciável e que exista uma constante $\alpha$ tal que 
$x=u\cos(\alpha)-v\sin(\alpha)$
$y=u\sin(\alpha)+v\cos(\alpha).$
Mostre que 
$$\bigg(\frac{\partial w}{\partial u}\bigg)^{2}+\bigg(\frac{\partial w}{\partial v}\bigg)^{2}=\bigg(\frac{\partial w}{\partial x}\bigg)^{2}+\bigg(\frac{\partial w}{\partial y}\bigg)^{2}.$$


Note que $\displaystyle \frac{\partial w}{\partial u} = \cos(\alpha) \frac{\partial w}{\partial x} + \sin(\alpha) \frac{\partial w}{\partial y}$ e $\displaystyle \frac{\partial w}{\partial v} = -\sin(\alpha) \frac{\partial w}{\partial x} + \cos(\alpha) \frac{\partial w}{\partial y}.$


2044   

Utilize a Equação
$$ \dfrac{dy}{dx}=-\dfrac{\dfrac{\partial F}{\partial x}}{\dfrac{\partial F}{\partial y}}=-\dfrac{F_x}{F_y}$$
para determinar $\mathrm{d}y/\mathrm{d}x$.
$\sqrt{xy}=1+x^{2}y$



$\displaystyle \frac{dy}{dx} = \frac{4(xy)^{3/2} - y}{x - 2x^{2}\sqrt{xy}} .$


2117   

Calcule $\mathrm{d} z/\mathrm{d} t$ por dois processos:

  1. substituindo as expressões para $x(t)$ e $y(t)$ em $z$ e depois derivando diretamente com relação a $t$
  2. aplicando a Regra da Cadeia: $\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y }\frac{dy}{dt}$.

$z=\sin(xy)$, $x=3t$ e $y=t^{2}.$


$\displaystyle \frac{dz}{dt} (t) =  9t^{2}\cos(3t^{3}).$


2661   

Determine as derivadas parciais de $z=\arctan \dfrac{x}{y}$.


$\displaystyle \frac{\partial z}{\partial x} = \frac{y}{x^{2} + y^{2}}\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial z}{\partial y} = \frac{-x}{x^{2} + y^{2}}.$


2206   

Se $z=f(x,y)$ com $x=u+v$ e $y=u-v$, demonstre que 
$$\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=2 \frac{\partial f}{\partial x}.$$



Note que $\displaystyle \frac{\partial z}{\partial u} = \frac{\partial f}{\partial x} + \frac{\partial f}{\partial y}$ e $\displaystyle \frac{\partial z}{\partial v} = \frac{\partial f}{\partial x} - \frac{\partial f}{\partial y}.$


2731   

Determine as equações do plano tangente e da reta normal ao gráfico da função dada, no ponto dado. $f(x,y) = 3x^3y - xy$ em $(1,-1,f(1,-1))$.


Plano tangente: $z = -8x + 2y + 8$

Reta normal: $(x,y,z) = \left(1,-1,-2 \right) + \lambda \left(-8,2,-1 \right)$.


2742   

Determine os planos que são tangentes ao gráfico de $f(x,y) = x^2 + y^2$ e que contenham a interseção dos planos $x + y + z = 3$ e $z = 0$.


$z = 0$ e $z = 6x + 6y - 18.$


2646   

Determine a derivada parcial indicada. $u=e^{r\theta}\sin{\theta}$; $\dfrac{\partial ^{3}u}{\partial r^{2}\partial \theta}$.


$\dfrac{\partial ^{3}u}{\partial r^{2}\partial \theta} = \theta e^{r\theta} (2\sin \theta + \theta \cos \theta + r\theta \sin \theta)$.


2127   

Seja $z=f(u+2v,u^{2}-v)$. Expresse $\partial z/\partial u$ e $\partial z/\partial v$ em termos das 

derivadas parciais de $f$. 


