LISTA DE DISCIPLINAS

Exercícios

Mudança de coordenadas

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


1217   

Reduza a equação $4x^2+3y^2-z^2-12xy+4xz-8yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1441   

Suponha que o sistema de coordenadas $x'y'$ tenha sido obtido pela rotação de um sistema de coordenadas $xy$ por um ângulo $\theta$. Explique como podemos encontrar as coordenadas $xy$ de um ponto cujas coordenadas $x'y'$ sejam conhecidas.


1074   

Identificar a cônica $8y^2+6xy-12x-26y+11=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).


1236   

Reduza a equação $2x^2+2y^2-4z^2-5xy-2xz-2x-2y+z=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1065   

Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+y^2+(1/3)xy+6x+8y-5=0$.


1050   

Na equação $4x^2-20xy+25y^2-15x-6y=0$, elimine, por meio de uma rotação, o termo $xy$. Identifique o conjunto solução e nos casos em que for uma cônica encontre as coordenadas, no sistema inicial, do(s) foco(s) e esboce o gráfico.


1210   

Reduza a equação $z^2 + 4xy + 1 = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.



A equação da quádrica $z^2 + 4xy + 1 = 0$ pode ser escrita em forma matricial:

$$X^tAX+1=0,$$

onde:

$$X=\begin{pmatrix}x \\ y \\ z\end{pmatrix}, \ A=\begin{pmatrix}0 & 2 & 0 \\2 & 0 & 0 \\0 & 0 & 1\end{pmatrix}. $$


Seja:

$$P(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix}-\lambda & 2 & 0 \\2 & -\lambda & 0 \\0 & 0 & 1-\lambda\end{pmatrix}=-\lambda^3+\lambda^2+4\lambda-4.$$


As raízes de $P(\lambda)$ são $1$, $2$ e $-2$. Considere os sistemas lineares referentes às raízes $1$ e $2$, $(A-I) X = 0$ e $(A-2I) X = 0$. Uma solução de norma unitária desses sistemas consiste em $U_1=(0,0,1)$ e $U_2=(1/\sqrt{2},1/\sqrt{2},0)$, respectivamente. Sejam $U_3=U_1 \times U_2 = (-1/\sqrt{2},1/\sqrt{2},0)$, $Q=(U_1,U_2,U_3)$ e $X'=\begin{pmatrix}x' \\ y' \\ z'\end{pmatrix}.$ Dessa forma, com a mudança de coordenadas dada por $X=QX'$, a equação $z^2 + 4xy + 1 = 0$ se transforma em:

$$-(x')^2-\dfrac{(y')^2}{1/2}+\dfrac{(z')^2}{1/2}=1,$$

que é a equação de um hipérbolóide de duas folhas.


1221   

Reduza a equação $3x^2+y^2-2xy+2xz-2yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1223   

Reduza a equação $4x^2+y^2-8z^2+4xy-4xz+8yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1205   

Reduza a equação $2x^2 + 30y^2 + 23z^2 + 72xz + 150 = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1227   

Reduza a equação $4x^2+6y^2+4z^2-4xz+1=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1045   

Decida se a cônica $C$ determinada pela equação $y^2+x^2+3xy-10x-10y+5=0$ é degenerada ou não. Se não for degenerada, encontre  os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.


1043   

Decida se a cônica $C$ determinada pela equação $5x^2+6xy+5y^2-8 = 0$ é degenerada ou não. Se não for degenerada, encontre  os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.


1073   

Identificar a cônica $x^2+3y^2-2xy+3=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).


513   

Reduza a equação $4x^2-8x-9y^2+6y-36z+3=0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


$9z-2=(x-1)^2-\dfrac{(3y-3)^2}{4}$: parabolóide hiperbólico.


1069   

Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2-2y^2+4xy-6=0$.


510   

Reduza a equação $4x^2-2y^2+z^2=1$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


$\dfrac{x^2}{1/4} - \dfrac{y^2}{1/2} + z^2 = 1$: hiperbolóide de uma folha.


1066   

Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+(1/5)xy +y^2+2x+2y+2=0$.


1440   

Suponha que o sistema de coordenadas $x'y'$ tenha sido obtido pela rotação de um sistema de coordenadas $xy$ por um ângulo $\theta$. Mostre que, para cada valor de $\theta$, a equação $x^2+y^2=r^2$ é transformada na equação $x'^2+y'^2=r^2$. Dê uma explicação geométrica.


512   

Reduza a equação $x^2+y+z^2=0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


$y=-(x^2+z^2)$: parabolóide elíptico.


1080   

Identifique a cônica descrita pela equação $4x^2-12xy+9y^2-6x+9y-4=0$.


1230   

Reduza a equação $5x^2+5y^2+3z^2-2xy+2xz+2yz+2x-y=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1222   

Reduza a equação $-2x^2+4y^2+6z^2+2xy+6xz+6yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1232   

Reduza a equação $x^2+4y^2+9z^2-4xy+6xz-12yz+4x-8y+12z+4=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1647   

Em cálculo de uma variável vemos que se $x_0$ é um extremo local (máximo ou mínimo) de uma função $f(x)$, então a reta tangente ao gráfico de $f$ em $x_0$ é horizontal, ou seja, $f'(x_0)=0$. 

  1. Encontre uma relação similar entre um extremo local  de uma função de duas variáveis e o plano tangente ao seu gráfico.

  2. Use esta relação para encontrar os extremos locais da função $\displaystyle f(x,y)=-2xy$.

  3. Verifique se sua resposta no item anterior está correta, primeiro achando uma mudança de coordenadas conveniente (rotação)  e, em seguida, completando os quadrados em $f(x',y')$ de tal forma a identificar a quádrica resultante.


