LISTA DE DISCIPLINAS

Exercícios

Integrais de superfície

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


2298   

Determine uma representação paramétrica para a superfície descrita a seguir. A porção do cilindro $(x-2)^{2}+z^{2}=4$ entre os planos $y=0$ e $y=3.$


$x = 4\cos^{2}(v),$ $y = u,$ $z = 4\cos(v)\sin(v),$ onde $-\dfrac{\pi}{2}\leq v \leq \dfrac{\pi}{2}$ e $0 \leq u \leq 3.$


2255   

Demonstre a identidade abaixo, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.

  1. $\displaystyle\iint\limits_{S}(f\nabla g)\cdot {\bf n}\,dS=\displaystyle\iiint\limits_{E}(f\nabla^{2}g+\nabla f+\nabla g)\,dV.$



Note que $\displaystyle\iint\limits_{S}(f\nabla g)\cdot {\bf n}\,dS=\displaystyle\iiint\limits_{E} \mbox{div} (f\nabla g)\,dV.$


2256   

Demonstre a identidade abaixo, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.

  1. $\displaystyle\iint\limits_{S}(f\nabla g-g\nabla f)\cdot {\bf n}\,dS=\displaystyle\iiint\limits_{E}(f\nabla^{2} g-g\nabla^{2} f)\,dV.$



Use o Teorema da Divergência e que $\nabla f \cdot \nabla g = \nabla g \cdot \nabla f.$



2149   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=3xy^{2}\,{\bf i}+xe^{z}\,{\bf j}+z^{3}\,{\bf k}$ e $S$ é a superfície do sólido delimitado pelo cilindro $y^{2}+z^{2}=1$ e pelos planos $x=-1$ e $x=2.$


2622   

Utilizando o Teorema de Stokes, transforme a integral $\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.

  • ${\bf F}(x,y,z) = y{\bf k}$, $S$ a superfície parametrizada por ${\bf R} (u,v) = (u,v,u^2+v^2)$, $u^2+v^2 \leq 1$, sendo ${\bf n}$ a normal apontando para cima.


 $0.$


2188   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=2xz\,{\bf i}+xyz\,{\bf j}+yz\,{\bf k}$ e $S$ é a superfície da região delimitada pelos planos coordenados e os planos $x+2z=4$ e $y=2.$


2338   

Determine a área da superfície $z=\frac{2}{3}(x^{3/2}+y^{3/2})$, $0\leq x \leq 1$ e $0\leq y\leq 1.$


$\dfrac{4}{15}(3^{5/2} - 2^{7/2} + 1).$


2257   

Suponha que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que $f$ seja uma função escalar com derivadas parciais contínuas. Demonstre que $\displaystyle\iint\limits_{S}f{\bf n}\,dS=\iiint\limits_{E}\nabla f\,dV.$ Estas integrais de superfície e triplas de funções vetoriais são vetores definidos integrando cada função componente. [Sugestão: comece aplicando o Teorema do Divergente a ${\bf F}=f{\bf c}$, onde ${\bf c}$ é um vetor constante arbitrário.]



Note que se ${\bf n} = n_{1} {\bf i} + n_{2} {\bf j} + n_{3} {\bf k},$ então

\begin{align*} &\iint_{S} f \cdot {\bf n}\,dS \\ &= \left( \iint_{S} f n_{1}\,dS \right) {\bf i} + \left( \iint_{S} fn_{2}\,dS\right) {\bf j} + \left( \iint_{S} fn_{3}\,dS\right) {\bf k}\\ &= \left( \iiint_{E} \dfrac{\partial f}{\partial x}\,dV \right) {\bf i}+ \left( \iiint_{E} \dfrac{\partial f}{\partial y}\,dV\right) {\bf j} + \left( \iiint_{E} \dfrac{\partial f}{\partial z}\,dV \right) {\bf k}. \end{align*}


2342   

Determine a área da superfície dada pela porção do cilindro $x^{2}+y^{2}=1$ entre os planos $z=1$ e $z=4.$


$6\pi.$


2287   

Determine uma representação paramétrica para a superfície descrita a seguir. O plano que passa pelo ponto $(1,2,-3)$ e contém os  vetores ${\bf i}+{\bf j}-{\bf k}$ e ${\bf i}-{\bf j}+{\bf k}.$


$x= 1 + u + v,$ $y = 2 + u - v,$ $z = 3 - u + v.$


2437   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}x^{2}yz dS$, onde $S$ é a parte do plano $z=1+2x+3y$ que está acima do retângulo $[0,3]\times [0,2].$


$171\sqrt{14}.$



2609   

Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot d{\bf R}$. $C$ é orientada no sentido anti-horário quando vista de cima.

  • ${\bf F}(x,y,z) = (x+y^2){\bf i} + (y+z^2){\bf j} + (z+x^2){\bf k}$, $C$ é o triângulo com vértices $(1,0,0)$, $(0,1,0)$, $(0,0,1)$.


$1$.


2324   

Calcule a área da superfície dada por: ${\bf r}(u,v)=(u,v,u^{2}+v^{2})$ e $u^{2}+v^{2}\leq 4.$. (Sugerimos ao leitor desenhar a imagem da superfície.)


$\dfrac{\pi}{6}(17 \sqrt{17} - 1).$


2322   

Calcule a área da superfície dada por: ${\bf r}(u,v)=(u,v,1-u-v)$, $u\geq 0$,  $v\geq 0$ e $u+v\leq 1.$. (Sugerimos ao leitor desenhar a imagem da superfície.)


$\dfrac{\sqrt{3}}{2}.$


3140   

Prove a seguinte identidade \[ \iint\limits_\sigma\nabla f\cdot\mathbf{n}\,dS = \iiint\limits_G\Delta f\,dV, \] supondo que \(\sigma\) e \(G\) satisfaçam as hipóteses do Teorema da Diverência e que \(f(x,y,z)\) cumpra os requisitos de diferenciabilidade necessários. Acima, \(\displaystyle \Delta f= \dfrac{\partial^2f}{\partial x^2}+\dfrac{\partial^2f}{\partial y^2}+\dfrac{\partial^2f}{\partial z^2}\) é denominado Laplaciano de \(f\).


2615   

Verifique que o Teorema de Stokes é verdadeiro para o campo vetorial ${\bf F}$ dado e a superfície $S$.

  • ${\bf F}(x,y,z) = y^2{\bf i} + x{\bf j} + z^2{\bf k}$, $S$ é a parte do parabolóide $z = x^2 + y^2$ que está acima do plano $z = 1$, orientado para cima.



$\displaystyle\int_{C} {\bf F} \cdot d{\bf R} = \displaystyle\iint_{S} \mbox{rot} {\bf F} \cdot d{\bf S} = \pi.$


2336   

Determine a área da superfície dada pela parte da superfície $z=xy$ que está dentro do cilindro $x^{2}+y^{2}=1$.


$\dfrac{2\pi}{3}(2\sqrt{2} - 1)$.


2301   

Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(u,v,1-u-v)$, $u\geq 0$, $v\geq 0$ e $u+v\leq 1.$


Região triangular do plano $x + y + z = 1:$ $0 \leq x \leq 1, $ $0 \leq y \leq 1,$ $0 \leq z \leq 1.$


2391   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}x^{2}z^{2}dS$, onde $S$ é a parte do cone $z^{2}=x^{2}+y^{2}$ que está entre os planos $z=1$ e $z=3.$



Temos que $S$ é a porção do cone $z^{2}=x^{2}+y^{2}$ para $1 \leq z \leq 3$, ou equivalentemente, $S$ é a parte da superfície $z=\sqrt{x^{2}+y^{2}}$ sobre a região $D=\{(x,y)| 1 \leq x^{2}+y^{2} \leq 9\}.$ Assim,
$\displaystyle\iint\limits_{S}x^{2}z^{2}dS=\displaystyle\iint\limits_{D}x^{2}(x^{2}+y^{2})\sqrt{\left(\dfrac{\partial z}{\partial x}\right)^{2}
+\left(\frac{\partial z}{\partial y}\right)^{2}+1}dA$
$=\displaystyle\iint\limits_{D}x^{2}(x^{2}+y^{2})\sqrt{\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}+\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)^{2}+1}dA$
$=\displaystyle\iint\limits_{D}x^{2}(x^{2}+y^{2})\sqrt{\frac{x^{2}+y^{2}}{x^{2}+y^{2}}+1}dA=\iint\limits_{D}\sqrt{2}x^{2}(x^{2}+y^{2})dA$
$=\sqrt{2}\displaystyle\iint\limits_{D}x^{2}(x^{2}+y^{2})dA.$
Por coordenadas polares, temos que $x=r\cos \theta, y=r\sin \theta, 1\leq r\leq 3 , 0\leq \theta \leq 2\pi \,\mbox{e} \, dA=r dr d\theta.$
Logo,
$\displaystyle\iint\limits_{S}x^{2}z^{2}dS=\sqrt{2}\int_{0}^{2\pi}\int_{1}^{3}(r^{2}\cos^{2}\theta)(r^{2})r dr d\theta =\sqrt{2}\int_{0}^{2\pi}\cos^{2}\theta d\theta \cdot \int_{1}^{3}r^{5}dr$

