Exercícios
Aplicações
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Seja \(\mathbf{F}(x,y)= (ye^{xy}-1)\mathbf{i} + xe^{xy}\mathbf{j}.\)
Mostre que \(\mathbf{F}\) é um campo vetorial conservativo.
Calcule uma função potencial de \(\mathbf{F}\).
Calcule o trabalho realizado pelo campo vetorial sobre uma partícula que se move ao longo da curva representada pelas seguintes equações paramétricas \begin{align*} x & = t+ \arcsin(\sin t) \\ y & = \dfrac{2}{\pi}\arcsin(\sin t), \ \left(0\leq t\leq 8\pi\right). \end{align*}
Sejam \(\alpha\) e \(\beta\) dois ângulos que satisfazem \(\displaystyle 0<\beta-\alpha\leq 2\pi\) e suponha que \( r= f(\theta)\) seja uma curva polar lisa com \(f(\theta)>0\) no intervalo \([\alpha,\beta]\). Use a fórmula \[ A = \dfrac{1}{2}\int_C-y\,dx+x\,dy \] para encontrar a área da região \(R\) englobada pela curva \(r=f(\theta)\) e os raios \(\theta=\alpha\) e \(\theta=\beta\).
Seja \(\displaystyle \mathbf{F}(x,y,z)=f(x,y,z)\mathbf{i}+ g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}\) e suponha que \(f\), \(g\) e \(h\) sejam contínuas e tenham derivadas parciais de primeira ordem contínuas numa região. Mostre que se \(\mathbf{F}\) é conservativo numa região esférica aberta então \(\mathrm{rot\,}\mathbf{F} = \mathbf{0}\) nessa região. [Sugestão: use que se \(\mathbf{F}\) for conservativo numa região, então \[ \dfrac{\partial f}{\partial y}=\dfrac{\partial g}{\partial x},\quad \dfrac{\partial f}{\partial z}=\dfrac{\partial h}{\partial x},\quad \dfrac{\partial g}{\partial z}=\dfrac{\partial h}{\partial y} \] nessa mesma região.]
Prove a seguinte identidade \[ \iint\limits_\sigma\mathrm{rot\,}\mathbf{F}\cdot\mathbf{n}\,dS = 0, \] supondo que \(\mathbf{F}\) e \(\sigma\) satisfaçam as hipóteses do Teorema da Divergência.
Seja \(G\) um sólido com a superfície \(\sigma\) orientada por vetores normais unitários para fora, suponha que \(\phi\) tenha derivadas parciais de primeira e segunda ordens contínuas em algum conjunto aberto contendo \(G\) e seja \(D_{\mathbf{n}}\phi\) a derivada direcional de \(\phi\), onde \(\mathbf{n}\) é um vetor normal unitário para fora de \(\sigma\). Mostre que \[ \iint\limits_\sigma D_{\mathbf{n}}\phi\,dS = \iiint\limits_G\left[\dfrac{\partial^2\phi}{\partial x^2}+ \dfrac{\partial^2\phi}{\partial y^2} + \dfrac{\partial^2\phi}{\partial z^2} \right]\,dV. \]
Considere o campo vetorial \(\mathbf{F}(x,y,z)=x^2\mathbf{i} + y^2\mathbf{j}+z^2\mathbf{k}\) e a superfície \(\sigma\) descrita como sendo a porção do cone \(z=\sqrt{x^2+y^2}\) abaixo do plano \(z=1\) e tendo orientação para cima. Verifique o Teorema de Stokes calculando, separadamente, a integral de linha e a integral dupla e, em seguida, comparando os valores.
Encontre o trabalho realizado pelo campo de forças \[ \mathbf{F}(x,y)= y^2\mathbf{i} + xy\mathbf{j} \] para mover uma partícula de \((0,0)\) até \((1,1)\) ao longo da parábola \(y=x^2\).
Considere o campo vetorial \(\mathbf{F}(x,y,z)=(x-y)\mathbf{i} + (y-z)\mathbf{j}+(z-x)\mathbf{k}\) e a superfície \(\sigma\)
descrita como sendo a porção do plano \(x+y+z=1\) no primeiro octante e orientada para cima. Verifique o Teorema de Stokes
calculando, separadamente, a integral de linha e a integral dupla e, em seguida, comparando os valores.
\(\dfrac{3}{2}\)
Prove a seguinte identidade \[ \iint\limits_\sigma\nabla f\cdot\mathbf{n}\,dS = \iiint\limits_G\Delta f\,dV, \] supondo que \(\sigma\) e \(G\) satisfaçam as hipóteses do Teorema da Diverência e que \(f(x,y,z)\) cumpra os requisitos de diferenciabilidade necessários. Acima, \(\displaystyle \Delta f= \dfrac{\partial^2f}{\partial x^2}+\dfrac{\partial^2f}{\partial y^2}+\dfrac{\partial^2f}{\partial z^2}\) é denominado Laplaciano de \(f\).
A Lei de Coulomb afirma que a força eletrostática \(\mathbf{F}(\mathbf{r})\) que uma partícula com carga \(Q\) exerce sobre outra partícula com carga \(q\) é dada pela fórmula \[ \mathbf{F}(\mathbf{r}) = \dfrac{q\,Q}{4\pi\epsilon_0\|\mathbf{r}\|^3}\mathbf{r}, \] onde \(\mathbf{r}\) é o vetor posição da carga \(q\) em relação a \(Q\) e \(\epsilon_0\) é uma constante positiva (chamada permissividade do meio).
Expresse o campo vetorial \(\mathbf{F}(\mathbf{r})\) em forma de coordenadas \(\mathbf{F}(x,y,z)\) com \(Q\) na origem.
Calcule o trabalho realizado pelo campo vetorial \(\mathbf{F}\) sobre uma carga \(q\) que se move ao longo de um segmento de reta de \((3,0,0)\) para \((3,1,5)\).
Use o Teorema de Green para provar que\[ \int_Cf(x)\,dx + g(y)\,dy = 0\] se \(f\) e \(g\) forem funções diferenciáveis e \(C\) for uma curva fechada simples lisa por partes.
O que isso nos diz sobre o campo vetorial \[ \mathbf{F}(x,y) = f(x)\mathbf{i}+g(y)\mathbf{j}?\]
Supondo que \(\sigma\) e \(G\) satisfaçam as hipóteses do Teorema da Divergência e que \(f\) e \(g\) sejam funções suficientemente regulares, prove as seguintes identidades (de Green):
\[\iint\limits_\sigma\left(f\nabla g\right)\cdot\mathbf{n}\,dS = \iiint\limits_G\left( f\Delta g+\nabla f\cdot\nabla g\right)\,dV, \]
\[\iint\limits_\sigma\left(f\nabla g-g\nabla f\right)\cdot\mathbf{n}\,dS = \iiint\limits_G\left( f\Delta g- g\Delta f\right)\,dV, \] onde \(\displaystyle \Delta f= \dfrac{\partial^2f}{\partial x^2}+\dfrac{\partial^2f}{\partial y^2}+\dfrac{\partial^2f}{\partial z^2}\) é denominado Laplaciano de \(f\).
Enuncie o Teorema da Divergência e o Teorema de Stokes, incluindo todas as hipóteses envolvidas.