1040   

A mudança de coordenadas entre os sistemas $xy$ e $x_{1}y_{1}$ é feita através de uma matriz ortogonal $U$, como segue

\[ \begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix} =  \begin{pmatrix}{\frac{\,3}{5}} & {\frac{\,4}{5}} \\{\frac{\,-4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}\quad \text{ e }\quad\begin{pmatrix}x\\ y\end{pmatrix} =  \begin{pmatrix}{\frac{\,3}{5}} & {\frac{-4}{5}} \\ {\frac{\,4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix},\quad \text{ lembrar que } U^{-1} = U^{t}.\]

ident_conicas_1.png

Já a mudança entre os sistemas $x_{1}y_{1}$ e $XY$ é dada por $X = x_{1}+1$, $Y = y_{1}+1$.

  1.  Encontre as coordenadas dos pontos $a_{1}$ e $b_{1}$ (Figura 1) nos sistemas $xy$ e $x_{1}y_{1}$.

  2. Encontre as coordenadas dos pontos $c_{1}$, ,$d_{1}$, $\textbf{O}$, e $A_{2}$ (Figura 2) em relação aos eixos $xy$, $x_{1}y_{1}$ e $XY$.


1059   

Considere a cônica definida pela equação $2xy+x-2=0.$

  1. Determinar seu centro.

  2. Classificar a cônica.

  3. Esboçar seu gráfico.


1081   

Identifique a cônica descrita pela equação $4x^2-4xy+y^2-2x+y+15=0$.


1044   

Decida se a cônica $C$ determinada pela equação $x^2+3xy+y^2=2$ é degenerada ou não. Se não for degenerada, encontre  os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.


1627   

Suponha que os eixos coordenados estejam fixos, mas a posição $P(x,y)$ de um inseto é movida para uma nova posição $P'(x',y')$ através de uma rotação do ponto por um ângulo $\alpha$ em torno da origem. Naturalmente, nesta rotação o ponto $P$ estará sempre sobre um círculo fixo com centro na origem. Mostre que a nova posição do inseto será \begin{align*} x' & = x\cos\alpha - y\sin\alpha \\ y' & = x \sin\alpha + y\cos\alpha \end{align*}.


1213   

Reduza a equação $x^2 - y^2 + z^2 + 2xz - 2y + 1 = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.



A equação da quádrica $x^2 - y^2 + z^2 + 2xz - 2y + 1 = 0$ pode ser escrita em forma matricial:

$$X^tAX+KX-6=0,$$

onde:

$$X=\begin{pmatrix}x \\ y \\ z\end{pmatrix}, \ K=\begin{pmatrix}0 & -2 & 0\end{pmatrix}, \ A=\begin{pmatrix}1 & 0 & 1 \\0 & -1 & 0 \\1 & 0 & 1\end{pmatrix}. $$


Seja:

$$P(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix}1-\lambda & 0 & 1 \\0 & -1-\lambda & 0 \\1 & 0 & 1-\lambda\end{pmatrix}=-\lambda^3+\lambda^2+2\lambda.$$


As raízes de $P(\lambda)$ são $0$, $2$ e $-1$. Considere os sistemas lineares referentes às raízes $0$ e $2$: $A X = 0$ e $(A-2I)=0$. Uma solução de norma unitária desses sistemas são $U_1=(1/\sqrt{2},0,-1/\sqrt{2})$ e $U_2=(1/\sqrt{2},0,-1/\sqrt{2})$, respectivamente. Sejam $U_3=U_1 \times U_2 = (0,-1,0)$, $Q=(U_1,U_2,U_3)$ e $X'=\begin{pmatrix}x' \\ y' \\ z'\end{pmatrix}.$ Dessa forma, com a mudança de coordenadas dada por $X=QX'$, a equação $x^2 - y^2 + z^2 + 2xz - 2y + 1 = 0$ se transforma em:

$$\dfrac{(z'-1)^2}{2}-(y')2=1,$$

que é a equação de um cilindro hiperbólico.


1439   

Suponha que o sistema de coordenadas $x'y'$ tenha sido obtido pela rotação de um sistema de coordenadas $xy$ por um
ângulo de $30^\circ$. Use a rotação \begin{align*}x & = x'\cos\theta - y'\sin\theta, \\y & = x'\sin\theta + y'\cos\theta, \end{align*}
para encontrar as coordenadas $x'y'$ da curva $y=x^2$.


1068   

Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+3y^2+4xy+4y-4=0$.


1237   

Reduza a equação $3x^2+y^2+z^2+4yz+12x+2y-2z+9=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1208   

Reduza a equação $2xy + 2xz + 2yz - 6x - 6y - 4z = 9$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1240   

Reduza a equação $3x^2+3y^2+z^2-2xy-4x+2y+6z+5=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1239   

Reduza a equação $2x^2+4yz-4x+2y+6z+5=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1228   

Reduza a equação $2x^2+y^2-4xy-4yz+12x+6y+6z=1 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1057   

Decida se a cônica $C$ determinada pela equação $4x^2-8x-9y^2+6y-68=0$ é degenerada ou não. Se não for degenerada, encontre  os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.


1085   

Identifique a cônica descrita pela equação$7x^2+6xy-y^2-2x+10y-9=0$.  


