Exercícios
Funções de várias variáveis reais
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Esboce o gráfico da função $f(x,y)=\sqrt{x^{2}+y^{2}}$. Em geral, se $g$ é uma função de uma variável, como saber o gráfico de $f(x,y)=g(\sqrt{x^{2}+y^{2}})$ a partir do gráfico de $g$?
O gráfico de $f(x,y) = g(\sqrt{x^{2} + y^{2}})$ pode ser obtido rotacionando o gráfico de $g$ no plano $xz$ ao redor do eixo $z.$
Represente graficamente o domínio da função $z=f(x,y)$ dada por $x+y-1+z^{2}=0$, $z\geq 0$.
$\left\lbrace (x,y); x + y \leq 1 \right\rbrace$
Defina continuidade de uma função de duas variáveis $f(x,y)$ em um ponto $(x_0, y_0)$ de seu domínio.
Dada a função
$$f(x,y) = \begin{cases} \dfrac{x^2\sqrt{y}}{x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0), \\L, & \quad \text{se } (x,y) = (0,0),\end{cases}$$
é possível encontrar $L$ de maneira que $f$ seja contínua em $(0,0)$?
$f(x,y)$ é contínua em $(x_{0},y_{0}) \in D_{f}$ se
$$\lim_{(x,y) \to (x_{0},y_{0})} f(x,y) = f(x_{0},y_{0}).$$
$L = 0.$
Dada a expressão $g(x,y)=2-f(x,y)$, escreva como o gráfico de $g$ é obtido a partir do gráfico de $f.$
Gráfico de $f$ refletido sobre o plano $xy$ e deslocado para cima por duas unidades.
Dada a função $f(x,y)=\ln (x^{2}+y^{2})$.
Encontre o domínio da função.
Encontre a imagem da função.
Descreva as curvas de nível da função.
$D_{f} = \left\lbrace (x,y);\; (x,y) \neq (0,0) \right\rbrace$.
$Im(f) = \mathbb{R}.$
As curvas de nível são os círculos $x^{2} + y^{2} = C$ com $C > 0.$
Dada a função $f(x,y)=x^{2}-y^{2}$.
Encontre o domínio da função.
Encontre a imagem da função.
Descreva as curvas de nível da função.
$D_{f} = \mathbb{R}^{2}.$
$Im(f) = \mathbb{R}.$
As curvas de nível são as hipérboles $x^{2} - y^{2} = C$ com foco no eixo $x$ se $C > 0;$ com foco no eixo $y$ se $C < 0$ e as retas $y = \pm x$ se $C = 0.$
Represente graficamente o domínio da função $z=f(x,y)$ dada por $f(x,y)=\dfrac{x-y}{\sqrt{1-x^{2}-y^{2}}}$.
$\left\lbrace (x,y); x^{2} + y^{2} < 1 \right\rbrace$
Mostre (verifique) que o domínio da função $f(x,y)=\ln(x^2-y)$ consiste em todos os pontos abaixo da curva $y<x^2$.
A função $(x,y)\longmapsto\ln(x^2-y)$ só está definida para \( 0<x^2-y \), ou seja, $y<x^2$. Assim, primeiro esboçamos a parábola $y=x^2$ (como uma curva tracejada, por exemplo). A região $y<x^2$ consiste em todos os pontos abaixo dessa curva.
Calcule $\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{x^2}{\sqrt{x^2 + y^2}}$, caso exista.
$0.$
Se $f(x_0,y_0) = 3$, o que podemos dizer sobre
$$\displaystyle \lim_{(x,y) \to (x_0,y_0)}f(x,y)$$
se $f$ for contínua em $(x_0,y_0)$? E se $f$ não for contínua em $(x_0,y_0)$? Justifique sua resposta.
Se $f$ for contínua em $(x_{0},y_{0}),$ então o limite é igual a $f(x_{0},y_{0}) = 3.$ Se não for contínua em $(x_{0},y_{0}),$ então o limite pode ter qualquer valor diferente de $3.$
Calcule $\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{xy}{x^2 + y^2}$, caso exista.
Não existe.
$$f(x,y)=\sqrt{x+y^{2}-3}$$
- Faça um esboço das curvas de nível de $f$ nos níveis $c=0$, $c=1$ e $c=3.$
- Quantas curvas de nível de $f$ passam pelo ponto $(3,-1)$?
As curvas de níveis de $f$ são
$$\sqrt{x+y^{2}-3}=c\,\,\,\,\mbox{ou}\,\,\,\,x+y^{2}-3=c^2\,\,\,\,\mbox{ou}\,\,\,\,x=3+c^2-y^{2},$$
ou seja, uma família de parábolas com concavidade para a esquerda. As três curvas de níveis pedidas, obtidas considerando respectivamente $c=0$, $c=1$ e $c=3$, são
$x=3-y^{2}$, $x=4-y^{2}$ e $x=12-y^{2}.$ Elas estão apresentadas na figura abaixo.