$\displaystyle \frac{\partial z}{\partial u}(u,v) = \frac{\partial f}{\partial x}(u + 2v,u^{2} - v) + 2u \frac{\partial f}{\partial y}(u + 2v,u^{2} - v)$ e\\ $\displaystyle \frac{\partial z}{\partial v}(u,v) = 2 \frac{\partial f}{\partial x}(u + 2v,u^{2} - v) - \frac{\partial f}{\partial y}(u + 2v,u^{2} - v).$


2681   

Encontre $\partial f/\partial x$ e $\partial f/\partial y$ para $f(x,y)=(xy-1)^{2}$.


$\displaystyle \frac{\partial f}{\partial x} = 2y(xy - 1)\;\;\;\;\text{e}\;\;\;\; \frac{\partial f}{\partial y} = 2x (xy - 1)$.


2026   

Use a Regra da Cadeia para determinar $\mathrm{d}z/\mathrm{d} t$ ou $\mathrm{d}w/ \mathrm{d}t.$

$z=x^{2}y+xy^{2}$, $x=2+t^{2}$, $y=1-t^{3}$.



$\displaystyle \frac{dz}{dt} = 4(2xy + y^{2} )^{3} - 3 (x^{2} + 2xy)t^{2}.$


2636   

O índice de sensação térmica $W$ é a temperatura sentida quando a temperatura real é $T$ e a velocidade do vento, $v$. Portanto, podemos escrever $W=f(T,v)$. Considerando a tabela abaixo:

ma211-list3-ex6.png

  1. Estime os valores de $f_{T}(-15,30)$ e $f_{v}(-15,30)$. Quais são as nterpretações práticas desses valores?

  2. Em geral, o que se pode dizer sobre o sinal de $\partial W/\partial T$ e $\partial W/\partial v$?

  3. Qual parece ser o valor do seguinte limite

    $$\lim_{v\rightarrow \infty}\frac{\partial W}{\partial v}?$$


  1. $f_{T}(-15,30) \approx 1.3$ Isto significa que quando a temperatura real é $-15º$C e a velocidade do vento é $30$km/h, a temperatura aparente aumenta cerca de $1.3º$C para cada $1º$C que a temperatura real aumenta;\\

  2. $f_{v}(-15,30) \approx -0.15$ Isto significa que quando a temperatura real é $-15º$C e a velocidade do vento é $30$km/h, a temperatura aparente diminui cerca de $0.15º$C para cada $1$km/h que a velocidade do vento aumenta.  

  3. $\frac{\partial W}{\partial T} > 0$ e  $\frac{\partial W}{\partial v} \leq 0.$

    $\lim_{v \to \infty} \frac{\partial W}{\partial v} = 0.$


2128   

Seja $z=f(u-v,v-u)$. Verifique que 
$$\frac{\partial z}{\partial u}+\frac{\partial z}{\partial v}=0.$$



Note que $\displaystyle \frac{\partial z}{\partial u}(u,v) = \frac{\partial f}{\partial x}(u-v,v-u) - \frac{\partial f}{\partial y}(u-v,v - u)$ e $\displaystyle \frac{\partial z}{\partial v}(u,v) = -\frac{\partial f}{\partial x}(u-v,v-u) + \frac{\partial f}{\partial y}(u-v,v - u).$


2028   

Use a Regra da Cadeia para determinar $\mathrm{d}z/\mathrm{d} t$ ou $\mathrm{d}w/ \mathrm{d}t.$

$z=\sin{x}\cos{y}$, $x=\pi t$, $y=\sqrt{t}$.


$\displaystyle \frac{dz}{dt} = \pi \cos(x) \cos(y) - \frac{1}{2\sqrt{t}} \sin(x) \sin(y).$


2119   

Calcule $\mathrm{d} z/\mathrm{d} t$ por dois processos:

  1. substituindo as expressões para $x(t)$ e $y(t)$ em $z$ e depois derivando diretamente com relação a $t$
  2. aplicando a Regra da Cadeia: $\frac{dz}{dt}=\frac{\partial z}{\partial x}\frac{dx}{dt}+\frac{\partial z}{\partial y }\frac{dy}{dt}$.