1486   

Em cálculo de uma variável vemos que se $x_0$ é um extremo local (máximo ou mínimo) de uma função $f(x)$, então a reta tangente ao gráfico de $f$ em $x_0$ é horizontal, ou seja, $f'(x_0)=0$. 

  1. Encontre uma relação similar entre um extremo local  de uma função de duas variáveis e o plano tangente ao seu gráfico.

  2. Use esta relação para encontrar os extremos locais da função $f(x,y)=x^2+y^2-2x-6y+14$.

  3. Verifique se sua resposta no item anterior está correta completando os quadrados em $f(x,y)$ e identificando a quádrica.


1036   

Considere o plano com o sistema cartesiano canônico $xy$ e faça uma rotação de um ângulo $\theta$ obtendo um novo sistema $\overline{x}$ $\overline{y}$. Seja $P$ um ponto do plano.

  1. Se $P=(2,2)$ no sistema $xy$ e $\theta=\pi/3$, encontre as coordenadas de $P$ no sistema $\overline{x}$ $\overline{y}$.

  2.  Se $P=(2,2)$ no sistema $\overline{x}$ $\overline{y}$ e $\theta=\pi/3$, encontre as coordenadas de $P$ no sistema $xy$.

  3. Transforme a equação $x^2+y^2=4$ para o sistema $\overline{x}$ $\overline{y}$.

  4. Suponha que $0<\theta <\pi/2$ e que $a=\tan\theta$ ($a$=tangente de $\theta$). Transforme a equação $y=ax$ para o sistema $\overline{x}$ $\overline{y}$.


1472   

Encontre ou mostre a impossibilidade de encontrar $\gamma\in\mathbb{R}$ tal que $\displaystyle x^2+\gamma y^2-4xy+ \gamma x = \gamma$ represente uma parábola.


1211   

Reduza a equação $3x^2 + 2y^2 + 3z^2 - 2xz - 4y = 6$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.



A equação da quádrica $3x^2 + 2y^2 + 3z^2 - 2xz - 4y = 6$ pode ser escrita em forma matricial:

$$X^tAX+KX-6=0,$$

onde:

$$X=\begin{pmatrix}x \\ y \\ z\end{pmatrix}, \ K=\begin{pmatrix}0 & -4 & 0\end{pmatrix}, \ A=\begin{pmatrix}3 & 0 & -1 \\0 & 2 & 0 \\-1 & 0 & 3\end{pmatrix}. $$


Seja:

$$P(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix}3-\lambda & 0 & -1 \\0 & 2-\lambda & 0 \\-1 & 0 & 3-\lambda\end{pmatrix}=-\lambda^3+8\lambda^2-20\lambda+16.$$


As raízes de $P(\lambda)$ são $2$ e $4$, sendo $2$ uma raiz dupla. Considere o sistema linear referente à raiz $2$: $(A-2I) X = 0$. Duas soluções de norma unitária desse sistema são $U_1=(1/\sqrt{2},0,1/\sqrt{2})$ e $U_2=(0,1,0)$. Sejam $U_3=U_1 \times U_2 = (-1/\sqrt{2},0,1/\sqrt{2})$, $Q=(U_1,U_2,U_3)$ e $X'=\begin{pmatrix}x' \\ y' \\ z'\end{pmatrix}.$ Dessa forma, com a mudança de coordenadas dada por $X=QX'$, a equação $3x^2 + 2y^2 + 3z^2 - 2xz - 4y = 6$ se transforma em:

$$\dfrac{(x')^2}{4}+\dfrac{(y'-1)^2}{4}+\dfrac{(z')^2}{2}=1,$$

que é a equação de um elipsóide.


1042   

Seja $\mathcal{C}$ a cônica cuja equação em relação ao sistema $xy$ é dada por $29x^2 + 24xy + 36y^2 + 22x + 96y = 115$. A mudança de coordenadas entre os sistemas $xy$ e $x_{1}y_{1}$ é feita através de uma matriz ortogonal $U$, como segue
\[ \begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix} =  \begin{pmatrix}{\frac{\,3}{5}} & {\frac{\,4}{5}} \\{\frac{\,-4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}\quad \text{ e }\quad
\begin{pmatrix}x\\ y\end{pmatrix} =  \begin{pmatrix}{\frac{\,3}{5}} & {\frac{-4}{5}} \\ {\frac{\,4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix},\quad \text{ lembrar que } U^{-1} = U^{t}.\]

ident_conicas_1.png

Já a mudança entre os sistemas $x_{1}y_{1}$ e $XY$ é dada por $X = x_{1}+1$, $Y = y_{1}+1$.

  1. Encontre a equação de $\mathcal{C}$ nos sistemas $x_{1}y_{1}$ e $XY$.

  2. Encontre as coordenadas dos vértices e dos focos de $\mathcal{C}$ nos três sistemas, $xy$,\,$x_{1}y_{1}$ e $XY$. Dica: Encontrar primeiro no sistema $XY$ e ir voltando.

  3. Faça um esboço do desenho da cônica.


1041   

A mudança de coordenadas entre os sistemas $xy$ e $x_{1}y_{1}$ é feita através de uma matriz ortogonal $U$, como segue

\[ \begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix} =  \begin{pmatrix}{\frac{\,3}{5}} & {\frac{\,4}{5}} \\{\frac{\,-4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}\quad \text{ e }\quad\begin{pmatrix}x\\ y\end{pmatrix} =  \begin{pmatrix}{\frac{\,3}{5}} & {\frac{-4}{5}} \\ {\frac{\,4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix},\quad \text{ lembrar que } U^{-1} = U^{t}.\]

ident_conicas_1.png
Já a mudança entre os sistemas $x_{1}y_{1}$ e $XY$ é dada por $X = x_{1}+1$, $Y = y_{1}+1$.