Pelo ponto $(3,-1)$ passa uma única curva de nível, isto é, $f(x,y)=1.$ Pois caso contrário o ponto $(3,-1)$ teria duas alturas diferentes, o que é impossível.
Determine o maior conjunto no qual a função $G(x,y) = \ln{(x^2 + y^2 - 4)}$ é contínua.
$\left\lbrace (x,y);\;x^{2} + y^{2} > 4 \right\rbrace.$
Determine o limite, se existir, ou mostre que o limite não existe.
$\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{x^2ye^y}{x^4 + 4y^2}$.
Não existe.
Não existe.
Represente graficamente o domínio da função $z=f(x,y)$ dada por $z=\ln(2x^{2}+y^{2}-1)$.
$\left\lbrace (x,y); 2x^{2} + y^{2} > 1 \right\rbrace$
Determine a equação da reta tangente à curva $\gamma$ no ponto $\gamma(t_0) = (2,5)$ sabendo-se que $\gamma'(t) \neq \bf{0}$ e que sua imagem está contida na curva de nível $xy = 10$. Qual a equação da reta normal a $\gamma$, neste ponto?
Reta tangente: $(x,y) = (2,5) + \lambda (-2,5),$ $\lambda \in \mathbb{R},$
Reta normal: $(x,y) = (2,5) + \lambda (5,2),$ $\lambda \in \mathbb{R}.$
Seja $f(x,y) = \dfrac{2xy^2}{x^2 + y^4}$.
Considere a reta $\gamma(t) = (at, bt)$, com $a^2 + b^2 > 0$; mostre que, quaisquer que sejam $a$ e $b$,
$$\displaystyle \lim_{t \to 0} f(\gamma(t)) = 0.$$
Tente visualizar este resultado através das curvas de nível de $f$.
Calcule $\displaystyle \lim_{t \to 0} f(\delta(t))$, onde $\delta(t) = (t^2,t).$ (Antes de calcular o limite, tente prever o resultado olhando para as curvas de nível de $f$.)
$\displaystyle \lim_{(x,y) \to (0,0)}\dfrac{2xy^2}{x^2 + y^4}$ existe? Por quê?
Demonstração.
$1.$
Não existe.
Esboce o gráfico da função $f(x,y)=y^{2}+1$.
$z = y^{2} + 1$
Determine se a função
$$f(x,y) = \begin{cases}e^{\left( \dfrac{1}{x^2 + y^2 - 1} \right)}, & \quad \text{se } x^2 + y^2 < 1, \\0, & \quad \text{se } x^2 + y^2 \geq 1.\end{cases}$$
é contínua em $\displaystyle{\left( \frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2} \right)}$. Justifique sua resposta.
$0.$
Determine o limite, se existir, ou mostre que o limite não existe.
$\displaystyle \lim_{(x,y) \to (5,-2)}(x^5 + 4x^3y - 5xy^2)$.
$2025.$
Calcule $\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{xy(x - y)}{x^4 + y^4}$, caso exista.
Não existe.
Faça uma correspondência entre a função e seu gráfico (indicado por I-VI). Dê razões para sua escolha.
$f(x,y)=|x|+|y|$.
$f(x,y)=\dfrac{1}{1+x^{2}+y^{2}}$.
$f(x,y)=(x-y)^{2}$.
$f(x,y)=|xy|$.
$f(x,y)=(x^{2}-y^{2})^{2}$.
$f(x,y)=\sin(|x|+|y|)$.
Esboce o gráfico da função $f(x,y)=\sin(\sqrt{x^{2}+y^{2}})$ .Em geral, se $g$ é uma função de uma variável, como saber o gráfico de $f(x,y)=g(\sqrt{x^{2}+y^{2}})$ a partir do gráfico de $g$?
O gráfico de $f(x,y) = g(\sqrt{x^{2} + y^{2}})$ pode ser obtido rotacionando o gráfico de $g$ no plano $xz$ ao redor do eixo $z.$
Dada a função $f(x,y)=y-x$.
Encontre o domínio da função.
Encontre a imagem da função.
Descreva as curvas de nível da função.
$D_{f} = \mathbb{R}^{2}$.
$Im(f) = \mathbb{R}.$
As curvas de nível são as retas $y - x = C.$
Calcule $\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{xy^2}{x^2 - y^2}$, caso exista.
Não existe.
