Exercícios
Bases e sistemas de coordenadas
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Considere a reta $r=\{(x,y):2x-3y=1\}\subset\mathbb{R}^2$. Seja $B$ a base formada pelos vetores $(3,2)$ e $(1,0)$ e $x^{\prime}$ e $y^{\prime}$ coordenadas definidas em $\mathbb{R}^2$ pela origem usual e pela base $B$. Ache a equação de $r$ nas coordenadas $x^{\prime}$ e $y^{\prime}$.
Uma viga metálica fina, com extremidades nas coordenadas $A=(2,5,3)$ e
$B=(1,1,0)$, deve ser dividida em três partes iguais. Determine os
pontos $C$ e $D$ que realizam esta divisão.
Considere o subconjunto de vetores $\mathcal{B} =\{(1,1,-2),(1,-1,0),(1,1,1)\}$.
- Mostre que $\mathcal{B}$ é uma base para $\mathbb{R}^{3}$.
- Encontre a matriz de mudança de coordenadas $A$ da base canônica $\{i,j,k\}$ de $\mathbb{R}^{3}$ para a base $\mathcal{B}$. Qual é matriz de mudança de coordenadas $A^{\prime}$ da base $\mathcal{B}$ para a base canônica?
- Quais são as coordenadas dos vetores canônicos $i,j$ e $k$ em relação à base $\mathcal{B}$?
- Se o ponto $P$ tem coordenadas $(1,-2,5)$ no sistema $\{O,i,j,k\}$, quais são as coordenadas de $P$ no sistema $\{O,\mathcal{B}\}$?
- Como eles são ortogonais dois a dois e dim $\!\mathbb{R}^{3}=3$, eles são L.I.
- $A^{\prime}=\left[\begin{array}[c]{rrr}1 & 1 & 1\\1 & -1 & 1\\-2 & 0 & 1\end{array}\right] ;A=(A^{\prime})^{-1}=\left[\begin{array}[c]{rrr}
\frac{1}{6} & \frac{1}{6} & -\frac{1}{3}\\\overset{}{\frac{1}{2}} & -\frac{1}{2} & 0\\\overset{}{\frac{1}{3}} & \frac{1}{3} & \frac{1}{3}\end{array}\right] $. - São as colunas de $A$, respectivamente: $\left(
\frac{1}{6},\frac{1}{2},\frac{1}{3}\right) ,\left( \frac{1}{6},-\frac{1}%
{2},\frac{1}{3}\right) $ e $\left( -\frac{1}{3},0,\frac{1}{3}\right) $. - $\left( -\frac{11}{6},\frac{3}{2},\frac{4}{3}\right) $.
Considere a reta $r=\{(x,y):2x-3y=1\}\subset\mathbb{R}^2$. Seja $B$ a base formada pelos vetores $(3,2)$ e $(1,0)$ e $x^{\prime}$ e $y^{\prime}$ coordenadas definidas em $\mathbb{R}^2$ pela origem usual e pela base $B$. Ache a equação de $r$ nas coordenadas $x^{\prime}$ e $y^{\prime}$.
No tetraedro $ABCD$, seja $X$ um ponto tal que $\vec{AX}$ = $m\vec{XD}$. Determine os valores de $m$ para os quais os vetores $\vec{AX}+\vec{AC}$, $\vec{BX}+\vec{BC}$ e $(1-m)\vec{BC}+\vec{AB}$ sejam linearmente independentes.
Sabemos que se $B$ é uma base de $R^3$ formada pelos vetores $U,V$ e $W$, então as leis de mudança de base entre a base usual e a base $B$ são $$ P_B = [U,V,W]^{-1}P\ \ {\rm e}\ \ P = [U,V,W]P_B$$ Determine a mudança de base entre a base $B$ e uma base $B^{\prime}$ distinta da usual.
Nesta questão, todos os sistemas de coordenadas têm mesma origem $O$. Sejam $(x,y,z)$ coordenadas em relação à base usual $\{i,j,k\}$; $(u,v,w)$ coordenadas em relação à base $\beta =\{j,i,i-j+k\}$ e $(r,s,t)$ coordenadas em relação à base $\gamma =\{k,i-j,i+j\}$. Dado um ponto $P\in\mathbb{R}^3$, escrito na base $\beta$ como $P_{\beta} = (3,2,1)$, ache $P_{\gamma}$, isto é, $P$ na base $\gamma$.