  1. Encontre as equações das retas suporte do eixo $X$ e do eixo $Y$ em relação aos sistemas $x_{1}y_{1}$ e $xy$.

  2. Encontre as equações das retas suporte do eixo $x_{1}$ e do eixo $y_{1}$ em relação ao sistema $xy$.

  3. Seja $\mathcal{L}$ a reta  cuja equação no sistema $xy$ é dada por $y = 2x + 1$. Encontre as equações de $\mathcal{L}$ em relação aos eixos $x_{1}y_{1}$ e $XY$.


1604   

Os extremos de uma corda elástica com um nó em $K(x,y)$ são presos a um ponto fixo $A(a,b)$ e um ponto $P$ sobre a borda de um pneu de raio $r$ centrado em $(0,0)$. Conforme o pneu gira, $K$ traça uma curva $C$. Encontre a equação desta curva. Assuma que a corda permanece presa e estica uniformemente (ou seja, a razão $\alpha:=|KP|/|AP|$ é constante).


1216   

Reduza a equação $x^2 + y^2 + z^2 + 2xy + 2xz - 2yz + x - y + z + 1 = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1238   

Reduza a equação $4x^2+4y^2+9z^2+8xy+12xz+10x+y+4z+1=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1225   

Reduza a equação $2x^2+2y^2-z^2+8xy-4xz-4yz=2 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1229   

Reduza a equação $x^2+y^2+z^2-4xy-4xz-4yz=7 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1646   

Em cálculo de uma variável vemos que se $x_0$ é um extremo local (máximo ou mínimo) de uma função $f(x)$, então a reta tangente ao gráfico de $f$ em $x_0$ é horizontal, ou seja, $f'(x_0)=0$. 

  1. Encontre uma relação similar entre um extremo local  de uma função de duas variáveis e o plano tangente ao seu gráfico.

  2. Use esta relação para encontrar os extremos locais da função $\displaystyle f(x,y)=2x^2+2y^2-2x-6y+14$.

  3. Verifique se sua resposta no item anterior está correta completando os quadrados em $f(x,y)$ e identificando a quádrica.


1471   

Encontre ou mostre a impossibilidade de encontrar $\gamma\in\mathbb{R}$ tal que $\displaystyle x^2+3y^2-2xy=\gamma$ represente uma elipse.


1568   

Seja $A$ uma matriz $2\times 2$ simétrica e $k$ um escalar. Mostre que o gráfico da equação quadrática $\textbf{x}^tA\textbf{x}=k$ é:

  1. uma hipérbole se $k\neq 0$ e $\det A<0$;

  2. uma elipse, círculo ou cônica imaginária se $k\neq 0$ e $\det>0$;

  3. um par de retas ou uma cônica imaginária se $k\neq 0$ e $\det A=0$;

  4. um par de retas ou um único ponto se $k=0$ e $\det A \neq 0$;

  5. uma linha reta se $k=0$ e $\det A=0$.

[Dica: use o Teorema dos Eixos Principais.]


1072   

Identificar a cônica $x^2+4y^2+4xy-2x-4y-1=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).


1038   

Sejam $x$, $y$ os eixos cartesianos usuais do plano. Faça a mudança de variáveis $X = x - 2$ e $Y = y + 3$, que corresponde a mudarmos a origem para o ponto $\textbf{O} = (2,-3)$.

  1. Dado o ponto $P=(1,4)$ no sistema $xy$, encontre as coordenadas de $P$ no sistema $XY$.

  2. Dado o ponto $A=(2,1)$ no sistema $XY$, encontre as coordenadas de $A$ no sistema $xy$.


1224   

Reduza a equação $3x^2+3z^2+4xy+8xz+4yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1442   

Suponha que o sistema de coordenadas $x'y'$ tenha sido obtido pela rotação de um sistema de coordenadas $xy$ por um ângulo $\theta$. Explique como podemos encontrar as coordenadas $xy$ de uma reta cuja equação nas coordenadas $x'y'$ seja conhecida.


1037   

Considere o plano com o sistema cartesiano canônico $xy$ e faça uma rotação de um ângulo $\theta$, com $0\leq \theta \leq\pi/2$ obtendo o novo sistema $\overline{x}$ $\overline{y}$. Seja $(*)$ a equação:

$$(*) \ \ \ Ax^2+Bxy+Cy^2+Dx+Ey+F=0$$,

com $A$, $B$, $C$, $D$, $E$, $F$ números reais. Ao transformar $(*)$ para o sistema  $\overline{x}$ $\overline{y}$ obtemos:

$$(**)  \ \ \ \overline{A} \overline{x}^2+\overline{B}\overline{x} \overline{y}+ \overline{C}\overline{y}^2+ \overline{D}\overline{x}+ \overline{E}\overline{y}+\overline{F}=0$$.   

  1. Mostre que:

     \begin{align*} \overline{A} & = A\cos^2\theta+B\sin\theta\cos\theta+C\sin^2\theta, \\  \overline{B} & =-2A\sin\theta\cos\theta+B(\cos^2\theta-\sin^2\theta)+2C\sin\theta\cos\theta,\\ \overline{C} & = A\sin^2\theta-B\sin\theta\cos\theta+C\cos^2\theta, \\ \overline{D} & = D\cos\theta+E\sin\theta, \\ \overline{E} & = E\cos\theta-D\sin\theta\;\;\;\;\; \text{e} \\  \overline{F} & = F. \end{align*}

  2. Supondo $A>0$ e $F<0$, conclua, a partir de 1, que a equação $(*)$ representa uma circunferência de centro $(0,0)$ e raio $r=\sqrt{\frac{-F}{A}}$ se, e somente se, para todo $\theta$, tivermos que $A=\overline{A}$, $B=\overline{B}$, $C=\overline{C}$,

    $D=\overline{D}$, $E=\overline{E}$ e $F=\overline{F}$.