$=\sqrt{2}\cdot (\theta)\bigg|_{0}^{2\pi}\cdot \bigg(\frac{r^{6}}{6}\bigg)\bigg|_{1}^{3}=\sqrt{2}\cdot \pi \cdot \frac{1}{6}\cdot (3^{6}-1)=\frac{364\sqrt{2}}{3}\pi$


2450   

Calcule $\displaystyle\iint\limits_{S}g(x,y,z)dS,$ onde $g(x,y,z)=(x^{2}+y^{2}+z^{2})^{1/2}$ e $S$ é a porção do parabolóide $2z=x^{2}+y^{2}$ interior ao cilindro $x^{2}+y^{2}=2y.$


$\dfrac{5\pi}{2}.$


2409   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}\dfrac{z}{\sqrt{1+4x^{2}+4y^{2}}}dS$, onde $S$ é a parte do parabolóide

$z=1-x^{2}-y^{2}$ que se encontra dentro do cilindro $x^{2}+y^{2}\leq 2y.$



Parametrizando a superfície $S$, temos as equações paramétricas:

$x=u, y=v \, \mbox{e} \, z=1-u^{2}-v^{2}.$
Então,
${\bf r}(u,v)=u{\bf i}+v{\bf j}+(1-u^{2}-v^{2}){\bf k}.$
Logo,
$f({\bf r}(u,v))=\dfrac{1-u^{2}-v^{2}}{\sqrt{1-4u^{2}-4v^{2}}},$ ${\bf r}_{u}={\bf i}+0{\bf j}-2u{\bf k}$ e ${\bf r}_{v}=0{\bf i}+{\bf j}-2v{\bf k}.$
Temos que

${\bf r}_{u}\times {\bf r}_{v}=\left| \begin{array}{ccc} {\bf i} & {\bf j} & {\bf k}\\ 1 & 0 & -2u\\ 0 & 1 & -2v \end{array} \right| = 2u{\bf i}+2v{\bf j}+{\bf k}$,

implicando que $|{\bf r}_{u}\times {\bf r}_{v}|=\sqrt{(2u)^{2}+(2v)^{2}+1^{2}}=\sqrt{1+4u^{2}+4v^{2}}.$ Assim,

$\displaystyle\iint\limits_{S}\dfrac{z}{\sqrt{1+4x^{2}+4y^{2}}}dS=\displaystyle\iint\limits_{D} f({\bf r}(u.v))|{\bf r}_{u}\times {\bf r}_{v}| du dv$ $=\displaystyle\iint\limits_{D} \frac{1-u^{2}-v^{2}}{\sqrt{1-4u^{2}-4v^{2}}} \sqrt{1+4u^{2}+4v^{2}} du dv=\displaystyle\iint\limits_{D}(1-u^{2}-v^{2})du dv$.
Notemos que
$D=\{(u,v)| u^{2}+v^{2}\leq 2v\}=\{(u,v)|u^{2}+(v-1)^{2}\leq 1\}.$
Em coordenadas polares teremos que
$u=r\cos \theta, v-1=r\sin \theta,$
$du dv=\left| \begin{array}{cc}
\dfrac{\partial u}{\partial r} & \dfrac{\partial u}{\partial \theta}\\
\dfrac{\partial v}{\partial r} & \dfrac{\partial v}{\partial \theta}
\end{array} \right|$, $ dr d\theta=\left| \begin{array}{cc} \cos \theta & -r\sin \theta\\ \sin \theta & r\cos \theta \end{array} \right| \, e \, du dv=r dr d\theta.$

Como $u^{2}+u^{2}=2u \Rightarrow r^{2}\cos^{2}\theta+r^{2}\sin^{2}\theta=r\sin \theta \Rightarrow r=2\sin \theta,$ então $0\leq r \leq 2\sin \theta \, \mbox{e} \, 0 \leq \theta \leq \pi.$
Logo
$\displaystyle\iint\limits_{S}\dfrac{z} {\sqrt{1+4x^{2}+4y^{2}}}dS=\displaystyle\int_{0}^{\pi}\displaystyle\int_{0}^{2\sin \theta}(1-r^{2}\cos^{2} \theta-r^{2}\sin^{2}\theta)r dr d\theta$

$\displaystyle\int_{0}^{\pi}\displaystyle\int_{0}^{2\sin \theta}(1-r^{2})r dr d\theta=\displaystyle\int_{0}^{\pi}\int_{0}^{2\sin \theta}(r-r^{3})dr d\theta$ $=\displaystyle\int_{0}^{\pi}(2\sin^{2}\theta-4\sin^{4}\theta)\bigg|_{0}^{2\sin \theta}d\theta=2\int_{0}^{\pi}\sin^{2}\theta d\theta-4\int_{0}^{\pi}\sin^{4}\theta$

$=2\cdot\left(\dfrac{\theta}{2}-\frac{1}{4}\sin 2\theta\right)\bigg|_{0}^{\pi}-4\cdot \left(-\dfrac{1}{4}\sin^{3}
\theta \cos \theta+\dfrac{3}{8}\theta-\dfrac{3}{16}\sin 2\theta\right)\bigg|_{0}^{\pi}$
$=2\cdot \dfrac{\pi}{2}-4\cdot\left(\dfrac{3}{8}\pi\right)=-\dfrac{\pi}{2}.$


2592   

Considere um escoamento com velocidade ${\bf v}(x,y,z)$ e densidade $\rho(x,y,z)$, tal que ${\bf u}=\rho {\bf v}$ seja dado por ${\bf u}=x{\bf i}+y{\bf j}-2z{\bf k}$. Seja $S$ a superfície $x^{2}+y^{2}+z^{2}=4$, $z\geq \sqrt{2}$, e seja ${\bf n}$ a normal com componente $z>0$. Calcule o fluxo de ${\bf u}$ através de $S$. (Observe que, neste caso, o fluxo tem dimensões $MT^{-1}$ (massa por unidade de tempo).)


$-4\pi\sqrt{2}.$


2253   

Demonstre a identidade abaixo, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.


  1. $V(E)=\dfrac{1}{3}\displaystyle\iint\limits_{S}{\bf F}\cdot dS$, onde ${\bf F}(x,y,z)=x\,{\bf i}+y\,{\bf j}+z\,{\bf k}.$



Dica: Note que $\displaystyle\iiint\limits_{E}{\mbox{div} {\bf F}}\, dV = \iiint \limits_{E}{3}\,dV$.


2605   

Use o Teorema de Stokes para calcular $\displaystyle\iint\limits_{ S}\mbox{rot}{\bf F}\cdot d{\bf S}.$

  • ${\bf F}(x,y,z) = x^2z^2{\bf i} + y^2z^2{\bf j} + xyz {\bf k}$ e $S$ é a parte do parabolóide $z = x^2+y^2$ que está dentro do cilindro $x^2+y^2=4$, orientado para cima.


$0.$


2343   

Seja $A=\{(0,y,z)\in \mathbb{R}^{3}| z^{2}+(y-2)^{2}=1\}$; ache a área da superfície gerada pela rotação em torno do eixo $Oz$ do conjunto $A.$


$8\pi^2.$


2258   

Um sólido ocupa a região $E$ com superfície $S$ e está imerso em um líquido com densidade constante $\rho$. Escolhemos um sistema de
coordenadas de modo que o plano $xy$ coincida com a superfície do líquido e valores positivos de $z$ sejam medidos para baixo, adentrando o líquido. Então, a pressão na profundidade $z$ é $p=\rho g z$, onde $g$ é a aceleração da gravidade. A força de empuxo total sobre o sólido devida $\grave{a}$ distribuição de pressão é dada pela integral de superfície
${\bf F}=-\displaystyle\iint\limits_{S} p{\bf n}\,dS$ onde ${\bf n}$ é o vetor normal unitário apontando para fora. Use o resultado do exercício anterior para mostrar que ${\bf F}=-W{\bf k}$, onde $W$ é o peso do líquido deslocado pelo sólido. (Observe que ${\bf F}$ é orientado para cima porque $z$ está orientado para baixo.) O resultado é o Princípio de Arquimedes: a força de empuxo sobre um objeto é igual ao

peso do líquido deslocado.