Sejam $(x,y,z)$ coordenadas em relação ao sistema usual de $\mathbb{R}^3$, $S_0=\{O,i,j,k\}$. Considere o paralelepípedo $P$ com vértices $(0,0,0)$, $(3,0,0)$, $(0,2,0)$, $(0,0,1)$ (quais são os outros quatro?). Determine os vetores que representam as quatro diagonais de $P$. Escolha três deles e mostre que formam uma base de $R^3$. Chame esta base de $\beta =\{V_1,V_2,V_3\}$.
- Mostre que $\mathcal{B}$ é uma base para $\mathbb{R}^{3}$.
- Encontre a matriz de mudança de coordenadas $A$ da base canônica $\{i,j,k\}$ de $\mathbb{R}^{3}$ para a base $\mathcal{B}$. Qual é matriz de mudança de coordenadas $A^{\prime}$ da base $\mathcal{B}$ para a base canônica?
- Quais são as coordenadas dos vetores canônicos $i,j$ e $k$ em relação à base $\mathcal{B}$?
- Se o ponto $P$ tem coordenadas $(1,-2,5)$ no sistema $\{O,i,j,k\}$, quais são as coordenadas de $P$ no sistema $\{O,\mathcal{B}\}$?
- Pois $\det\left[\begin{array}[c]{ccc}1 & 0 & 1\\1 & 1 & 0\\0 & 1 & 1\end{array}\right] =2\neq0$.
- $A^{\prime}=\left[\begin{array}[c]{ccc}1 & 0 & 1\\1 & 1 & 0\\0 & 1 & 1\end{array}\right] ;A=(A^{\prime})^{-1}=\left[\begin{array}[c]{rrr}\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\\-\overset{}{\frac{1}{2}} & \frac{1}{2} & \frac{1}{2}\\\overset{}{\frac{1}{2}} & -\frac{1}{2} & \frac{1}{2}\end{array}\right] $.
- São as colunas de $A$, respectivamente: $\left(\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right) ,\left( \frac{1}{2},\frac{1}{2},-\frac{1}{2}\right) $ e $\left( -\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) $.
- $(-3,1,4).$
Uma viga metálica fina, com extremidades nas coordenadas $A=(-1,4,7)$ e $B=(3,-2,-1)$, deve ser dividida em duas partes iguais. Determine o ponto $C$ que realiza esta divisão.
Mostre que quaisquer que sejam $u$, $v$ e $w$ em $\mathbb{R}^2$, eles são linearmente dependentes.
Considere o círculo $C$ de raio $1$ e centrado na origem do sistema usual de coordenadas do $\mathbb{R}^2$. Lembre-se que a equação de $C$ é $x^2+y^2=1$. Considere o sistema $\{ Q,i,j\}$, onde $Q=(-3,2)$. Ache a equação de $C$ no novo sistema de coordenadas.
Encontre $\lambda \in \mathbb{R}$ para que $v_1=(2 \lambda,1)$, $v_2=(\lambda + 1, \lambda + 1)$:
- Sejam paralelos;
- Não sejam paralelos;
- $v_1$ e $v_2$ formem uma base para $\mathbb{R}^2$.
- $\lambda=-1$ ou $\lambda=1/2$.
- $\lambda\neq -1$ ou $\lambda\neq 1/2$.
- $\lambda\neq -1$ ou $\lambda\neq 1/2$.
Os vetores $(1,1,0,-1),(1,2,1,3),(1,1,-9,2),(16,-13,1,3)$ formam uma base para $\mathbb{R}^{4}$?
Sim, porque são 4 vetores linearmente independentes, e dim $\mathbb{R}^{4}=4$.
Suponha que $u_1,\ldots, u_n$ gerem $\mathbb{R}^n$. Mostre que dados vetores quaisquer em $\mathbb{R}^n$, $u_{n+1}, \ldots, u_m$, então $u_1, \ldots, u_n, u_{n+1}, \ldots, u_m$ geram $\mathbb{R}^n$.