Encontre uma equação para a superfície de nível da função $f(x,y)=\ln (x^{2}+y^{2}+z^{2})$ que passa pelo ponto $(-1,2,1)$.
$x^{2} + y + z^{2} = 6.$
Faça uma correspondência entre a função: (i) e seu gráfico; (ii) e seus mapas de contorno. Justifique sua escolha.
$z=\sin(xy)$
$z=\sin(x-y)$
$z=(1-x^{2})(1-y^{2})$
$z=e^{x} \; \cos{y}$
$z=\sin{x}-\sin{y}$
$z=\dfrac{x-y}{1+x^{2}+y^{2}}$
Dada a função $f(x,y)=\dfrac{y}{x^{2}}$.
Encontre o domínio da função.
Encontre a imagem da função.
Descreva as curvas de nível da função.
$D_{f} = \left\lbrace (x,y);\; (x,y) \neq (0,y) \right\rbrace$.
$Im(f) =\mathbb{R}.$
As curvas de nível são as parábolas $y = C x^{2}$ sem a origem se $C \neq 0$ e o eixo $x$ se $C \neq 0.$
Seja $f(x,y)=3x+2y.$ Calcule:
$f(1,-1)$;
$f(a,x)$;
$\dfrac{f(x+h,y)-f(x,y)}{h}$;
$\dfrac{f(x,y+k)-f(x,y)}{k}$.
$1.$
$3a + 2x.$
$3.$
$2.$
Represente graficamente o domínio da função $z=f(x,y)$ dada por $z=\sqrt{y-x^{2}}+\sqrt{2x-y}$.
$\left\lbrace (x,y); x^{2} \leq y \leq 2x \right\rbrace$
Determine o limite, se existir, ou mostre que o limite não existe.
$\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{y^4}{x^4 + 3y^4}$.
Não existe.
Determine \(\displaystyle \lim_{(x,y)\to (0,0)}(x^2+y^2)\ln(x^2+y^2). \)
Usando coordenadas polares, teremos que: \[\begin{array}{lll} x=r\cos\theta, & y=r\sin\theta, & r^2=x^2+y^2. \end{array} \] Além disso, como \(r=\sqrt{x^2+y^2}\geq 0\), temos que \( r\rightarrow 0^+\) se, e somente se, \( (x,y)\rightarrow (0,0) \). Assim, segue para o limite dado que \begin{align*} \lim_{(x,y)\to (0,0)}(x^2+y^2)\ln(x^2+y^2) & = \lim_{r\to 0^+} r^2\ln r^2 \\ & = \lim_{r\to 0^+}\underbrace{\dfrac{2\ln r}{1/r^2}}_{\text{do tipo}\ \infty/\infty} \\ & \stackrel{\text{L'Hospital}}{=} \lim_{r\to 0^+} \dfrac{2/r}{-2/r^3} \\ & = \lim_{r\to 0^+} (-r^2) = 0.\end{align*}
Dada $f(x,y)=\dfrac{1}{\sqrt{16-x^{2}-y^{2}}}$.
Encontre o domínio da função;
Encontre a imagem da função;
Descreva as curvas de nível da função.
O domínio de $f$ é
$$D=\{(x,y)|\, 16-x^{2}-y^{2}>0\}=\{(x,y)|\,x^{2}+y^{2}<16\}.$$
A imagem de $f$ é
$$\bigg\{z|\, z=\frac{1}{\sqrt{16-x^{2}-y^{2}}},\,(x,y)\in D\bigg\}.$$
Mas,
$$z=\frac{1}{\sqrt{16-x^{2}-y^{2}}}\geq \frac{1}{\sqrt{16}}=\frac{1}{4}.$$
Assim, a imagem de $f$ é $\bigg\{z|\, z \geq \dfrac{1}{4}\bigg\}.$
s curvas de níveis de $f$ são da forma $f(x,y)=c$, isto é,
$$\frac{1}{\sqrt{16-x^{2}-y^{2}}}=c\Leftrightarrow \sqrt{16-x^{2}-y^{2}}=\frac{1}{c}\Leftrightarrow 16-x^{2}-y^{2}=\frac{1}{c^{2}}$$
$$\Leftrightarrow x^{2}+y^{2}=16-\frac{1}{c^{2}}.$$
Assim, as curvas de níveis de $f$ são circunferências com centro na origem e raio menor do que $4.$
Mostre que os limites não existem, considerando que \((x,y)\rightarrow (0,0) \) ao longo dos eixos coordenados.
\[ \lim_{(x,y)\to(0,0)}\dfrac{x-y}{x^2+y^2} \]
\[ \lim_{(x,y)\to(0,0)}\dfrac{\cos(xy)}{x^2+y^2} \]
Calcule $\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{xy}{y - x^3}$, caso exista.