Note que $\displaystyle {\bf F}=-\int_{S} p {\bf n} \,dS = -\iiint_{E} \nabla p\,dV = -\iiint_{E} \nabla p\,dV = - \iiint_{E} \nabla (\rho g z)\,dV.$

Conclua usando que $W = \rho g V(E),$ onde $V(E)$ é o volume de $E.$


2467   

Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).

  • ${\bf F}(x,y,z)=x{\bf i}+y{\bf j}+z{\bf k}$ e $S$ é a parte no primeiro octante do plano $2x+3y+z=6.$


$18.$


3149   

Seja \(\displaystyle \mathbf{F}(x,y,z)=f(x,y,z)\mathbf{i}+ g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}\) e suponha que \(f\), \(g\) e \(h\) sejam contínuas e tenham derivadas parciais de primeira ordem contínuas numa região. Mostre que se \(\mathbf{F}\) é conservativo numa região esférica aberta então \(\mathrm{rot\,}\mathbf{F} = \mathbf{0}\) nessa região. [Sugestão: use que se \(\mathbf{F}\) for conservativo numa região, então \[ \dfrac{\partial f}{\partial y}=\dfrac{\partial g}{\partial x},\quad \dfrac{\partial f}{\partial z}=\dfrac{\partial h}{\partial x},\quad \dfrac{\partial g}{\partial z}=\dfrac{\partial h}{\partial y} \]  nessa mesma região.]


2303   

Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(v\,\cos u,v\sin u,v)$, $0\leq u\leq 2\pi$,\, $0\leq v \leq h$, onde $h>0$ é um real dado.


Face lateral do cone $\sqrt{x^{2} + y^{2}} \leq z \leq h$.


2359   

Seja $S$ a parte do cone $x^{2}=y^{2}+z^{2}$ que está dentro do cilindro $x^{2}+y^{2}=a^{2}$ e no primeiro octante. Determine a área da superfície $S.$


$\dfrac{\pi a^2}{4}$.


2286   

Identifique a superfície que tem equação paramétrica ${\bf r}(u,v)=2\,\sin u\,{\bf i}+3\,\cos u\,{\bf j}+v\,{\bf k}$, $0\leq v\leq 2.$.


$\dfrac{x^2}{4} + \dfrac{y^{2}}{9} = 1,$ com $0\leq z \leq 2.$


2446   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}y dS$, onde $S$ é a superfície com equações paramétricas $x=u$, $y=v$, $z=1-u^{2}$, $0\leq u\leq 1$, $0\leq v\leq \sqrt{u}.$




2470   

Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).

  • ${\bf F}(x,y,z)=x{\bf i}-y{\bf j}+z{\bf k}$ e $S$ é a superfície do sólido delimitado pelos gráficos de $z=x^{2}+y^{2}$ e $z=4.$


$8\pi.$


2317   

Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. $x=u^{2}$, $y=v^{2}$, $z=uv$; $u=1$, $v=1.$


$x + y - 2z = 0.$


2319   

Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. ${\bf r}(u,v)=(\arctan (uv),e^{u^{2}-v^{2}},u-v)$, no ponto ${\bf r}(1,-1).$


$(x,y,z) = \left(-\dfrac{\pi}{4},1,2\right) + s\left(-\dfrac{1}{2},2,1\right) + t\left(\dfrac{1}{2},2,-1\right),$ $s,t \in \mathbb{R}.$


2187   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=3x\,{\bf i}+xz\,{\bf j}+z^{2}\,{\bf k}$ e $S$ é a superfície da região delimitada pelo parabolóide $z=4-x^{2}-y^{2}$ e o plano-$xy.$


2611   

Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot  d{\bf R}$. $C$ é orientada no sentido anti-horário quando vista de cima.

  • ${\bf F}(x,y,z) = (x^2-y){\bf i} + 4z{\bf j} + x^2{\bf k}$, $C$ é a curva de interseção do plano $z=2$ com o cone $z=\sqrt{x^2+y^2}$.


$4\pi$.


3150   

Seja \(\mathbf{F}(x,y)= (ye^{xy}-1)\mathbf{i} + xe^{xy}\mathbf{j}.\)

  1.  Mostre que \(\mathbf{F}\) é um campo vetorial conservativo.

  2.  Calcule uma função potencial de \(\mathbf{F}\).

  3.  Calcule o trabalho realizado pelo campo vetorial sobre uma partícula que se move ao longo da curva representada pelas seguintes equações paramétricas \begin{align*} x  & = t+ \arcsin(\sin t) \\ y & = \dfrac{2}{\pi}\arcsin(\sin t), \ \left(0\leq t\leq 8\pi\right).  \end{align*}


3148   

Seja \(G\) um sólido com a superfície \(\sigma\) orientada por vetores normais unitários para fora, suponha que \(\phi\) tenha derivadas parciais de primeira e segunda ordens contínuas em algum conjunto aberto contendo \(G\) e seja \(D_{\mathbf{n}}\phi\) a derivada direcional de \(\phi\), onde \(\mathbf{n}\) é um vetor normal unitário para fora de \(\sigma\). Mostre que \[ \iint\limits_\sigma D_{\mathbf{n}}\phi\,dS = \iiint\limits_G\left[\dfrac{\partial^2\phi}{\partial x^2}+ \dfrac{\partial^2\phi}{\partial y^2} + \dfrac{\partial^2\phi}{\partial z^2} \right]\,dV. \]


2283   

Determine se os pontos $P(7,10,4)$ e $Q(5,22,5)$ estão na superfície ${\bf r}(u,v)=(2u+3v,1+5u-v,2+u+v)$.


$P$ não está na superfície; $Q$ está na superfície.


2613   

Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot  d{\bf R}$. $C$ é orientada no sentido anti-horário quando vista de cima.

  • ${\bf F}(x,y,z) = (y+z,-z,y)$, $C$ é a curva obtida como interseção do cilindro $x^2+y^2=2y$ com o plano $y = z$.


$\dfrac{4\pi}{3}$.


2543   

Encontre o fluxo exterior do campo ${\bf F}(x,y,z)=z^{2}{\bf i}+x{\bf j}-3z{\bf k}$ através da superfície cortada do cilindro parabólico $z=4-y^{2}$ pelos planos $x=0$, $x=1$ e $z=0.$


$-32.$


3137   

Calcule o trabalho realizado pelo campo vetorial \[ \mathbf{F}(x,y,z) = x^2\mathbf{i}+4xy^3\mathbf{j}+y^2x\mathbf{k}\] sobre uma partícula que percorre o caminho \(C\) definido como o bordo da superfície \(\sigma\) contida no plano \(z=y\) e cuja projeção no plano \(xy\) corresponde ao retângulo \(R=\{(x,y)\in\mathbb{R}^2; 0\leq x\leq 1\),\ \(0\leq y\leq 3\}\). O sentido de percurso é tal que a fronteira de \(R\) é percorrida no sentido horário.



Note que calcular o trabalho \(\displaystyle W= \oint_C\mathbf{F}\cdot\,d\mathbf{r}\) assim diretamente exigiria quatro integrações separadas, uma para cada lado do retângulo. Entretanto, usando o Teorema de Stokes podemos, em vez disso, calcular uma (única!) integral de superfície \[ W= \iint\limits_\sigma\mathrm{rot\,}\mathbf{F}\cdot\mathbf{n}\,dS \] na qual \(\sigma\) é tomada com a orientação para baixo, como requerido pelo Teorema de Stokes. Como a superfície \(\sigma\) está contida no plano \(z=y\) e \[\mathrm{rot\,}\mathbf{F} = \left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z} \\ x^2 & 4xy^3 & xy^2 \end{array}\right| = 2xy\mathbf{i}-y^2\mathbf{j}+4y^3\mathbf{k}, \] segue então que \begin{align*} W= \iint\limits_\sigma\mathrm{rot\,}\mathbf{F}\cdot\mathbf{n}\,dS & = \iint\limits_R\mathrm{rot\,}\mathbf{F}\cdot\left( \dfrac{\partial z}{\partial x}\mathbf{i} +\dfrac{\partial z}{\partial y}\mathbf{j} - \mathbf{k}\right)\,dA \\   & = \iint\limits_R\left(2xy\mathbf{i}-y^2\mathbf{j}+4y^3\mathbf{k}\right)\cdot\left(0\mathbf{i}+\mathbf{h}-\mathbf{k}\right)\,dA \\   & = \int_0^1\int_0^3(-y^2-4y^3)\,dydx \\   & = - \int_0^1\left[\dfrac{y^3}{3}+y^4\right]_{y=0}^3\,dx \\   & = -\int_0^1 90\,dx = -90. \end{align*}


