Exercícios
Escalonamento
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Resolver o sistema linear:
\[\left\{\begin{array}{cccccr}2x_1+&1x_2+&4x_3+&x_4&=&-5 \\2x_1+&8x_2-&10x_3+&8x_4&=&2 \\&&-9x_3+&2x_4&=&2\\4x_1+&1x_2+&6x_3+&5x_4&=&-3\\4x_1+&5x_2-&8x_3+&8x_4&=&-3\\\end{array}\right . .\]
$x_1 = -\dfrac{27}{7}, x_2=\dfrac{-5}{7}, x_3 =\dfrac{2}{7} , x_4 =\dfrac{16}{7}.$
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}2 & 2 & -1 \\ 2 & -1 & 2 \\-1 & 2 & 2\end{pmatrix}.\]
\[\begin{pmatrix}2/9 & 2/9 & -1/9 \\ 2/9 & -1/9 & 2/9 \\-1/9 & 2/9 & 2/9\end{pmatrix}.\]
Uma liga de metal $L_1$ contém $20\%$ de ouro e $80\%$ de prata e uma liga $L_2$ tem $65\%$ de ouro e $35\%$ de prata. Quanto gramas de cada liga são necessários para se formar $100$ gramas de uma liga com quantidade igual de ouro e prata?
Serão necessárias aproximadamente 33.3333 gramas da liga $L_1$ e 66.6667 gramas da liga $L_2$.
Resolver o sistema linear: \[\left\{\begin{array}{ccccccccccr}x_1&-&2x_2&+&3x_3&+&2x_4&+&x_5&=&10 \\2x_1&-&4x_2&+&8x_3&+&3x_4&+&10x_5&=& 7 \\3x_1&-&6x_2&+&10x_3&+&6x_4&+&5x_5&=&27\\\end{array}\right..\]
$x_3 = \dfrac{-19+2 x1- 4 x2}{3}, x_4 = \dfrac{ 41 - 4 x_1 + 8 x_2}{3}, x_5 = \dfrac{5- x_1+2 x_2}{3}, \forall x_1, x_2\in \mathbb{R}$.
Considere a matriz $ A = \left[ \begin{array}{ccc} 1 & 2 & 3\\ 1 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$.
- Calcule o $det(A^n)$, para todo número natural $n$.
- Usando escalonamento encontre a matriz inversa $A^{-1}$.
- Como $\det(A)=-1$ e $\det(A^n)=\det(A)^n$, $\det(A)^n=(-1)^n$.
- $ A^{-1} = \left[ \begin{array}{ccc} 0 & 1 & -1\\ 2 & -2 & -1 \\ -1 & 1 & 1\end{array}\right]$.
Resolver o sistema linear:
\[\left\{\begin{array}{rrrcr}2x_1+&3x_2-&5x_3&=& 2 \\2x_1+&3x_2-&x_3&=& 8 \\6x_1+ &9x_2-&7x_3&=& 18 \\\end{array}\right. . \]
$x_2 =\dfrac{19-4x_1}{6}, x3 =\dfrac{3}{2}, \forall x_1 \in \mathbb{R}$.
Resolver o sistema linear: \[\left\{\begin{array}{ccccccr}2x_1&+&5x_2&+&12x_3&=& 6 \\3x_1&+&x_2&+&5x_3&=& 12 \\5x_1&+&8x_2&+&21x_3&=& 17\\\end{array}\right. .\]
Esse sistema linear não possui solução.