Não existe.
Esboce o gráfico da função $f(x,y)=\cos{x}$.
$z = \cos(x)$
Determine o limite, se existir, ou mostre que o limite não existe.
$\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{x^2 \ \mbox{sen}^2y}{x^2 + 2y^2}$.
$0.$
Determine o limite, se existir, ou mostre que o limite não existe.
$\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{x^2 + y^2}{\sqrt{x^2 + y^2 + 1} - 1}$.
$2.$
Seja $f(x,y)=\dfrac{x-y}{x+2y}$.
Determine o domínio.
Calcule $f(2u+v,v-u).$
$\left\lbrace (x,y);\; x \neq -2y \right\rbrace$
$\frac{u}{v}.$
Calcule $\displaystyle \lim_{(x,y) \to (0,0)} x \ \sin{\dfrac{1}{x^2 + y^2}}$, caso exista.
$0.$
Esboce o gráfico da função $f(x,y)=\ln(\sqrt{x^{2}+y^{2}})$. Em geral, se $g$ é uma função de uma variável, como saber o gráfico de $f(x,y)=g(\sqrt{x^{2}+y^{2}})$ a partir do gráfico de $g$?
O gráfico de $f(x,y) = g(\sqrt{x^{2} + y^{2}})$ pode ser obtido rotacionando o gráfico de $g$ no plano $xz$ ao redor do eixo $z.$
Dada a expressão $g(x,y)=2f(x,y)$, escreva como o gráfico de $g$ é obtido a partir do gráfico de $f.$
Gráfico de $f$ esticado verticalmente ao dobro.
Faça o mapa de contorno da função $f(x,y)=y-\ln{x}$ mostrando várias de suas curvas de nível.
$y = \ln(x) + C.$
Determine o limite, se existir, ou mostre que o limite não existe.
$\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{xy}{\sqrt{x^2 + y^2}}$.
$0.$
Seja $f(x,y,z)=e^{\sqrt{z-x^{2}-y^{2}}}.$
Calcule $f(2,-1,6).$
Determine o domínio de $f$.
Determine a imagem de $f$.
$e.$
$\left\lbrace (x,y,z): \;z \geq x^{2} + y^{2} \right\rbrace.$
$[1,\infty).$
Calcule $\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{x}{\sqrt{x^2 + y^2}}$, caso exista.
Não existe.
Dada a expressão $g(x,y)=-f(x,y)$, escreva como o gráfico de $g$ é obtido a partir do gráfico de $f.$
Gráfico de $f$ refletido sobre o plano $xy.$
Dada a função $f(x,y)=\sqrt{y-x}$.
Encontre o domínio da função.
Encontre a imagem da função.
Descreva as curvas de nível da função.
$D_{f} = \left\lbrace (x,y);\; x \leq y \right\rbrace$.
$Im(f) = \left\lbrace z \in \mathbb{R};\; z \geq 0 \right\rbrace.$
As curvas de nível são as retas $y - x = C,$ com $C \geq 0.$
Determine o conjunto dos pontos de continuidade da função $f(x,y) = 3x^2y^2 - 5xy + 6$. Justifique sua resposta.
$\mathbb{R}^{2}.$
Dois mapas de contorno são mostrados na figura. Um é de uma função $f$ cujo gráfico é um cone. O outro é de uma função $g$ cujo gráfico é um paraboloide. Qual é qual? Por quê?
O da esquerda corresponde ao cone e o da direita ao paraboloide.
Verifique que, para a função de produção de Cobb-Douglas
$$P(L,K)=1,01L^{0,75}K^{0,25}$$
discutida no Exemplo 3 da Seção 14.1 do Stewart, a produção dobrará se as quantidades de trabalho e a de capital investido forem dobradas. Determine se isto também é verdade para uma função de produção genérica
$$P(L,K)=bL^{\alpha}K^{1-\alpha}.$$
Sim.
Explique por que cada função é contínua ou descontínua.
A temperatura externa como função da latitude, da longitude e do tempo.
A altura acima do nível do mar como função da longitude, da latitude e do tempo.
O custo da tarifa do táxi como função da distância percorrida e do tempo gasto.
Contínua.
Descontínua.
Descontínua.
Encontre uma equação para a curva de nível da função $f(x,y)=\displaystyle \int_{x}^{y}\dfrac{dt}{1+t^{2}}$ que passa pelo ponto $(-\sqrt{2},\sqrt{2})$.
$\arctan(y) - \arctan(x) = 2\arctan(\sqrt{2}).$
Determine e faça o esboço do domínio da função $\bigstar$ $f(x,y)=\dfrac{\sqrt{y-x^{2}}}{1-x^{2}}$.