2591   

Seja ${\bf F}$ um campo inverso do quadrado, ou seja, ${\bf F}(r)=cr/|r|^{3}$ para alguma constante $c$, onde $r=x{\bf i}+y{\bf j}+z{\bf k}.$ Mostre que o fluxo de ${\bf F}$ por uma esfera $S$ com centro na origem é independente do raio de $S.$


$\displaystyle \iint\limits_{S}{\bf F}\cdot d \bf S = 4\pi c.$


2191   

Calcule $\displaystyle\iint \limits_{S}{\bf u}\cdot {\bf n}\,dS$, sendo $B=\{(x,y,z)\in \mathbb{R}^{3}|\,x^{2}+y^{2}+z^{2}\leq 1$ e $z\geq x+y\}$ e ${\bf u}=-2xy\,{\bf i}+y^{2}\,{\bf j}+3z\,{\bf k}.$


$\dfrac{3\pi}{2}.$



2146   

Aplique o Teorema da Divergência para achar $\displaystyle\iint \limits_{S}{\bf F}\cdot {\bf n}\,dS,$  sendo ${\bf F}(x,y,z)=(x^{2}+\sin yz)\,{\bf i}+(y-xe^{-z})\,{\bf j}+z^{2}\,{\bf k}$ e $S$ a superfície da região delimitada pelo cilindro $x^{2}+y^{2}=4$ e os planos $x+z=2$ e $z=0.$


$20\pi.$


2305   

Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(u,v,1-u^{2})$, $u\geq 0$, $v\geq 0$ e $u+v\leq 1.$


${\bf r}(u,v)=(u,v,1-u^{2})$, $u\geq 0$,\, $v\geq 0$ e $u+v\leq 1.$


2139   

Use o Teorema do Divergente para calcular $\displaystyle\iint \limits_{S}(2x+2y+z^{2})\,dS$ onde $S$ é a esfera $x^{2}+y^{2}+z^{2}=1.$



A superfície $S$ em questão é a esfera unitária, que é a fronteira da bola unitária $B$ dada por $x^2+y^2+z^2 \leq 1$ e tem vetor normal num ponto $(x,y,z)$ igual a $(x,y,z)$ (o qual aponta para ``fora").

ma211-list15-ex3_sol.png

Observe que podemos transformar o integrando $2x+2y+z^{2}$ em $(2,2,z) \cdot (x,y,z)$ e essa escrita é interessante, já que o segundo vetor é exatamente o vetor normal a $S$. Agora estamos em condições de aplicar o Teorema do Divergente quando tomamos o campo ${\bf F}(x,y,z) = (2,2,z)$. Assim,
\begin{array}{rcl}\displaystyle\iint\limits_{S}(2x+2y+z^{2})\,dS & = & \iint\limits_{ S}(2,2,z) \cdot (x,y,z)\,dS \\& = & \int\int\int \limits_{ S}{\bf F} \cdot {\bf n}\,dS \\& = & \iiint\limits_{ B}\text{div } F\,dV \\& = & \iiint\limits_{ B}(0+0+1)\,dV \\& = & V(B) = \frac{4\pi}{3}.\end{array}


2285   

Identifique a superfície que tem equação paramétrica ${\bf r}(u,v)=(u+v)\,{\bf i}+(3-v)\,{\bf j}+(1+4u+5v)\,{\bf k}.$.


$4x - y - z = -4.$


2337   

Determine a área da superfície dada pela parte da superfície $y=4x+z^{2}$ que está entre os planos $x=0$, $x=1$, $z=0$ e $z=1.$


$\dfrac{\sqrt{21}}{2} + \dfrac{17}{4} \left( \ln(2 + \sqrt{21}) - \ln(\sqrt{17}) \right).$


2195   

Seja ${\bf F}=(z tg^{-1}(y^{2}),z^{3}\ln(x^{2}+1),z).$ Determine o fluxo de ${\bf F}$ através da parte do parabolóide $x^{2}+y^{2}+z=2$ que está acima do plano $z=1$ e está orientada para cima. (Observe que a superfície acima não é fechada.)


2449   

Calcule $\displaystyle\iint\limits_{S}g(x,y,z)dS,$ onde $g(x,y,z)=x+y$ e $S$ é parte do primeiro octante do plano $2x+3y+z=6.$


$5\sqrt{14}.$


2423   

A temperatura em um ponto $(x,y,z)$ em uma substância com condutividade $K=6,5$ é $u(x,y,z)=2y^{2}+2z^{2}.$ Determine a taxa de transmissão de calor nessa substância para dentro da superfície cilíndrica $y^{2}+z^{2}=6$, $0\leq x\leq 4.$



O fluxo de calor, com $u(x,y,z)=2y^{2}+2z^{2}$, é dado por

$${\bf F}(x,y,z)=-K \nabla u=-6,5(0{\bf i}+4y{\bf j}+4z{\bf k})=0{\bf i}-26y{\bf j}-26z{\bf k}.$$

Temos que $S$ é a superfície cilíndrica $y^{2}+z^{2}=6$ e $0\leq x \leq 4.$ As equações paramétricas de $S$ são:

$$x=x, y=\sqrt{6}\cos \theta \mbox{e} z=\sqrt{6}\sin \theta$$

onde $0\leq x \leq 4$ e $0\leq \theta \leq 2\pi.$

Então,

$${\bf r}(x,\theta)=x{\bf i}+\sqrt{6}\cos \theta{\bf j}+\sqrt{6}\sin \theta{\bf k}.$$

Como queremos o fluxo de calor para dentro de $S$ devemos calcular

$$\int \int\limits_{S}{\bf F}\cdot dS=\int \int\limits_{ D}{\bf F}({\bf r}(x,\theta))\cdot ({\bf r}_{x}\times {\bf r}_{\theta})dA.$$

Então,

$${\bf r}_{x}(x,\theta)={\bf i}+0{\bf j}+0{\bf k}$$

e

$${\bf r}_{\theta}(x,\theta)=0{\bf i}-\sqrt{6}\sin \theta{\bf j}-\sqrt{6}\cos \theta{\bf k}.$$

Logo,

$\begin{array}{rcl} {\bf r}_{x} \times {\bf r}_{\theta} &=& \left| \begin{array}{ccc}{\bf i} & {\bf j} & {\bf k}\\1 & 0 & 0\\0 & -\sqrt{6}\sin \theta & -\sqrt{6}\cos \theta \\ \end{array} \right| \\ &=& 0{\bf i}-\sqrt{6}\cos \theta{\bf j}-\sqrt{6}\sin \theta{\bf k}, \end{array}$

$${\bf F}({\bf r}(x,\theta))=(0{\bf i}-26\sqrt{6}\cos\theta{\bf j}-26\sqrt{6}\sin \theta{\bf k})$$

e

$${\bf F}({\bf r}(x,\theta))\cdot ({\bf r}_{x}\times {\bf r}_{\theta})=(0{\bf i}-26\sqrt{6}\cos\theta{\bf j}-26\sqrt{6}\sin \theta{\bf k}) \cdot (0{\bf i}-\sqrt{6}\cos \theta{\bf j}-\sqrt{6}\sin \theta{\bf k})=156$$

Assim, a taxa de fluxo de calor para dentro de $S$ é:

$$\int \int\limits_{S}{\bf F}\cdot dS=\int \int\limits_{ D}{\bf F}({\bf r}(x,\theta))\cdot ({\bf r}_{x}\times {\bf r}_{\theta})dA=\int \int\limits_{ D}156 dA=156\int \int\limits_{ D} 1 dA$$

$$=156\int_{0}^{2\pi}\int_{0}^{4}1dxd\theta=156\int_{0}^{2\pi}d\theta\cdot \int_{0}^{4}dx=156\cdot (\theta)\bigg|_{0}^{2\pi}\cdot (x)\bigg|_{0}^{4}=156\cdot 2\pi \cdot 4=1248 \pi.$$


2347   

Seja $f:K\rightarrow \mathbb{R}$ de classe $C^{1}$ no compacto $K$ com fronteira de conteúdo nulo e interior não-vazio. Mostre que a área da superfície $z=f(x,y)$ (isto é, da superfície ${\bf r}$ dada por $x=u$, $y=v$ e $z=f(u,v)$) é dada pela fórmula

$$\iint\limits_{ K}\sqrt{1+\bigg(\frac{\partial f}{\partial x}\bigg)^{2}+\bigg(\frac{\partial f}{\partial y}\bigg)^{2}}dxdy.$$


2299   

Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(u,v,u^{2}+v^{2})$, $(u,v)\in \mathbb{R}^{2}.$.