  3. Sejam

    $M= \left( \begin{array}{cc}A & \frac{B}{2}\\\frac{B}{2}& C \\\end{array}\right)$,   $\overline{M}= \left( \begin{array}{cc}\overline{A} & \frac{\overline{B}}{2}\\\frac{\overline{B}}{2}&\overline{C}\end{array}\right)$ e $R_{\theta}=\left(\begin{array}{cc}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{array}\right)$.


    Mostre, a partir de 1, que $\overline{M}=R_{\theta}^{t}\cdot M\cdot R_{\theta}$ e, calculando o determinante dos dois lados da igualdade, conclua que $\Delta=B^2-4AC=\overline{B}^{2}-4\overline{A}\overline{C}$, qualquer que seja o ângulo $\theta$ (OBS: $\Delta$ é conhecido pelo nome de discriminante da equação $(*)$ e o item 3 está dizendo que ele é invariante por rotação).


1055   

Decida se a cônica $C$ determinada pela equação $\displaystyle 4y^2-4y-24x+9=0$ é degenerada ou não. Se não for degenerada, encontre  os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.


1567   

Seja $A$ uma matriz $2\times 2$ real com autovalores complexos $\lambda=a\pm bi$ tais que $b\neq 0$ e $|\lambda|=1$. Mostre que toda trajetória do sistema dinâmico $\textbf{x}_{k+1}=A\textbf{x}_k$ está sobre uma elipse. [Dica: use que se $\textbf{v}$ é um autovetor associado a $\lambda=a-bi$, então a matriz $P=[ \textrm{Re}\,\textbf{v}\quad \textrm{Im}\,\textbf{v}]$ é invertível e temos que $\displaystyle A=P\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right]P^{-1}$. Ponha $\displaystyle B=(PP^t)^{-1}$. Mostre que a equação quadrática $\textbf{x}^tB\textbf{x}=k$ define uma elipse para todo $k>0$, e prove que se $\textbf{x}$ está sobre esta elipse, então $A\textbf{x}$ também estará.]


1048   

Seja $C$ o lugar geométrico dos pontos $P = (x,y)$ de um plano cujas coordenadas $x$ e $y$ satisfazem a equação $3x^2+2xy+3y^2-6x-6y+1=0$.

  1. Qual a natureza da cônica $C$?

  2. Escrever a forma canônica da equação de $C$.

  3. Caso $C$ seja uma elipse ou uma hipérbole, encontre os focos e a excentricidade. Caso seja uma hipérbole, encontre também as equações das retas assíntotas no sistema $xy$ original. 


1476   

Mostre que a intersecção de um plano $\displaystyle by+cz+d=0$, em que $b^2+c^2=1$, com  o cone $x^2+y^2=z^2$ é uma cônica que pode ser uma elipse, uma hipérbole ou uma parábola. (Sugestão: mude para um sistema de coordenadas $\{O,U_1,U_2,U_3\}$ tal que $U_1=\vec{i}=(1,0,0)$, $U_2=(0,b,c)$ e $U_3=(0,-c,b)$).


1054   

Decida se a cônica $C$ determinada pela equação $\displaystyle 4x^2-4x+9y^2-18y=26$ é degenerada ou não. Se não for degenerada, encontre  os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.


1079   

Identifique a cônica $5 x^2+12 x y= 1$ e seu parâmetros associados.


1046   

Seja $C$ o lugar geométrico dos pontos $P = (x,y)$ de um plano cujas coordenadas $x$ e $y$ satisfazem a equação $x^2-16y^2 + 8x +128y -256 = 0$.

  1. Qual a natureza da cônica $C$?

  2. Escrever a forma canônica da equação de $C$.

  3. Caso $C$ seja uma elipse ou uma hipérbole, encontre os focos e a excentricidade. Caso seja uma hipérbole, encontre também as equações das retas assíntotas no sistema $xy$ original.


1209   

Reduza a equação $7x^2 + 7y^2 + 10z^2 - 2xy - 4xz + 4yz - 12x + 12y + 60z = 24$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1235   

Reduza a equação $x^2+y^2+4z^2-2xy-4xz+6x+12y+18z=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.



1061   

Considere a equação

$$x^{2} - 14 x y + y^{2} = 1.$$

Efetue a troca de variáveis $x = u \cos \theta + v\,\textrm{sen} \theta$ e $y = - u\, \textrm{sen} \theta  + v \cos \theta$. Escolha, usando sua intuição ou fazendo as contas, $\theta$ de forma que a equação obtida em $u$ e $v$ seja a equação canônica de uma hipérbole. Explique o significado geométrico deste resultado e obtenha, nas coordenadas $x$ e $y$, as equações das retas que servem de assíntotas à tal hipérbole.



1475   

Seja $Q$ um retângulo centrado na origem, cujo lado maior mede o triplo do lado menor. Sabendo que um dos vértices de $Q$ é $V_1=(1,2)$ e que o vértice $V_2$, consecutivo a $V_1$ no sentido trigonométrico (anti-horário), é tal que $V_1V_2$ é um lado menor, determine os outros vértices de $Q$.