$\left\lbrace (x,y);\; y \geq x^{2},\; x\neq \pm 1 \right\rbrace.$
Considere a função
$$f(x,y) = \begin{cases}x + y, & \quad \text{se } xy = 0, \\k, & \quad \text{caso contrário},\end{cases}$$
em que $k$ é um número real. É possível escolher $k$ de modo que $f$ seja contínua em $(0,0)$? Em caso afirmativo, qual deve ser o valor de $k$?
$k = 0.$
O índice I de temperatura-umidade (ou simplesmente humidex) é a temperatura aparente do ar quando a temperatura real é $T$ e a umidade relativa é $h$, de modo que podemos escrever $I=f(T,h)$. A tabela seguinte com valores de $I$ foi extraída de uma tabela do Environment Canada.
Qual é o valor de $f(35,60)$? Qual é o seu significado?
Para que valor de $h$ temos $f(30,h)=36$?
Para que valor de $T$ temos $f(T,40)=42$?
Qual o significado de $I=f(20,h)$ e $I=f(40,h)$? Compare o comportamento dessas duas funções de $h.$
48, o que significa que quando a temperatura real é $35^\circ$C e a umidade relativa é $60\%,$ o humidex é $48^\circ$C.
$50\%.$
$35^\circ$C.
$I = f(20,h)$ e $I = f(40,h)$ são funções de $h$ que fornecem os valores do humidex quando a temperatura real é $20^\circ$C e $40^\circ$C, respectivamente. Ambas as funções crescem com $h,$ porém $f(20,h)$ cresce aproximadamente a taxa constante, enquanto $f(40,h)$ cresce mais rapidamente a uma taxa crescente.
Considere a função
$$f(x,y) = \begin{cases}\dfrac{x^2 - xy}{x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0), \\0, & \quad \text{se } (x,y) = (0,0).\end{cases}$$
Calcule o limite $\displaystyle \lim_{(x,y) \to (0,0)}f(x,y)$ ou mostre que esse limite não existe.
Calcule o limite $\displaystyle \lim_{(x,y) \to (1,1)}f(x,y)$ ou mostre que esse limite não existe.
$f$ é contínua em $(0,0)$? Justifique.
$f$ é contínua em $(1,1)$? Justifique.
O limite não existe.
$0.$
Não.
Sim.
Dada a função $f(x,y)=e^{-(x^{2}+y^{2})}$.
Encontre o domínio da função.
Encontre a imagem da função.
Descreva as curvas de nível da função.
$D_{f} = \mathbb{R}^{2}$.
$Im(f) = \left\lbrace z \in \mathbb{R};\; 0 < z \leq 1 \right\rbrace.$
As curvas de nível são as os círculos $x^{2} + y^{2} = C$ com $C > 0$ e a origem.
Esboce o gráfico da função $f(x,y)=y$.
$z = y.$
Determine o limite, se existir, ou mostre que o limite não existe.
$\displaystyle \lim_{(x,y) \to (2,1)}\dfrac{4 - xy}{x^2 + 3y^2}$.
$\frac{2}{7}.$
Calcule \(\displaystyle \lim_{(x,y)\to (-1,2)} \dfrac{xy}{x^2+y^2}\).
Como a função \(\displaystyle f(x,y)=\dfrac{xy}{x^2+y^2}\) é contínua no ponto \((-1,2)\) (de acumulação), basta avaliá-la neste mesmo ponto. Ou seja, \[ \lim_{(x,y)\to (-1,2)}\dfrac{xy}{x^2+y^2} = \dfrac{(-1)2}{(-1)^2+2^2} = -\dfrac{2}{5}. \]
Faça o mapa de contorno da função $f(x,y)=ye^{x}$ mostrando várias de suas curvas de nível.
$y = Ce^{-x}.$
Determine o limite, se existir, ou mostre que o limite não existe.
$\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{xy \ \mbox{cos} \ y}{3x^2 + y^2}$.
Não existe.
Determine e faça o esboço do domínio da função $f(x,y)=\sqrt{x+y}$.
$\left\lbrace (x,y);\; y \geq -x \right\rbrace$
Determine e faça o esboço do domínio da função $f(x,y)=\sqrt{1-x^{2}}-\sqrt{1-y^{2}}$.
$\left\lbrace (x,y);\; -1 \leq x \leq 1,\;-1\leq y \leq 1 \right\rbrace.$
Determine o conjunto dos pontos de continuidade da função $f(x,y) = \mbox{ln} \ \dfrac{x - y}{x^2 + y^2}$. Justifique sua resposta.