$z=\ln(1+x^{2}+y^{2})$, $x=\sin{3t}$ e $y=\cos{3t}.$



$\displaystyle \frac{dz}{dt} (t) = 0.$


2655   

Determine as derivadas parciais de $z=\cos(xy)$.


$\displaystyle \frac{\partial z}{\partial x} = -y\sin(xy)\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial z}{\partial y} = -x\sin(xy).$


2638   

Determine as derivadas parciais de primeira ordem da função $f(x,y)=x^{5}+3x^{3}y^{2}+3xy^{4}$.


$\displaystyle \frac{\partial f}{\partial x} = 5x^{4} + 9x^{2}y^{2} + 3y^{4}\;\;\;\text{e}\;\;\; \frac{\partial f}{\partial y} = 2x^{3}y + 12xy^{3}$.


2734   

Determine as equações do plano tangente e da reta normal ao gráfico da função dada, no ponto dado. $f(x,y) = xy$ em $\left(\dfrac{1}{2}, \dfrac{1}{2}, f\left(\dfrac{1}{2}, \dfrac{1}{2}\right)\right)$.


Plano tangente: $4z = 2x + 2y - 1$\\

Reta normal: $(x,y,z) = \left(\frac{1}{2}, \frac{1}{2}, \frac{1}{4} \right) + \lambda \left(\frac{1}{2},\frac{1}{2},-1 \right)$.



2721   

Determine a diferencial da função $m = p^5q^3$.


$dm = 5p^{4}q^{3} dp + 3p^{5}q^{2} dq$.


3155   

A fórmula de Taylor de primeira ordem para $f(\vec{a} + \vec{v})$ pode ser escrita como $ f(\vec{a}) + \nabla f(\vec{a}) \cdot \vec{v}$, já desconsiderando o termo de erro. Calcule-a para $f(x,y) = x^2/2 + y$, $\vec{a} = (0,0)$ e $\vec{v} = (1/2,1/2)$. Calcule também o erro cometido, dizendo se é um erro pequeno ou grande e por quê.


2758   

Verifique que a função $f(x,y) = \ln{(1 + x^2 + y^2)}$ é diferenciável.


As derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ de cada função $f$ existem e são contínuas em todos os pontos do domínio.


2680   

Encontre $\partial f/\partial x$ e $\partial f/\partial y$ para $f(x,y)=(x^{2}-1)(y+2)$.


$\displaystyle \frac{\partial f}{\partial x} = 2x(y + 2) \;\;\;\;\text{e}\;\;\;\; \frac{\partial f}{\partial y} = x^{2} - 1$.


2675   

Calcule as derivadas parciais de $w = \dfrac{xyz}{x + y + z}$.


$\displaystyle \frac{\partial w}{\partial x} = \frac{yz(y+z)}{(x+y+z)^{2}},\;\;\;\;  \frac{\partial w}{\partial y} = \frac{xz(x+z)}{(x+y+z)^{2}}\;\;\;\;\;\text{e}\;\;\;\;\;\frac{\partial w}{\partial z} = \frac{xy(x+y)}{(x+y+z)^{2}}.$


3088   

Mostre que se \(f\), \(f_x\) e \(f_y\) são contínuas numa região circular contendo os pontos \(A=(x_0,y_0)\) e \(B=(x_1,y_1)\), então existe um ponto \((x^\ast,y^\ast)\) no segmento que une \(A\) e \(B\) tal que \[ f(x_1,y_1)-f(x_0,y_0) = f_x(x^\ast,y^\ast)(x_1-x_0)+f_y(x^\ast,y^\ast)(y_1-y_0). \] Este resultado é a versão bidimensional do Teorema do Valor Médio. [Sugestão: expresse o segmento de reta  unindo \(A\) e \(B\) na forma paramétrica e use o Teorema do Valor Médio para funções de uma variável.]