Paraboloide de rotação $z = x^2 + y^2.$


2302   

Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(u,\sqrt{1-u^{2}-v^{2}},v)$, $u^{2}+v^{2}\leq 1.$


Semi superfície esférica $x^2 + y^2 + z^2 = 1,$ $y  \geq 0.$


3146   

Sejam \(\alpha\) e \(\beta\) dois ângulos que satisfazem \(\displaystyle 0<\beta-\alpha\leq 2\pi\) e suponha que \( r= f(\theta)\) seja uma curva polar lisa com \(f(\theta)>0\) no intervalo \([\alpha,\beta]\). Use a fórmula \[ A = \dfrac{1}{2}\int_C-y\,dx+x\,dy \] para encontrar a área da região \(R\) englobada pela curva \(r=f(\theta)\) e os raios \(\theta=\alpha\) e \(\theta=\beta\).


2346   

Encontre a área da parte da esfera $x^{2}+y^{2}+z^{2}=a^{2}$ que está dentro do cilindro $x^{2}+y^{2}=ax.$


$2a^2 (\pi - 2).$


2140   

Demonstre a identidade $\displaystyle\iint\limits_{S}\mbox{rot}\, {\bf F}\cdot dS=0$, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.




Pelo Teorema do Divergente, temos
$\displaystyle\iint\limits_{ S}\mbox{rot} {\bf F}\cdot dS = \iiint\limits_{ E}\mbox{div} (\mbox{rot} {\bf F})\,dV,$
em que $E$ é o sólido que tem $S$ como fronteira. Observe que
\begin{align*}
&\mbox{div} (\mbox{rot} {\bf F})  =\\ & \frac{\partial}{\partial x}(R_y - Q_z) + \frac{\partial}{\partial y}(P_z - R_x) + \frac{\partial}{\partial z}(Q_x - P_y) \\ & R_{xy} - Q_{xz} + P_{yz} - R_{yx} + Q_{zx} - P_{zy} = 0,
\end{align*}
pois, como as derivadas de segunda ordem são contínuas, temos, pelo Teorema de Clairaut, que $P_{yz} = P_{zy}$, $Q_{zx} = Q_{xz}$ e $R_{xy} = R_{yx}$. Portanto,

$\displaystyle\iint\limits_{S}\mbox{rot}{\bf F}\cdot dS=0.$


2150   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=x^{3}y\,{\bf i}-x^{2}y^{2}\,{\bf j}-x^{2}yz\,{\bf k}$ e $S$ é a superfície do sólido delimitado pelo hiperbolóide $x^{2}+y^{2}-z^{2}=1$ e pelos planos $z=-2$ e $z=2.$


2547   

Um fluido tem densidade $870kg/m^{3}$ e escoa com velocidade $v=z{\bf i}+y^{2}{\bf j}+x^{2}{\bf k},$ onde $x$, $y$ e $z$ são medidos em metros e as componentes de $v$ em metros por segundo. Encontre a vazão para fora do cilindro $x^{2}+y^{2}=4$, $0\leq z\leq 1.$


$0$ kg/s.


2250   

Verifique que $\mbox{div} {\bf E}=0$ para o campo elétrico ${\bf E}({\bf x})=\dfrac{\epsilon Q}{|{\bf x}|^{3}}{\bf x}.$


2452   

Integre $g(x,y,z)=xyz$ sobre a superfície do sólido retangular cortado do primeiro octante pelos planos $x=a$, $y=b$ e $z=c.$


$\dfrac{abc(ab+ac+bc)}{4}.$


2614   

Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot  d{\bf R}$. $C$ é orientada no sentido anti-horário quando vista de cima.

  • ${\bf F}(x,y,z) = (2xyz-2y,x^2+2x,x^2+2y)$, $C$ é a circunferência $y^2+z^2=1$, $x=2$.


$2\pi$.


2425   

Se $S$ é uma esfera e ${\bf F}$ satisfaz as hipóteses do Teorema de Stokes, mostre que $\displaystyle\iint\limits_{S}\mbox{rot}{\bf F} \cdot d{\bf S} = 0$.


3041   

Faça uma correspondência entre as equações e os gráficos identificados a seguir,  enumerador respectivamente por $I-VI$, e justifique sua resposta. Determine quais famílias de curvas da grade têm $u$ constante e quais têm $v$ constante.

  1. ${\bf r}(u,v)=u\cos v{\bf i}+u\sin v{\bf j}+v{\bf k}.$

  2. ${\bf r}(u,v)=u\cos v{\bf i}+u\sin v{\bf j}+\sin u{\bf k}$, $-\pi\leq u\leq \pi.$

  3. ${\bf r}(u,v)=\sin v{\bf i}+\cos u\sin 2v{\bf j}+\sin u\sin 2v{\bf k}.$

  4. $x=(1-u)(3+\cos v)\cos 4\pi u$, $y=(1-u)(3+\cos v)\sin 4\pi u$,$z=3u+(1-u)\sin v.$

  5. $x=\cos^{3}u\cos^{3}v$,  $y=\sin^{3}u\cos^{3}v$, $z=\sin^{3}v.$

  6. $x=(1-|u|)\cos v$, $y=(1-|u|)\sin v$, $z=u.$

ma211-list13-ex23_i.png

ma211-list13-ex23_ii.png

ma211-list13-ex23_iii.png

ma211-list13-ex23_iv.png

ma211-list13-ex23_v.png

ma211-list13-ex23_vi.png


  1. IV.
  2. I.
  3. II.
  4. V.
  5. III.
  6. VI

2341   

Determine a área da superfície dada pela porção do cone $z=2\sqrt{x^{2}+y^{2}}$ entre os planos $z=2$ e $z=6.$


$8\sqrt{5}\pi.$


2268   

Determine a área da superfície dada pela parte de baixo da esfera $x^{2}+y^{2}+z^{2}=2$ cortada pelo cone $z=\sqrt{x^{2}+y^{2}}.$



Sejam

$$\left \{\begin{array}{cc}x=r\,\sin \phi\,\cos \theta\\y=r\,\sin \phi\,\sin \theta\\z=r\,\cos \phi\\\end{array}\right. \Rightarrow r=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{2},\, \mbox{na\,esfera}.$$

Temos que

$$x^{2}+y^{2}+z^{2}=2    \mbox{e}\,\,\,\, z=\sqrt{x^{2}+y^{2}}\Rightarrow z^{2}+z^{2}=2\Rightarrow z^{2}=1\Rightarrow z=1\,(\mbox{pois}\, z\geq 0).$$

Logo, $\phi=\frac{\pi}{4}.$ Para a parte inferior da esfera cortado pelo cone, temos que $\phi=\pi.$

Então,

$$r(\phi,\theta)=(\sqrt{2}\,\sin \phi,\,\cos\theta)\,{\bf i}+(\sqrt{2}\,\sin \phi\,\sin \theta)\,{\bf j}+(\sqrt{2}\,\cos \phi)\,{\bf k},$$

$$\frac{\pi}{4}\leq \phi\leq \pi\,\,\,\, \mbox{e}\,\,\,\, 0\leq \theta \leq 2\pi.$$

Isso implica que

$$r_{\phi}(\phi,\theta)=(\sqrt{2}\,\cos \phi,\,\cos\theta)\,{\bf i}+(\sqrt{2}\,\cos \phi\,\sin \theta)\,{\bf j}-(\sqrt{2}\,\sin \phi)\,{\bf k}$$

e

$$r_{\theta}(\phi,\theta)=(-\sqrt{2}\,\sin \phi,\,\sin\theta)\,{\bf i}+(\sqrt{2}\,\sin \phi\,\cos \theta)\,{\bf j}+0\,{\bf k}$$

Logo,

$$\begin{array}{rcl}r_{\phi}\times r_{\theta}&=&\left|\begin{array}{ccc}{\bf i}&{\bf j}&{\bf k}\\\sqrt{2}\,\cos \phi\,\cos \theta & \sqrt{2}\,\cos \phi\,\sin \theta& -\sqrt{2}\,\sin \phi\\-\sqrt{2}\,\sin \phi\,\sin \theta & \sqrt{2}\,\sin \phi\,\cos \theta & 0\end{array}\right|\\&=&(2\,\sin^{2}\phi\,\cos \theta)\,{\bf i}+(2\sin^{2}\phi\,\sin \theta)\,{\bf j}+(2\,\sin \phi \,\cos \phi)\,{\bf k}.\\\end{array}$$

Isso resulta que

$$\begin{array}{rcl}|r_{\phi}\times r_{\theta}|&=&\sqrt{4\sin^{2}\phi\,\cos^{2}\theta+4\,\sin^{4}\,\sin^{2}\theta+4\sin^{2}\phi\,\cos^{2}\phi}\\&=&\sqrt{4\,\sin^{2}\phi}=2|\sin\phi|=2\sin \phi   \bigg(\mbox{pois},\, \frac{\pi}{4}\leq \phi \leq \pi\bigg).\end{array}$$

Assim,

$$A=\iint\limits_{ D}|r_{\phi}\times r_{\theta}|\,dA=\int_{\frac{\pi}{4}}^{\pi}\int_{0}^{2\pi}2\sin \phi\, d\theta d \phi=2\int_{\frac{\pi}{4}}^{\pi}\sin \phi\,d\phi \cdot \int_{0}^{2\pi}d\theta$$

$$=2\cdot (-\cos \phi)\bigg|_{\frac{\pi}{4}}^{\pi}\cdot \theta\bigg|_{0}^{2\pi}=2\cdot \bigg(1-\frac{\sqrt{2}}{2}\bigg)\cdot 2\pi=4\pi\bigg(1-\frac{\sqrt{2}}{2}\bigg)=\pi(4-2\sqrt{2})$$


2441   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}z dS$, onde $S$ é a superfície $x=y+2z^{2}$, $0 \leq y\leq 1$, $0 \leq z \leq 1.$


$\dfrac{13\sqrt{2}}{12}.$


2631   

Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.