$\left\lbrace (x,y);\; x > y \right\rbrace.$
Esboce o gráfico da função $f(x,y)=e^{-(x^2+y^2)}$.
Descreva em palavras como o gráfico da função \(\displaystyle g(x,y)= e^{-a(x^2+y^2)}\) está relacionado com o gráfico de \(f\), sendo \(a>0\). Mostre (verifique) que o valor de \(a\) influencia na "largura" do pico presente no gráfico da função.
Encontre uma equação para a curva de nível da função $f(x,y)=16-x^{2}-y^{2}$ que passa pelo ponto $(2\sqrt{2},\sqrt{2})$.
$x^{2} + y^{2} = 10.$
Dada a função $f(x,y)=xy$.
Encontre o domínio da função.
Encontre a imagem da função.
Descreva as curvas de nível da função.
$D_{f} = \mathbb{R}^{2}$.
$Im(f) = \mathbb{R}.$
As curvas de nível são as hipérboles $xy = C$ quando $C \neq 0$ e os eixos $x$ e $y$ quando $C = 0.$
Esboce o gráfico da função $f(x,y)=3$.
$z = 3.$
Determine e faça o esboço do domínio da função $f(x,y,z)=\sqrt{1-x^{2}-y^{2}-z^{2}}$.
$\left\lbrace (x,y);\; x^{2} + y^{2} + z^{2} \leq 1 \right\rbrace.$
Encontre uma equação para a curva de nível da função $f(x,y)=\sqrt{x^{2}-1}$ que passa pelo ponto $(1,0)$.
$x = 1$ ou $x = -1.$
Verifique que a função \(f(x,y)=\sqrt{1-x^2-y^2}\) é contínua no disco unitário fechado \(x^2+y^2\leq 1\).
O domínio de \(f\) é o disco unitário fechado \(x^2+y^2\leq 1\). Para todo ponto \((x_0,y_0)\) na fronteira do disco, temos \[ \lim_{(x,y)\to(x_0,y_0)}\sqrt{1-x^2-y^2} = \sqrt{1-x_0^2-y_0^2} = 0.\] Como o mesmo vale também para pontos interiores ao disco, temos que \(f\) é contínua no disco fechado.
Seja $f(x,y)=x^{2}e^{3xy}$.
Calcule $f(2,0).$
Determine o domínio de $f$.
Determine a imagem de $f$.
$4.$
$\mathbb{R}^{2}.$
$[0,\infty).$
- Queremos calcular $f(2,0)$ sabendo que $f(x,y)=x^{2}e^{3xy}$. Basta substituir os valores na expressão, assim temos
\[
f(2,0)=2^{2}e^{3 \cdot 2 \cdot 0}=4e^{0}=4 \cdot 1=4.
\] - Por definição, o domínio da função $f$ é o conjunto dos pontos de $\mathbb{R}^{2}$ em que a função está bem definida. Em nosso caso, o domínio é o conjunto de pontos em que a função $f(x,y)=x^{2}e^{3xy}$ está bem definida. Portanto, o domínio de $f$ é $\mathbb{R}^2$.
- A imagem da função $f$ é o conjunto dos pontos $\{ z\in \mathbb{R} | z = f(x,y) \text{ e } (x,y)\in D\}$, onde $D$ é o domínio de $f$. Observe que $x^{2} \geq 0$ e $e^{3xy}> 0$ para todo $(x,y)\in \mathbb{R}^{2}$, logo $x^{2}e^{3xy}\geq 0$ para todo $(x,y)\in \mathbb{R}^{2}$. Por exemplo, se fixarmos $x=1$ temos que a imagem da função são os pontos da forma $e^{3y}$ com $y\in \mathbb{R}$, ou seja, é todo o intervalo $(0,\infty)$. Agora, quando colocamos $x=0$ a imagem é $0$. Portanto, a imagem de $f$ é o conjunto $[0,\infty]$.
Seja $g(x,y,z)=\ln(25-x^{2}-y^{2}-z^{2}).$
Calcule $g(2,-2,4).$
Determine o domínio de $g$.
Determine a imagem de $g$.
$0.$
$\left\lbrace (x,y,z): x^{2} + y^{2} + z^{2} < 25 \right\rbrace.$
$(-\infty, \ln(25)].$
Faça o mapa de contorno da função $f(x,y)=(y-2x)^{2}$ mostrando várias de suas curvas de nível.
$y=2x\pm \sqrt{C}, C \geq0.$
Calcule $\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{x + y}{x - y}$, caso exista.
Não existe.
Encontre uma equação para a superfície de nível da função $f(x,y,z)=\sqrt{x-y}-\ln z$ que passa pelo ponto $(3,-1,1)$.