2200   

Suponha que substituamos coordenadas polares $x=r\cos{\theta}$ e $y=r\sin{\theta}$ em uma função diferenciável $w=f(x,y).$

  1.  Mostre que $$\frac{\partial w}{\partial r}=f_{x}\cos{\theta}+f_{y}\sin{\theta}$$ e $$\frac{1}{r}\frac{\partial w}{\partial \theta}=-f_{x}\sin{\theta}+f_{y}\cos{\theta}.$$
  2.  Resolva as equações no item 1. para expressar $f_{x}$ e $f_{y}$ em termos de $\partial w/ \partial r$ e $\partial w/\partial \theta$.
  3.  Mostre que  $$(f_{x})^{2}+(f_{y})^{2}=\bigg(\frac{\partial w}{\partial r}\bigg)^{2}+\frac{1}{r^{2}}\bigg(\frac{\partial w}{\partial \theta}\bigg)^{2}.$$



  1.  $\displaystyle f_{x} = \cos(\theta) \frac{\partial w}{\partial r} - \frac{\sin (\theta)}{r} \frac{\partial w}{\partial \theta}$ e $\displaystyle f_{y} = \sin(\theta) \frac{\partial w}{\partial r} + \frac{\cos (\theta)}{r} \frac{\partial w}{\partial \theta}.$


2657   

Determine as derivadas parciais de $f(x,y)=e^{-x^{2}-y^{2}}$.



$\displaystyle \frac{\partial f}{\partial x} = -2xe^{-x^{2} - y^{2}}\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial f}{\partial y} = -2ye^{-x^{2} - y^{2}}.$


2759   

Verifique que a função $f(x,y) = x \cos{(x^2 + y^2)}$ é diferenciável.


As derivadas parciais $\frac{\partial f}{\partial x}$ e $\frac{\partial f}{\partial y}$ de cada função $f$ existem e são contínuas em todos os pontos do domínio.


2197   

Encontre os valores de $\partial z/ \partial x$ e $\partial z/\partial y$ no ponto indicado.
$\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}-1=0$,  $(2,3,6).$


$\displaystyle \frac{\partial z}{\partial x}(2,3,6) = -9$ e $\displaystyle \frac{\partial z}{\partial x}(2,3,6) = -4.$


2659   

Determine as derivadas parciais de $z=xye^{xy}$.


$\displaystyle \frac{\partial z}{\partial x} = ye^{xy} (1 + xy) \;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial z}{\partial y} = xe^{xy} (1 + xy).$


2724   

Se $z = x^2 - xy + 3y^2$ e $(x,y)$ varia de $(3;-1)$ a $(2,96;-0,95)$, compare os valores de $\Delta z$ e $dz$.


$\Delta z = -0.7189$ e $dz = -0.73$.


2685   

Encontre $\partial f/\partial x$ e $\partial f/\partial y$ para $f(x,y)=\cos^{2}(3x-y^2)$.


$\displaystyle \frac{\partial f}{\partial x} = -6\cos (3x - y^{2}) \sin(3x - y^{2}) \;\;\;\;\text{e}\;\;\;\; \frac{\partial f}{\partial y} = 4y \cos (3x - y^{2}) \sin(3x - y^{2})$.


2692   

Encontre $f_{x}$, $f_{y}$ e $f_{z}$ para $f(x,y,z)=e^{-(x^{2}+y^{2}+z^{2})}$.


$\displaystyle f_{x} = -2xe^{-(x^{2} + y^{2} + z^{2})},\;\;\;\; f_{y} = -2ye^{-(x^{2} + y^{2} + z^{2})}\;\;\;\;\text{e}\;\;\;\; f_{z} = -2ze^{-(x^{2} + y^{2} + z^{2})}$.


2747   

Explique por que a função é diferenciável no ponto dado. $f(x,y) = x\sqrt{y}, \quad (1,4)$.


As derivadas $f_{x}$ e $f_{y}$ de cada $f$ existem e são contínuas no ponto dado, logo $f$ é diferenciável.


2654   

Determine as derivadas parciais de $f(x,y)=5x^{4}y^{2}+xy^{3}+4$.


$\displaystyle \frac{\partial f}{\partial x} = 20x^{3}y^{2} + y^{3}\;\;\;\;\;\;\text{e}\;\;\;\;\; \frac{\partial f}{\partial y} = 10x^{4}y + 3xy^{2}.$