  • ${\bf F}(x,y,z) = y{\bf i} + x{\bf j} + xz{\bf k}$, $S$ a superfície $z = x+y+2$ e $x^2 + \dfrac{y^2}{4} \leq 1$, sendo ${\bf n}$ a normal que aponta para baixo.


$4\pi$.


2284   

Determine se os pontos $P(3,-1,5)$ e $Q(-1,3,4)$ estão na superfície ${\bf r}(u,v)=(u+v,u^{2}-v,u+v^{2})$.


$P$ está na superfície; $Q$ não está na superfície.


2466   

Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).

  • ${\bf F}(x,y,z)=x^{2}{\bf i}+y^{2}{\bf j}+z^{2}{\bf k}$ e $S$ é a fronteira do semicilindro sólido $0 \leq z \leq \sqrt{1-y^{2}}$, $0 \leq x \leq 2.$


$2\pi + \dfrac{8}{3}.$


2293   

Determine uma representação paramétrica para a superfície descrita a seguir. O paraboloide $z=x^{2}+y^{2}$, \, $z\leq 4.$


$x = r \cos(\theta),$ $y = r \sin(\theta),$ $z = r^2,$ onde $0 \leq r \leq 2$ e $0\leq \theta \leq 2\pi.$


3132   

Encontre a massa da lâmina descrita como sendo a porção do cilindro circular \(x^2+z^2=4\) que fica diretamente acima do retângulo \(\displaystyle R=\{(x,y)\in\mathbb{R}^2;\ 0\leq x\leq 1,\ 0\leq y\leq 4\}\) e tem densidade \(\delta_0\) constante.


\(\dfrac{4}{3}\pi\delta_0\)


2316   

Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. $x=u+v$, $y=3u^{2}$, $z=u-v$; $(2,3,0).$


$3x - y + 3z = 3.$


2509   

Ache $\displaystyle\iint \limits_{ S}{\bf F}\cdot {\bf n} dS$ se ${\bf n}$ é uma normal unitária superior de $S.$


  • ${\bf F}=x{\bf i}+y{\bf j}+z{\bf k}$; $S$ é o hemisfério superior de $x^{2}+y^{2}+z^{2}=a^{2}.$


$2\pi a^3.$


2300   

Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(1,u,v)$, $0\leq u\leq 1$, $0\leq v \leq 1.$


Região quadrada do plano $x = 1:$ $0 \leq y \leq 1$ e $0 \leq z \leq 1.$


2328   

Determine a área da superfície dada pela parte do plano $3x+2y+z=6$ que está no primeiro octante.


$3\sqrt{14}.$


2510   

Ache $\displaystyle\iint \limits_{ S}{\bf F}\cdot {\bf n} dS$ se ${\bf n}$ é uma normal unitária superior de $S.$

  • ${\bf F}=x{\bf i}-y{\bf j}$; $S$ é a parte no primeiro octante da esfera $x^{2}+y^{2}+z^{2}=a^{2}.$


$0.$


2269   

Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. ${\bf r}(u,v)=u^{2}\,{\bf i}+2u\,\sin v\,{\bf j}+u\,\cos v\,{\bf k}$; $u=1$, $v=0.$



Temos que ${\bf r}(u,v)=\underbrace{u^{2}}_{x(u,v)}\,{\bf i}+\underbrace{2u\,\sin v}_{y(u,v)}\,{\bf j}+\underbrace{u\,\cos v}_{z(u,v)}\,{\bf k}$

Primeiro, vamos calcular os vetores tangentes:

$$\begin{array}{rcl}{\bf r}_{u}&=&\frac{\partial x(u,v)}{\partial u}\,{\bf i}+\frac{\partial y(u,v)}{\partial u}\,{\bf j}+\frac{\partial z(u,v)}{\partial u}\,{\bf k}\\&=& 2u\,{\bf i}+2\,\sin v\,{\bf j}+\cos v\,{\bf k}\end{array}$$

e

$$\begin{array}{rcl}{\bf r}_{v}&=&\frac{\partial x(u,v)}{\partial v}\,{\bf i}+\frac{\partial y(u,v)}{\partial v}\,{\bf j}+\frac{\partial z(u,v)}{\partial v}\,{\bf k}\\&=& 0\,{\bf i}+2u\,\cos v\,{\bf j}-u\sin v\,{\bf k}\end{array}$$


Assim, o vetor normal ao plano tangente é:

$$\begin{array}{rcl}{\bf r}_{u}\times {\bf r}_{v}&=&\left|\begin{array}{ccc}{\bf i} & {\bf j} & {\bf k}\\2u & 2\sin v & \cos v\\0 & 2u\cos v & -u\sin v\\\end{array}\right|\\&=&(-2u\,\sin^{2}v-2u\cos^{2}v)\,{\bf i}+(2u^{2}\,\sin v)\,{\bf j}+(4u^{2}\,\cos v)\,{\bf k}\end{array}$$


Como $u=1$ e $v=0$ temos que o vetor normal é $-2\,{\bf i}+0\,{\bf j}+4\,{\bf k}.$

Portanto, uma equação do plano tangente no ponto ${\bf r}(1,0)=(1,0,1)$ é

$$-2\cdot(x-1)+0\cdot(y-0)+4\cdot (z-1)=0$$

$$-2x+2+4z-4=0$$

$$-2x+4z-2=0    \mbox{ou}     x-2z+1=0$$


2292   

Determine uma representação paramétrica para a superfície descrita a seguir. A parte do plano $z=x+3$ que está dentro do cilindro $x^{2}+y^{2}=1.$


$x = r \cos(\theta),$ $y = r \sin(\theta),$ $z = 3 + r \cos(\theta),$ onde $0 \leq r \leq 1$ e $0\leq \theta \leq 2\pi.$


2345   

Mostre que as equações paramétricas $x=a \cosh u\cos v$, $y=b\cosh u \sin v$, $z=c\sinh u$, representam um hiperboloide de uma folha.


Note que $\dfrac{x^{2}}{a^{2}} + \dfrac{y^{2}}{b^{2}} - \dfrac{z^{2}}{c^{2}} = 1$.


2616   

Verifique que o Teorema de Stokes é verdadeiro para o campo vetorial ${\bf F}$ dado e a superfície $S$.

  • ${\bf F}(x,y,z) = y{\bf i} + z{\bf j} + x{\bf k}$, $S$ é o hemisfério $x^2+y^2+z^2=1$, $y \geq 0$, orientado na direção positiva do eixo $y$.


$\displaystyle\int_{C} {\bf F} \cdot d{\bf R} = \displaystyle\iint_{S} \mbox{rot} {\bf F} \cdot d{\bf S} = -\pi$.


2461   

Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).

  • ${\bf F}(x,y,z)=xy{\bf i}+yz{\bf j}+zx{\bf k}$ e $S$ é a parte do parabolóide $z=4-x^{2}-y^{2}$ que está acima do quadrado $0\leq x\leq 1$, $0\leq y\leq 1$, com orientação para cima.



$\dfrac{713}{180}.$


2448   

Calcule $\displaystyle\iint\limits_{S}g(x,y,z)dS,$ sendo $g(x,y,z)=x^{2}+y^{2}+z^{2}$ e $S$ a parte do plano $z=y+4$ interior ao cilindro $x^{2}+y^{2}=4.$


$76\pi \sqrt{2}.$


2339   

Determine a área da superfície com equações paramétricas $x=u^{2}$, $y=uv$, $z=\dfrac{1}{2}v^{2}$, $0\leq u\leq 1$, $0\leq v\leq 2.$


$4.$


2438   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}yz dS$, onde $S$ é a parte do plano $x+y+z=1$ que está no primeiro octante.