$\sqrt{x - y} - \ln(z) = 2.$
Determine $h(x,y) = g(f(x,y))$ e o conjunto no qual $h$ é contínua, em que
$$g(t) = t^2 + \sqrt{t}, \ \ \ f(x,y) = 2x + 3y - 6.$$
$h(x,y) = (2x+3y-6)^{2} + \sqrt{2x + 3y - 6}$ é contínua em $\left\lbrace (x,y);\; y \geq -\frac{2x}{3} + 2 \right\rbrace.$
Uma placa fina de metal, localizada no plano $xy$, tem temperatura $T(x,y)$ no ponto $(x,y)$. As curvas de nível de $T$ são chamadas isotérmicas porque todos os pontos em uma isotérmica têm a mesma temperatura. Faça o esboço de algumas isotérmicas se a função temperatura for dada por
$$T(x,y)=\dfrac{100}{1+x^{2}+2y^{2}}.$$
As isotérmicas são dadas pela família de elipses: $x^{2} + 2y^{2} = \frac{100}{C} - 1,$ com $0 < C \leq 100.$
Sabendo que $\left|\sin\frac{1}{x}\right| \leq 1$, podemos dizer algo sobre
$$\displaystyle \lim_{(x,y) \to (0,0)}y\sin\dfrac{1}{x}?$$
Justifique sua resposta.
$\displaystyle \lim_{(x,y) \to (0,0)} y\sin\left(\frac{1}{x} \right) = 0.$
Esboce o gráfico da função $f(x,y)=10-4x-5y$.
$z = 10 - 4x - 5y.$
Dada a expressão $g(x,y)=f(x,y)+2$, escreva como o gráfico de $g$ é obtido a partir do gráfico de $f.$
Gráfico de $f$ deslocado para cima por duas unidades.
É dada uma curva $\gamma$ que passa pelo ponto $\gamma(t_0) = (1,3)$ e cuja imagem está contida na curva de nível $x^2 + y^2 = 10$. Suponha $\gamma'(t_0) \neq \bf{0}$.
- Determine a equação da reta tangente a $\gamma$ no ponto $(1,3)$.
- Determine uma curva $\gamma(t)$ satisfazendo as condições acima.
- $(x,y) = (1,3) + \lambda (-6,2),$ $\lambda \in \mathbb{R}.$
- $\gamma(t) = (\sqrt{10} \cos(t), \sqrt{10} \sin(t)).$
Determine o conjunto dos pontos de continuidade da função $f(x,y) = \sqrt{6 - 2x^2 - 3y^2}$. Justifique sua resposta.
$\left\lbrace (x,y);\; 2x^{2} + 3y^{2} \leq 6 \right\rbrace.$
Determine o maior conjunto no qual a função $f(x,y) = \begin{cases}\dfrac{x^2y^3}{2x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0), \\1, & \quad \text{se } (x,y) = (0,0) \end{cases}$ é contínua.
$\left\lbrace (x,y);\; (x,y) \neq (0,0) \right\rbrace.$
Faça um esboço do diagrama de contorno da função cujo gráfico é mostrado.
$y = 2x \pm \sqrt{C},$ $C \geq 0.$
Determine o maior conjunto no qual a função $f(x,y) = \begin{cases}\dfrac{xy}{x^2 + xy + y^2}, & \quad \text{se } (x,y) \neq (0,0), \\0, & \quad \text{se } (x,y) = (0,0)\end{cases}$ é contínua.
$\left\lbrace (x,y);\; (x,y) \neq (0,0) \right\rbrace.$
Esboce o gráfico da função $f(x,y)=e^{\sqrt{x^{2}+y^{2}}}$. Em geral, se $g$ é uma função de uma variável, como saber o gráfico de $f(x,y)=g(\sqrt{x^{2}+y^{2}})$ a partir do gráfico de $g$?
O gráfico de $f(x,y) = g(\sqrt{x^{2} + y^{2}})$ pode ser obtido rotacionando o gráfico de $g$ no plano $xz$ ao redor do eixo $z.$
Utilize coordenadas polares $x=r\cos \theta$ e $y=r\sin \theta$, com $r \geq 0$ e $0 \leq \theta < 2 \pi$, e o teorema do confronto para calcular o limite
$$\displaystyle \lim_{(x,y) \to (0,0)}\dfrac{x^3 + y^3}{x^2 + y^2}.$$
Dica: Note que, se $(r, \theta)$ são as coordenadas polares do ponto $(x,y)$, com $r \geq 0$, então $r \to 0^+$ quando $(x,y) \to (0,0)$.