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{pmatrix}.\]
\[\begin{pmatrix}\cos x & -\sin x \\ \sin x & \cos x\end{pmatrix}.\]
Use o processo de inversão (Gauss-Jordan) para obter a inversa da matriz $A$ e verifique que a matriz obtida é de fato a inversa de $A$, onde: $$ A = \begin{bmatrix} 6 & 4 & 3 & 0 \\ 1 & 1 & 0 & 0 \\ -3 & -2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Resolver o sistema linear:
\[\left\{\begin{array}{ccccccccccr}&&x_1&+&x_2&-&x_3&+&2x_4&=&6 \\&-&x_1&+&x_2&+&4x_3&-&3x_4&=&-2 \\&&&&x_2&+&3x_3&+&x_4&=& 5 \\&&&&x_1&+&5x_2&+&5x_3& =&14 \\\end{array}\right. . \]
$x_2 = \dfrac{13-2 x_1}{5}, x_3 = \dfrac{1+x_1}{5}, x_4 = \dfrac{9-x_1}{5}, \forall x_1\in\mathbb{R}.$
Resolver o sistema linear:
\[\left \{\begin{array}{rrrrl}x&-y&+2z&-t&=0\\3x&+y&+3z&+t&=0\\x&-y&-z&-5t&=0\end{array}\right..\]
$y = \dfrac{-6 x}{5}, z = \dfrac{-4 x}{5}, t = \dfrac{3 x}{5}, \forall x \in \mathbb{R}$.
Resolver o sistema linear: \[\left\{\begin{array}{ccccccccr}3x& + &3y& - &2z& - &t&=& 2\\5x& + &2y& + &z& - &2t&=& 1\\2x& - &y& + &3z& - &t&=& -1\end{array}\right. .\]
$z = \dfrac{-3+x+4y}{5}, t =\dfrac{-4+13 x+7 y}{5}, \forall x, y \in \mathbb{R}.$
Resolva o sistema $A\,X=B$ usando o método de Gauss-Jordan, onde: $$A=\begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ e } B=\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$
Destaque as operações elementares usadas.
Vamos aplicar escalonamento sobre a matriz aumentada do sistema:
\begin{gather*}
\begin{pmatrix} 1 & 0 &-1&\vdots & 1 \\ 2 & 1 & 0& \vdots & 1 \\ 0 & 1 & 1 & \vdots & 1 \end{pmatrix} \begin{array}{c} L_2-2L_1\rightarrow L_2\\ \sim \end{array}
\begin{pmatrix} 1 & 0 & -1 & \vdots & 01 \\ 0 & 1 & 2 & \vdots & -1 \\ 0 & 1 & 1 & \vdots & 01 \end{pmatrix}
\begin{array}{c} L_3-L_2\rightarrow L_3 \\\sim \end{array}
\begin{pmatrix} 1 & 0 & -1 & \vdots & 1 \\ 0 & 1 & 2 & \vdots & -1 \\ 0&0&-1&\vdots&2 \end{pmatrix} \\ \begin{array}{c} \\-L_3\leftrightarrow L_3 \\ \sim \\ L_3+L_1\rightarrow L_1 \end{array} \begin{pmatrix} 1& 0& 0&\vdots & -1\\ 0& 1& 2&\vdots & -1\\ 0& 0& 1&\vdots &-2 \end{pmatrix}
\begin{array}{c} L_2-2 L_3\rightarrow L_2 \\ \sim \end{array}
\begin{pmatrix} 1& 0& 0&\vdots &-1 \\ 0 & 1& 0& \vdots& 3\\ 0& 0 & 1 &\vdots & -2 \end{pmatrix}. \end{gather*} Logo, a solução é dada por \(\displaystyle (-1,3,-2)^T\).
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}a & b \\ -b & a\end{pmatrix}.\]
A inversa existirá desde que $a\neq 0$ ou $b\neq 0$, nesse caso será dada por \[\begin{pmatrix}\dfrac{a}{a^2+b^2} & \dfrac{-b}{a^2+b^2} \\ \dfrac{b}{a^2+b^2} & \dfrac{a}{a^2+b^2}\end{pmatrix}.\]
Resolver o sistema linear:
\[ \left\{\begin{array}{rrrrl}x&+5y&+4z&-13z&=3\\3x&-y&+2z&+5t &=2\\2x&+2y&+3z&-4t&=1\end{array}\right. .\]
Esse sistema linear não possui solução.
Verifique se as matrizes abaixo estão na forma escalonada. Usando operações de linha equivalência escalone as (encontre a forma escalonada das) que não estiverem na forma escalonada.