$\dfrac{\sqrt{3}}{24}.$


2361   

Considere a superfície parametrizada por

$${\bf r}(u,v)=(uv,u+v,u-v).$$

  1. Determine o valor de $c$ de forma que o ponto $(c,1,0)$ pertença à superfície.

  2. Calcule a área da parte da superfície correspondente à variação $u^{2}+v^{2}\leq 1.$


  1. $\dfrac{1}{4}.$

  2. $\left(\sqrt{6} - \dfrac{4}{3} \right)2\pi.$


2290   

Determine uma representação paramétrica para a superfície descrita a seguir. A parte da esfera $x^{2}+y^{2}+z^{2}=4$ que está acima do cone $z=\sqrt{x^{2}+y^{2}}.$



$x = 2\sin(\phi)\cos(\theta),$ $y = 2\sin(\phi)\sin(\theta),$ $z = 2\cos(\phi),$ onde $0\leq \phi \leq \frac{\pi}{4}$ e $0 \leq \theta \leq 2\pi.$


2295   

Determine uma representação paramétrica para a superfície descrita a seguir. A porção no primeiro octante do cone $z=\sqrt{x^{2}+y^{2}}/2$ entre os planos $z=0$ e $z=3.$


$x = r \cos(\theta),$ $y = r \sin(\theta),$ $z = \dfrac{r}{2},$ onde $0 \leq r \leq 6$ e $0\leq \theta \leq \dfrac{\pi}{2}.$


2621   

Suponha que $S$ e $C$ satisfaçam as hipóteses do Teorema de Stokes e $f$ e $g$ tenham derivadas parciais de segunda ordem contínuas. Demonstre que $\displaystyle\int_C (f\nabla g + g\nabla f) \cdot d{\bf R} = 0$


Note que $\mbox{rot} (f\nabla g + g\nabla f) = {\bf 0}.$


2445   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}xy dS$, onde $S$ é a superfície com equações paramétricas $x=u-v$, $y=u+v$, $z=2u+v+1$, $0 \leq u \leq 1$, $0 \leq v \leq u.$


2440   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}\sqrt{1+x^{2}+y^{2}}dS$, onde $S$ é o helicóide com equação vetorial ${\bf r}(u,v)=u\cos v{\bf i}+u\sin v{\bf j}+v{\bf k}$, $0 \leq u \leq 1$, $0 \leq v \leq \pi.$


$\dfrac{4\pi}{3}.$


3136   

Em 1831, o físico Michael Faraday descobriu que uma corrente elétrica pode ser produzida variando-se o fluxo magnético através de um arco condutor. Suas experiências mostraram que a força eletromotriz \(\mathbf{E}\) está relacionada com a indução magnética \(\mathbf{B}\) pela equação \[ \oint_C\mathbf{E}\cdot\,d\mathbf{r} = - \iint\limits_\sigma\dfrac{\partial\mathbf{B}}{\partial t}\cdot\mathbf{n}\,dS.\] Use este resultado para fazer uma conjectura acerca da relação entre \(\mathrm{rot\,}\mathbf{E}\) e \(\mathbf{B}\). Explique seu raciocínio.


2544   

Encontre o fluxo exterior do campo ${\bf F}=2xy{\bf i}+2yz{\bf j}+2xz{\bf k}$ ao longo da superfície do cubo cortado do primeiro octante pelos planos $x=a$, $y=a$ e $z=a.$


$3\pi a^4.$


3133   

Encontre a massa da lâmina descrita como sendo a porção do parabolóide \(2z=x^2+y^2\) que fica dentro do cilindro \(x^2+y^2=8\) e tem densidade \(\delta_0\) constante.


3139   

Prove a seguinte identidade \[ \iint\limits_\sigma\mathrm{rot\,}\mathbf{F}\cdot\mathbf{n}\,dS = 0, \] supondo que \(\mathbf{F}\) e \(\sigma\) satisfaçam as hipóteses do Teorema da Divergência.


2610   

Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot  d{\bf R}$. $C$ é orientada no sentido anti-horário quando vista de cima.

  • ${\bf F}(x,y,z) = xy{\bf i} + 2z{\bf j} + 3y{\bf k}$, $C$ é a curva de interseção do plano $x+z=5$ com o cilindro $x^2+y^2=9$.


$9\pi$.


3144   

Encontre o trabalho realizado pelo campo de forças \[ \mathbf{F}(x,y)= y^2\mathbf{i} + xy\mathbf{j} \] para mover uma partícula de \((0,0)\) até \((1,1)\) ao longo da parábola \(y=x^2\).


2453   

Integre $g(x,y,z)=x+y+z$ sobre a porção do plano $2x+2y+z=2$ que está no primeiro octante.


$2.$


3042   

  1. Determine a representação paramétrica do toro obtido girando em torno do eixo $z$ o círculo do plano $xz$ com centro em $(b,0,0)$ e raio $a < b.$ [Sugestão: tome como parâmetros os ângulos $\theta$ e $\alpha$ mostrados na figura.]

  2. Use a representação paramétrica do item anterior para achar a área do toro.

ma211-list13-ex38.png


  1. $x = b\cos(\theta) + a\cos(\alpha)\cos(\theta),$ $y = b\sin(\theta) + a\cos(\alpha)\sin(\theta),$ $z = a\sin(\alpha),$ onde $0 \leq \alpha \leq 2\pi,$ $0 \leq \theta \leq 2\pi.$

  2. $4\pi^2 ab.$


3151   

Enuncie o Teorema da Divergência e o Teorema de Stokes, incluindo todas as hipóteses envolvidas.


2464   

Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).

  • ${\bf F}(x,y,z)=y{\bf j}-z{\bf k}$ e $S$ é formada pelo parabolóide $y=x^{2}+z^{2}$, $0 \leq y \leq 1$ e pelo círculo $x^{2}+z^{2} \leq 1$, $y=1.$


$0.$


2192   

Calcule $\displaystyle\iint \limits_{S}{\bf u}\cdot {\bf n}\,dS$, sendo $B=\{(x,y,z)\in \mathbb{R}^{3}|\, x^{2}+y^{2}+z^{2}\leq 1\}$ e ${\bf u}=x\,{\bf i}+y\,{\bf j}+z^{2}\,{\bf k}.$


$\pi.$



2151   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=(\cos z+xy^{2})\,{\bf i}+xe^{-z}\,{\bf j}+(\sin y+x^{2}z)\,{\bf k}$ e $S$ é a superfície do sólido limitado pelo parabolóide $z=x^{2}+y^{2}$ e pelo plano $z=4.$


2443   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}y^{2}dS$, onde $S$ é a parte da esfera $x^{2}+y^{2}+z^{2}=4$ que está dentro
do cilindro $x^{2}+y^{2}=1$ e acima do plano $xy.$


$\pi\left( \dfrac{32}{3} - 6\sqrt{3}\right).$


2348   

Calcule a área da parte da superfície cilíndrica $z^{2}+x^{2}=4$ que se encontra dentro do cilindro $x^{2}+y^{2}\leq 4$ e acima do plano $xy.$


$16.$


2442   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}y dS$, onde $S$ é a parte do parabolóide $y=x^{2}+z^{2}$ que está dentro do cilindro $x^{2}+z^{2}=4.$


$\dfrac{\pi(391\sqrt{17}+1)}{60}.$


2289   

Determine uma representação paramétrica para a superfície descrita a seguir. A parte do paraboloide elíptico $x+y^{2}+2z^{2}=4$ que está em frente ao plano $x=0.$


$y = u,$ $z = v,$ $x = 4 - u^2 - 2v^2,$ onde $u^{2} + 2v^2 \leq 4.$


2189   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=(5x^{3}+12xy^{2})\,{\bf i}+(y^{3}+e^{y}\,\sin z)\,{\bf j}+(5z^{3}+e^{y}\,\cos z)\,{\bf k}$ e $S$ é a superfície do sólido entre as esferas $x^{2}+y^{2}+z^{2}=1$ e $x^{2}+y^{2}+z^{2}=2.$


2625   

Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.

  • ${\bf F}(x,y,z) = y{\bf i} + x^2{\bf j} + z{\bf k}$, $S$ a superfície $x^2+y^2 = 1$, $0\leq z \leq 1$ e $y\geq 0$, sendo ${\bf n}$ a normal com componente $y\geq 0$.


$0$.


2542   

Encontre o fluxo do campo ${\bf F}$ ao longo da porção da superfície dada no sentido especificado.