Tomando o ângulo $\theta=\widehat{V_10V_2}$, temos que $V_2 = R_{\theta}(V_1)$, onde $$R_\theta=\left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) $$ denota a rotação por um ângulo $\theta$ (Fig.). Sendo $P$ o ponto médio do segmento $V_1V_2$, vamos ter que $\dfrac{\theta}{2}=\widehat{POV_2}$. Sendo $V_1V_2$ um lado menor e dada a relação entre os lados (enunciado), segue que $|OP|=3|PV_2|$. Assim, o triângulo retângulo $OPV_2$ nos fornece que $$ \sin\dfrac{\theta}{2} = \dfrac{|PV_2|}{|OV_2|} \quad\text{e}\quad \cos\dfrac{\theta}{2}=\dfrac{|OP|}{|OV_2|}=\dfrac{3|PV_2|}{|OV_2|}=3\sin\dfrac{\theta}{2}, $$ o que juntamente com a relação fundamental $\sin^2\theta+\cos^2\theta=1$, resulta em $\sin^2\dfrac{\theta}{2}+9\sin^2\dfrac{\theta}{2}=1$. Ou seja, temos que $$ \sin\dfrac{\theta}{2}=\dfrac{\sqrt{10}}{10} \quad\mathrm{e}\quad\cos\dfrac{\theta}{2}=\dfrac{3\sqrt{10}}{10}.$$ Conseqüentemente, temos que $$\cos\theta= \cos(2\dfrac{\theta}{2})=\cos^2\dfrac{\theta}{2}-\sin\dfrac{\theta}{2}= \dfrac{4}{5}\quad \text{e}$$ $$\sin\theta= \sin(2\dfrac{\theta}{2})= 2\cos\dfrac{\theta}{2}\sin\dfrac{\theta}{2}= \dfrac{3}{5} .$$ Assim, $$ V_2 = R_{\theta}(V_1)=\left(\begin{array}{cc} \dfrac{4}{5} & -\dfrac{3}{5} \\ \dfrac{3}{5} & \dfrac{4}{5} \end{array}\right)\left(\begin{array}{c} 1 \\ 2 \end{array}\right) = \left(\begin{array}{rcl} -\dfrac{2}{5} &,&\dfrac{11}{5} \end{array}\right). $$ Finalmente, como $V_3=R_{\pi}(V_1)$, $V_4=R_{\pi}(V_2)$, $cos\pi=-1$ e $\sin\pi=0$, obtemos que $$V_3=-V_1=(-1,-2) \quad \text{e}\quad  V_4=-V_2=(\dfrac{2}{5},-\dfrac{11}{5}).$$


1076   

Identificar a cônica $4x^2+4xy+y^2-6x+3y+2=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).


1219   

Reduza a equação $2x^2+y^2-4xy-4yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1207   

Reduza a equação $2xy + z = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1234   

Reduza a equação $2z^2+5x+12y+12z+18=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1047   

Seja $C$ o lugar geométrico dos pontos $P = (x,y)$ de um plano cujas coordenadas $x$ e $y$ satisfazem a equação $9x^2-24xy+16y^2-34x-38y+51=0$.

  1. Qual a natureza da cônica $C$?

  2. Escrever a forma canônica da equação de $C$.

  3. Caso $C$ seja uma elipse ou uma hipérbole, encontre os focos e a excentricidade. Caso seja uma hipérbole, encontre também as equações das retas assíntotas no sistema $xy$ original.


1087   

Considere a forma quadrática  $2x^2+8xy+2y^2+x+y-9=0$. Escrevendo-a numa base conveniente, determine:

  1. qual o eixo que contém o(s) foco(s);

  2. qual é a translação e a rotação associadas.


1060   

Considere a cônica definida pela equação $x^2+xy-1=0.$

  1. Determinar seu centro.

  2. Classificar a cônica.

  3. Esboçar seu gráfico.



1226   

Reduza a equação $2x^2+y^2+2z^2+2xy-2yz=1 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1214   

Reduza a equação $45x^2 + 54y^2 + 63z^2 - 36xy + 36yz - 24x - 24y + 6z + 1 = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.



A equação da quádrica $45x^2 + 54y^2 + 63z^2 - 36xy + 36yz - 24x - 24y + 6z + 1 = 0$ pode ser escrita em forma matricial:

$$X^tAX+KX+1=0,$$

onde:

$$X=\begin{pmatrix}x \\ y \\ z\end{pmatrix}, \ K=\begin{pmatrix}-24 & -24 & 6\end{pmatrix}, \ A=\begin{pmatrix}45 & -18 & 0 \\-18 & 54 & 18 \\0 & 18 & 63\end{pmatrix}. $$


Seja:

$$P(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix}45-\lambda & -18 & 0 \\-18 & 54-\lambda & 18 \\0 & 18 & 63-\lambda\end{pmatrix}=-\lambda^3+162\lambda^2+-8019\lambda +118098.$$


As raízes de $P(\lambda)$ são $27$, $54$ e $81$. Considere os sistemas lineares referentes às raízes $27$ e $54$: $(A-27I) X = 0$ e $(A-54I)=0$. Uma solução de norma unitária desses sistemas são $U_1=(-2/3,-2/3,1/3)$ e $U_2=(-2/3,1/3,-2/3)$, respectivamente. Sejam $U_3=U_1 \times U_2 = (1/3,-2/3,-2/3)$, $Q=(U_1,U_2,U_3)$ e $X'=\begin{pmatrix}x' \\ y' \\ z'\end{pmatrix}.$ Dessa forma, com a mudança de coordenadas dada por $X=QX'$, a equação $45x^2 + 54y^2 + 63z^2 - 36xy + 36yz - 24x - 24y + 6z + 1 = 0$ se transforma em:

$$\dfrac{(x'+17/27)^2}{796/2187}+\dfrac{(y'+1/27)^2}{796/4374}+\dfrac{(z'+2/81)^2}{796/6561}=1,$$

que é a equação de um elipsóide.