- $ \begin{pmatrix}1&0&0\\0&1&0\\0&0&1\\1&0&0\end{pmatrix}.,$
- $ \begin{pmatrix}1&1&0\\0&0&1\\0&0&0\end{pmatrix}. $
Seja $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ uma função definida por $f(x,y) = (2x+y,x-y)$. Ache o(s) valor(es) de $\lambda$ para que a equação $f(x,y) = \lambda(x,y)$ possua solução $(x,y) \neq 0$.
$\lambda=\dfrac{1 + \sqrt{13}}{2}$ ou $\lambda=\dfrac{1 - \sqrt{13}}{2}$.
Resolver o sistema linear:\[\left\{\begin{array}{rrrrrcr}1x_1+&3x_2-&7x_3+&5x_4+&2x_5&=&0 \\2x_1+&3x_2-&20x_3+&7x_4+&8x_5&=&0 \\10x_1+&22x_2-&46x_3+&34x_4+&12x_5&=&0 \\\end{array}\right. . \]
$x_3 =\dfrac{11x_1+4x_2}{5}, x_4 = \dfrac{6 x_1-x_2}{5}, x_5 = \dfrac{21 x_1 + 9 x_2}{5}, \forall x_1, x_2 \in \mathbb{R}$.
Use o método de inversão por escalonamento para obter, se possível, a inversa das seguintes matrizes:
- $A= \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\ 2 & 3 & 5 \end{bmatrix} $;
- $B=\begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} $.
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}1 & 0 & 0 \\ 0 & 5 & 0 \\0 & 0 & 6\end{pmatrix}.\]
\[\begin{pmatrix}1 & 0 & 0 \\ 0 & 1/5 & 0 \\0 & 0 & 1/6\end{pmatrix}.\]
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}1 & 3 & -7 \\ 0 & 1 & -2 \\0 & 0 & 1\end{pmatrix}.\]
\[\begin{pmatrix}1 & -3 & -1 \\ 0 & 1 & -2 \\0 & 0 & 1\end{pmatrix}.\]
Resolver o sistema linear em função do parâmetro $\lambda$:
\[\left\{\begin{array}{cccl}2x_1+&3x_2+&x_3&=1 \\x_1+&6x_2+&x_3&=3 \\2x_1-&3x_2+&2x_3&=\lambda\\x_1+&3x_2+&2x_3&=1 \\\end{array}\right.. \]
$x_1 =\dfrac{-1}{4}, x_2 =\dfrac{7}{12}, x_3 =\dfrac{-1}{4}, \lambda = \dfrac{-11}{4}.$
No processo de escalonamento de um sistema linear, se uma linha se anular, mostre que ela era uma combinação linear das outras.
Verifique se as matrizes abaixo estão na forma escalonada. Usando operações de linha equivalência escalone as (encontre a forma escalonada das) que não estiverem na forma escalonada.
- $ \begin{pmatrix}1&-2&-1&0\\1&\phantom{-}0&-1&1\\0&\phantom{-}1&\phantom{-}0&2\end{pmatrix}, $
- $ \begin{pmatrix}1&0&0&5&0\\0&1&0&2&0\\0&0&1&1&0\\0&0&0&0&1\end{pmatrix}. $
Resolver o sistema linear:
\[\left\{\begin{array}{cccccr}&x_1&-&7x_2&=&-11 \\-&x_1&+&11x_2&=&31 \\&2x_1&-&12x_2&=&-26 \\&3x_1&-&17x_2&=&-15 \\\end{array}\right. . \]
O sistema não possui solução.
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}1 & 2 \\ 3 & 5\end{pmatrix}.\]
\[\begin{pmatrix}-5 & 2 \\ 3 & -1\end{pmatrix}.\]
Um construtor tem contratos para construir 3 estilos de casa: moderno, mediterrâneo e colonial. A quantidade de material empregada em cada tipo de casa é dada pela tabela:
\[
\begin{array}{lccccc}
& \text{Ferro} & \text{Madeira} & \text{Vidro} &
\text{Tinta} & \text{Tijolo}\\
\text{Moderno} & 5 & 20 & 16 & 7 & 17\\
\text{Mediterrâneo} & 7 & 18 & 12 & 9 & 21\\
\text{Colonial} & 6 & 25 & 8 & 5 & 13
\end{array}
\]
Se ele pretende construir 5, 7 e 12 casas dos tipos moderno, mediterrâneo e colonial, respectivamente, quantas unidades de cada material serão empregadas?