$0.$
Calcule
$$\displaystyle \lim_{(x,y) \to (0,0)} \dfrac{\mbox{sen}(x^2 + y^2)}{x^2 + y^2}.$$
Considere $t=x^{2}+y^{2}$.
Assim , se $(x,y)\rightarrow (0,0)$ temos que $t \to 0.$ Portanto,
$$\lim_{(x,y) \to (0,0)} \frac{\sin(x^{2}+y^{2})}{x^{2}+y^{2}}=\lim_{t \to 0}\frac{\sin t}{t}=1.$$
Determine o maior conjunto no qual a função $F(x,y) = \dfrac{1}{x^2 - y}$ é contínua.
$\left\lbrace (x,y);\; y \neq x^{2} \right\rbrace.$
Seja $f(x,y)=e^{xy}$ uma função de duas variáveis.
Determine o domínio e a imagem de $f.$
Esboce as curvas de nível de $f.$
$D_{f} = \mathbb{R}^{2}$ e $Im(f) = \left\lbrace z \in \mathbb{R};\; z > 0 \right\rbrace.$
$xy = C.$
Determine o conjunto dos pontos de continuidade da função $f(x,y) = \dfrac{x - y}{\sqrt{1 - x^2 - y^2}}$. Justifique sua resposta.
$\left\lbrace (x,y);\; x^{2} + y^{2} < 1 \right\rbrace.$
Mostre que os limites não existem, considerando que \((x,y)\rightarrow (0,0) \) ao longo dos eixos coordenados.
\[ \lim_{(x,y)\to(0,0)}\dfrac{3}{x^2+2y^2} \]
\[ \lim_{(x,y)\to(0,0)}\dfrac{x+y}{2x^2+y^2} \]
Determine e faça o esboço do domínio da função $f(x,y)=\ln(9-x^{2}-9y^{2})$.
$\left\lbrace (x,y);\; \frac{x^{2}}{9} + y^{2} < 1 \right\rbrace.$
$f(x,y) = \begin{cases}\dfrac{xy^2}{x^2 + y^2}, & \quad \text{se } (x,y) \neq (0,0), \\0, & \quad \text{se } (x,y) = (0,0), \end{cases}$ é contínua em (0,0)? Justifique.
Notemos que para $(x,y)\neq (0,0)$ a função $f$ é contínua, pois $xy^{2}$ e $x^{2}+y^{2}$ são funções contínuas e $x^{2}+y^{2}\neq 0.$ Agora, estudemos a continuidade da função $f$ no ponto $(0,0).$ Temos que
$$\lim_{(x,y)\to (0,0)}f(x,y)=\lim_{(x,y)\to (0,0)}\frac{xy^{2}}{x^{2}+y^{2}}=\lim_{(x,y)\to (0,0)}x\cdot \frac{y^{2}}{x^{2}+y^{2}}.$$
Como
$$\lim_{(x,y)\to (0,0)}x=0\,\,\,\,\,\, \mbox{e}\,\,\,\,\,\, \bigg| \dfrac{y^{2}}{x^{2}+y^{2}}\bigg|\leq 1,\, \forall (x,y)\neq (0,0),$$
obtemos que
$$\lim_{(x,y)\to (0,0)}f(x,y)=0.$$
Assim,
$$\lim_{(x,y)\to (0,0)}f(x,y)=0=f(0,0).$$
Portanto, $f$ é contínua em $(0,0).$
Esboce o gráfico da função $f(x,y)=\sqrt{x^{2}+y^{2}}$.
$z = \sqrt{x^{2} + y^{2}}$
Determine e faça o esboço do domínio da função $f(x,y,z)=\ln(16-4x^{2}-4y^{2}-z^{2})$.
$\left\lbrace (x,y);\; \frac{x^{2}}{4} + \frac{y^{2}}{4} + \frac{z^{2}}{16} < 1\right\rbrace.$
Suponha que $\displaystyle \lim_{(x,y) \to (3,1)}f(x,y) = 6$. O que podemos dizer do valor de $f(3,1)$? E se a função $f$ for contínua?
Nada se pode afirmar. Se $f$ for contínua em $(x_{0},y_{0}),$ $f(3,1) = 6.$
Esboce o gráfico da função $f(x,y)=g(\sqrt{x^{2}+y^{2}})$. Em geral, se $g$ é uma função de uma variável, como saber o gráfico de $f(x,y)=g(\sqrt{x^{2}+y^{2}})$ a partir do gráfico de $g$?
O gráfico de $f(x,y) = g(\sqrt{x^{2} + y^{2}})$ pode ser obtido rotacionando o gráfico de $g$ no plano $xz$ ao redor do eixo $z.$