1215   

Considere a quádrica $x^2 +(m+1)y^2 +mz^2-2yz+2xy+2x+2z+4 = 0$, calcule $m$ para que a quádrica seja um parabolóide hiperbólico e obtenha sua equação reduzida.


1082   

Identifique a cônica descrita pela equação $49x^2-42xy+9y^2+56x-24y+16=0$.


1052   

Na equação $18x^2+12xy+2y^2+94\frac{\sqrt{10}}{10}x-282\frac{\sqrt{10}}{10}y+94=0$, elimine, por meio de uma rotação, o termo $xy$. Identifique o conjunto solução e nos casos em que for uma cônica encontre as coordenadas, no sistema inicial, do(s) foco(s) e esboce o gráfico.


1218   

Reduza a equação $-x^2-y^2-7z^2+16xy+8xz+8yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1049   

Na equação $9x^2-4xy+6y^2=30$, elimine, por meio de uma rotação, o termo $xy$. Identifique o conjunto solução e nos casos em que for uma cônica encontre as coordenadas, no sistema inicial, do(s) foco(s) e esboce o gráfico.


1075   

Identificar a cônica $x^2-2xy+y^2-10x-6y+25=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).


1053   

Decida se a cônica $C$ determinada pela equação $\displaystyle 9x^2-18x+9y^2-6y=10$ é degenerada ou não. Se não for degenerada, encontre  os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.


1067   

Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+5x+y-9=0$.


1231   

Reduza a equação $x^2+z^2-xy+xz+yz-2x+2y-2z+1=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1638   

Às vezes o gráfico de uma equação quadrática é uma reta, um par de retas ou até mesmo um único ponto. Nos referimos a tais gráficos como cônicas degeneradas. É também possível que a equação não seja satisfeita para nenhum valor real das variáveis, caso este no qual não existe um gráfico e dizemos tratar-se de uma cônica imaginária. Nos itens abaixo, identifique a cônica com a equação dada, dizendo se é degenerada ou imaginária. Quando possível, esboce também o gráfico.

  1. $\displaystyle x^2+2xy+y^2=0$;

  2. $\displaystyle x^2-2xy+y^2+2\sqrt{2}x-2\sqrt{2}y=0$;

  3. $\displaystyle 2x^2+2xy+2y^2+2\sqrt{2}x-2\sqrt{2}y+6=0$.


1477   

Considere o polinômio $p(\lambda)=\det(A-\lambda I_3)$, em que$$            A= \left[\begin{array}{ccc} a & d/2 & e/2 \\ d/2 & b & f/2 \\ e/2 & f/2 & c \end{array}\right]. $$

  1.  Sejam $\alpha$ e $\beta$ raízes reais (pois $A$ é simétrica) distintas de $p(\lambda)$. Mostre que se $X_1$ é solução de $(A-\alpha I_2)X=\vec{0}$ e $X_2$ é solução de $(A-\beta I_2)X=\vec{0}$, então $X_1$ e $X_2$ são ortogonais. (Sugestão: Mostre que $\alpha X_1\cdot X_2=\beta X_1\cdot X_2$) 

  2.  Mostre que se $p(\lambda)$ tem raízes reais distintas, então sempre existe uma matriz $Q$ tal que $$ Q^tAQ = \left[\begin{array}{ccc} a' & 0 & 0 \\ 0 & b' & 0 \\ 0 & 0 & c' \end{array}\right]. $$ Conseqüentemente, a mudança de coordenadas dada por $X=QX'$ transforma a equação $$ ax^2+by^2 + cz^2 + dxy+exz+fyz+gx+hy+iz+j=0 $$ na equação $$a'x'^2+b'y'^2+c'z'^2+g'x'+h'y'+i'z + j=0,  $$ onde os termos "cruzados" $xy$, $xz$ e $yz$ são eliminados.


1071   

Identificar a cônica $x^2-3y^2-2xy -x-y=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).


1083   

Identifique a cônica descrita pela equação $16x^2+16y^2-16x+8y-59=0$.


1070   

Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+2y^2-4xy+y-1=0$.


1598   

Às vezes o gráfico de uma equação quadrática é uma reta, um par de retas ou até mesmo um único ponto. Nos referimos a tais gráficos como cônicas degeneradas. É também possível que a equação não seja satisfeita para nenhum valor real das variáveis, caso este no qual não existe um gráfico e dizemos tratar-se de uma cônica imaginária. Nos itens abaixo, identifique a cônica com a equação dada, dizendo se é degenerada ou imaginária. Quando possível, esboce também o gráfico.

  1. $\displaystyle x^2-y^2=0$;

  2. $\displaystyle x^2+2y^2+2=0$;

  3. $\displaystyle 3x^2+y^2=0$.


1058   

Decida se a cônica $C$ determinada pela equação $9y^2-9x^2+6x=1$ é degenerada ou não. Se não for degenerada, encontre  os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.


1233   

Reduza a equação $2x^2+3y+4z+4=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1078   

Identifique a cônica $3 x^2-12 x y+12 y^2+ 2 \sqrt{5} x+\sqrt{5} y=0$ e seu parâmetros associados.