Suponha que os preços por unidade de ferro, madeira, vidro, tinta e tijolo sejam, respectivamente, 15, 8, 5, 1 e 10. Qual é o preço unitário de cada tipo de casa?
Qual é o custo total do material empregado?
- As quantidades de ferro, madeira, vidro, tinta e tijolo serão 146, 526, 260,158 e 388, respectivamente.
- O preço unitário dos tipos moderno, mediterrâneo e colonial serão 492, 528 e 465, respectivamente.
- O custo total do material empregado para construir 5 casas do estilo moderno, 7 casas do estilo mediterrâneo e 12 casas do estilo colonial é 11736.
Considere a matriz $$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & a \\ 2 & 2a-2 & -a-2& 3a-1 \\ 3 & a + 2 & -3 & 2a + 1 \end{bmatrix}.$$ Determine o conjunto solução do sistema $A\,X = B$, em que $B = \begin{bmatrix} 4 & 3 & 1 & 6\end{bmatrix}^t$, para todos os valores de $a$.
Para $a=5$, o sistema não possui solução.
Para $a=1$, o sistema possui infinitas soluções com $x=2-w$, $y=z=1$ e $w\in\mathbb{R}$.
Para $a\neq 5$ e $a\neq 1$, $x = \dfrac{4a-11}{a-5}$, $y = \dfrac{4}{5-a}$, $z = \dfrac{4}{5-a}$, $w = \dfrac{1}{5-a}$.
Resolver o sistema linear:
\[\left\{\begin{array}{rrrrl}4x&+3y&-z&+t&=4\\x&-y&+2z&-t&=0\\5x&+2y&+z&&=4\end{array}\right. . \]
$z = 4 - 5 x - 2 y, t = 8 - 9 x - 5 y, \forall x, y \in \mathbb{R}$.
Sejam $U=\begin{bmatrix} c & 4 & 1 \\ 0 & d+1 & 3 \\ 0 & 0 & c^2-4 \end{bmatrix}$, $M=\begin{bmatrix} -1 & 1 & -1 \\ -4 & 9 & -3 \\ 2 & 3 & 3 \end{bmatrix}$ e $N=\begin{bmatrix} 1 & -5 & 4 \\ -2 & 2 & 0 \\ -3 & -1 & -1 \end{bmatrix}$.
- Determine, se possível, $c$ e $d$ tais que $A=M\,U$ seja invertível;
- Determine, se possível, $c$ e $d$ tais que $B=N\,U$ seja invertível.
- Posto que $\det(M)=0$ e $\det(A)=\det(M)\det(U)$, não há valores de $c$ e $d$ tais que $A$ seja invertível.
- $\det(N)=40$, logo, se $\det(U)\neq0$, $B=NU$ será invertível, de novo porque $\det(B)=\det(N)\det(U)$. Os valores de $c$ e $d$ para os quais $\det(U)\neq$ são $c,\, d\in\mathbb{R}$ tais que $c\neq 0,$ $c\neq\pm 2$ e $d\neq -1$.
Resolver o sistema linear em função do parâmetro $\lambda$:
\[\left\{\begin{array}{ccccl}x_1-&2x_2-&x_3+&x_4&=-2 \\2x_1+&7x_2+&3x_3+&x_4&=\ \, 6 \\11x_1+&11x_2+&4x_3+&8x_4&=\ \, 8\\10x_1+&2x_2+&&8x_4&=\ \, \lambda \\\end{array}\right. .\]
$x_3 = 2 - \dfrac{x_1- 9 x_2}{4} , x_4 = -\dfrac{5x_1-x_2}{4}, \lambda = 0, \forall x_1,x_2\in\mathbb{R}$.