1212   

Reduza a equação $xz = 1$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.



A equação da quádrica $xz = 1$ pode ser escrita em forma matricial:

$$X^tAX-1=0,$$

onde:

$$X=\begin{pmatrix}x \\ y \\ z\end{pmatrix}, \ A=\begin{pmatrix}0 & 0 & 1/2 \\0 & 0 & 0 \\1/2 & 0 & 0\end{pmatrix}. $$


Seja:

$$P(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix}-\lambda & 0 & 1/2 \\0 & -\lambda & 0 \\1/2 & 0 & -\lambda\end{pmatrix}=-\lambda^3+\lambda/4.$$


As raízes de $P(\lambda)$ são $0$, $-1/2$ e $1/2$. Considere os sistemas lineares referentes às raízes $0$ e $1/2$: $A X = 0$ e $(A-1/2 I) X = 0$. Uma solução de norma unitária desses sistemas consiste em $U_1=(0,1,0)$ e $U_2=(1/\sqrt{2},0,1/\sqrt{2})$, respectivamente. Sejam $U_3=U_1 \times U_2 = (1/\sqrt{2},0,-1/\sqrt{2})$, $Q=(U_1,U_2,U_3)$ e $X'=\begin{pmatrix}x' \\ y' \\ z'\end{pmatrix}.$ Dessa forma, com a mudança de coordenadas dada por $X=QX'$, a equação $xz=1$ se transforma em:

$$\dfrac{(y')^2}{2}-\dfrac{(z')^2}{2}=1,$$

que é a equação de um cilindro hiperbólico.


511   

Reduza a equação $3x^2+4y^2+z^2-12x-8y-2z+16=0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


$\dfrac{(x-2)^2}{1/3}+\dfrac{(y-1)^2}{1/4}+(z-1)^2=1$: elipsóide.


1062   

Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $3x^2+5y^2+4x-2y-10=0$.


1077   

Considere a forma quadrática  $2x^2+8xy+2y^2+x+y-9=0$. Escreva-a numa base conveniente e identifique qual é a cônica e seus paramêtros associados.


1039   

Tome $x'y'$ o sistema de eixos do plano que é a translação do sistema $xy$ para a nova origem $O'=(1,1)$, i.e., $ x'=x-1$ e $y'=y-1$.

  1. Dado o ponto $P=(1,4)$ no sistema $xy$, encontre as coordenadas de $P$ no sistema $x'y'$.

  2. Dado o ponto $A=(2,1)$ no sistema $x'y'$, encontre as coordenadas de $A$ no sistema $xy$.

  3. Considere a reta $\mathcal{L}$ que no sistema $xy$ tem equação $2x - 3y + 4 = 0$. Qual seria a equação de $\mathcal{L}$ no sistema $x'y'$? Mudando-se a equação, muda-se $\mathcal{L}$ de lugar? O desenho muda?

  4. Dada a curva $\mathcal{C}$, do plano, cujos pontos têm coordenadas $(x,y)$, no sistema $xy$, satisfazendo a equação $x^2-4x+y^2-6y=12$, encontre a equação que os pontos de $\mathcal{C}$ com coordenadas $(x',y')$ no sistema $x'y'$ devem satisfazer nas variáveis $x'y'$.


1086   

Sejam $F_{1}$ e $F_{2}$ dois pontos fixos do plano que distam $8$ unidades um do outro. Ou seja, $\text{dist}(F_{1},F_{2}) = 8$.

ident_conicas_2.png

Encontre a equação do lugar geométrico dos pontos $P$ desse plano que satisfazem a condição:
\[ \text{dist}(P,F_{1}) + \text{dist}(P,F_{2}) = 10,\]
em cada um dos seguintes casos:

  1. $F_{1} = (-c,0)$ e $F_{2} = (c,0)$, onde as coordenadas foram tomadas em relação ao sistema $xy$ da Figura 1 acima, e cada ponto $P$ tem coordenadas $(x,y)$ tomadas em relação a $\textbf{o}$.

  2. $F_{1} = (-5,2)$ e $F_{2} = (3,2)$, onde as coordenadas foram tomadas em relação ao sistema $XY$ da Figura 2 acima, e cada ponto $P$ tem coordenadas $(X,Y)$ tomadas em relação a $\textbf{O}$.

  3.  $F_{1}$ e $F_{2}$ estão sobre o eixo $X$ do sistema $XY$ da Figura 2 acima, são simétricos em relação ao eixo $Y$, e cada ponto $P$ tem coordenadas $(x,y)$ tomadas em relação a $\textbf{o}$.


1051   

Na equação $x^2-y^2+2\sqrt{3}xy+6x=0$, elimine, por meio de uma rotação, o termo $xy$. Identifique o conjunto solução e nos casos em que for uma cônica encontre as coordenadas, no sistema inicial, do(s) foco(s) e esboce o gráfico.


1063   

Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+2x+y^2+2y+2=0$.


1206   

Reduza a equação $144x^2+100y^2+81z^2-216xz-540x-720z=0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1084   

Identifique a cônica descrita pela equação $x^2-6xy-7y^2+10x-30y+23=0$.


1064   

Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2-y^2-4x+2y+2=0$.


1220   

Reduza a equação $3x^2-3y^2-5z^2-2xy-6xz-6yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.


1056   

Decida se a cônica $C$ determinada pela equação $36x^2-24x+36y^2-36y+14=0$ é degenerada ou não. Se não for degenerada, encontre  os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.