  • ${\bf F}(x,y,z)=yx^{2}{\bf i}-2{\bf j}+xz{\bf k}$; $S$ é a superfície retangular $y=0$, $-1\leq x \leq 2$, $2\leq z \leq 7$, sentido $-{\bf j}.$


$30.$


2147   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=e^{x}\,\sin y\,{\bf i}+e^{x}\,\cos y\,{\bf j}+yz^{2}\,{\bf k}$ e $S$ é a superfície da caixa delimitada pelos planos $x=0$, $x=1$, $y=0$, $y=1$, $z=0$ e $z=2.$


3142   

Considere o campo vetorial \(\mathbf{F}(x,y,z)=(x-y)\mathbf{i} + (y-z)\mathbf{j}+(z-x)\mathbf{k}\) e a superfície \(\sigma\)
descrita como sendo a porção do plano \(x+y+z=1\) no primeiro octante e orientada para cima. Verifique o Teorema de Stokes
calculando, separadamente, a integral de linha e a integral dupla e, em seguida, comparando os valores.


\(\dfrac{3}{2}\)


2291   

Determine uma representação paramétrica para a superfície descrita a seguir. A parte do cilindro $y^{2}+z^{2}=16$ que está entre os planos $x=0$ e $x=5.$


$x = u,$ $y = 4\cos (\theta),$ $z = 4\sin(\theta),$ onde $0 \leq u \leq 5,$ $0 \leq \theta \leq 2\pi.$


2607   

Use o Teorema de Stokes para calcular $\displaystyle\iint\limits_{ S}\mbox{rot}{\bf F}\cdot d{\bf S}.$

  • ${\bf F}(x,y,z) = x{\bf i} - z{\bf j} + y{\bf k}$, $S$ é a parte do plano $x+z=1$ dentro do cilindro $x^2+y^2 = 1$, com orientação para cima.


$2\pi.$


2194   

Use o Teorema do Divergente para calcular $\displaystyle\iint \limits_{S}{\bf F}\cdot dS$, onde ${\bf F}(x,y,z)=z^{2}x\,{\bf i}+(\frac{1}{3}y^{3}+tg z)\,{\bf j}+(x^{2}z+y^{2})\,{\bf k}$ e $S$ é a metade de cima da esfera $x^{2}+y^{2}+z^{2}=1.$
[Sugestão: observe que $S$ não é uma superfície fechada. Calcule primeiro as integrais sobre $S_{1}$ e $S_{2}$, onde $S_{1}$ é o círculo $x^{2}+y^{2}\leq 1$, orientado para baixo, e $S_{2}=S\cup S_{1}.$]



Note que $\dfrac{\partial}{\partial x} \left( \dfrac{x}{|{\bf x}|^3} \right) = \dfrac{|{\bf x}|^2 - 3x^2}{|{\bf x}|^5},$ $\dfrac{\partial}{\partial y} \left( \dfrac{y}{|{\bf x}|^3} \right) = \dfrac{|{\bf x}|^2 - 3y^2}{|{\bf x}|^5}$ e $\dfrac{\partial}{\partial z} \left( \dfrac{x}{|{\bf x}|^3} \right) = \dfrac{|{\bf x}|^2 - 3z^2}{|{\bf x}|^5}.$


2612   

Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot d{\bf R}$. Em cada caso, $C$ é orientada no sentido anti-horário quando vista de cima.

  • ${\bf F}(x,y,z) = x^2z{\bf i} + xy^2{\bf j} + z^2{\bf k}$, $C$ é a curva de interseção do plano $x+y+z=1$ com o cilindro $x^2+y^2 = 9$.


$\dfrac{81\pi}{2}.$


2344   

  1. Determine, mas não calcule, a integral dupla da área da superfície com as equações paramétricas $x=au\cos v$, $y=bu\sin v$, $z=u^{2}$, $0\leq u\leq 2$, $0\leq v\leq 2\pi.$

  2. Elimine os parâmetros para mostrar que a superfície é um paraboloide elíptico e escreva outra integral dupla que forneça sua área.


  1. $\displaystyle \int^{2\pi}_{0}\int_{0}^{2} \sqrt{4b^2 u^4 \cos^{2}v + 4a^2 u^4 \sin^{2} v + a^2 b^2 u^2} dudv.$

  2. $\displaystyle \int_{-2a}^{2a} \int^{b \sqrt{4 - \frac{x^2}{a^2}}}_{-b \sqrt{4 - \frac{x^2}{a^2}}} \sqrt{1 + \left(2\frac{x}{a^2}\right)^{2} + \left(2\frac{y}{b^2} \right)^{2}} dydx.$


2190   

Calcule $\displaystyle\iint \limits_{S}{\bf u}\cdot {\bf n}\,dS$, sendo $S$ a fronteira de $B$ com normal exterior ${\bf n}$, sendo $B=\{(x,y,z)\in \mathbb{R}^{3}|\, 0\leq x\leq 1,\,0\leq y\leq x$ e $0\leq z\leq 4\}$ e ${\bf u}=xy\,{\bf i}+yz\,{\bf j}+z^{2}\,{\bf k}.$


$\dfrac{13\pi}{20}.$



2153   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=yz\,{\bf i}+xz\,{\bf j}+xy\,{\bf k}$ e $S$ é o gráfico de $x^{2/3}+y^{2/3}+z^{2/3}=1.$


2462   

Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).

  • ${\bf F}(x,y,z)=xze^{y}{\bf i}-xze^{y}{\bf j}+z{\bf k}$ e $S$ é a parte do plano $x+y+z=1$ no primeiro octante, com orientação para baixo.


$-\dfrac{1}{6}.$


2326   

Calcule a área da superfície dada por: ${\bf r}(u,v)=\bigg(u,v,\dfrac{1}{2}u^{2}\bigg)$,$0\leq v\leq u$ e $u\leq 2.$. (Sugerimos ao leitor desenhar a imagem da superfície.)


$\dfrac{1}{3}\left(5\sqrt{5} - 1  \right).$


2465   

Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).

  • ${\bf F}(x,y,z)=x{\bf i}+2y{\bf j}+3z{\bf k}$ e $S$ é o cubo com vértices $(\pm 1, \pm 1,\pm 1).$


$48.$


2360   

Encontre a área da superfície $z=1+3x+3y^{2}$ que está acima do triângulo com vértices $(0,0)$, $(0,1)$ e $(2,1).$


$\dfrac{1}{54}\left(46\sqrt{46} - 10\sqrt{10} \right).$


2606   

Use o Teorema de Stokes para calcular $\displaystyle\iint\limits_{ S}\mbox{rot}{\bf F}\cdot d{\bf S}.$

  • ${\bf F}(x,y,z) = xyz{\bf i} + xy{\bf j} + x^2yz{\bf k}$ e $S$ é formada pelo topo e pelos quatro lados (mas não pelo fundo) do cubo com vértices $(\pm 1,\pm 1,\pm 1)$, com orientação para fora.


$0.$


2297   

Determine uma representação paramétrica para a superfície descrita a seguir. A superfície cortada do cilindro parabólico $z=4-y^{2}$ pelos planos $x=0$, $x=2$ e $z=0.$


$x = u,$ $y = v,$ $z = 4 - v^2,$ onde $0\leq u \leq 2$ e $-2 \leq v \leq 2.$


2447   

Calcule $\displaystyle\iint\limits_{S}g(x,y,z)dS,$ sendo $g(x,y,z)=x^{2}$ e $S$ o hemisfério superior de $x^{2}+y^{2}+z^{2}=a^{2}.$


$\dfrac{2\pi a^4}{3}.$


2629   

Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.

  • ${\bf F}(x,y,z) = -y{\bf i} + x{\bf j} + x^2{\bf k}$, $S$ a superfície $x^2+y^2+z^2 = 4$, $\sqrt{2} \leq z \leq \sqrt{3}$ e $y \geq 0$, sendo ${\bf n}$ a normal apontando para cima.


$\pi$.


2545   

Seja $S$ a superfície $z=f(x,y)$, $(x,y)\in K$, de classe $C^{1}$ num aberto contendo $K$. (Observação: trata-se da superfície dada por $x=u$, $y=v$ e $z=f(u,v)$). Seja ${\bf n}$ a normal a $S$ com componente $z>0$ e seja ${\bf F}=P{\bf i}+Q{\bf j}+R{\bf k}$ um campo vetorial contínuo na imagem de $S$. Mostre que $\displaystyle\iint\limits_{S}{\bf F}\cdot {\bf n}dS=\displaystyle\iint\limits_{K}\left[ -P\dfrac{\partial f}{\partial x}(x,y)-Q\dfrac{\partial f}{\partial y}+R\right]dx dy,$ onde $P$, $Q$ e $R$ são calculadas em $(x,y,f(x,y)).$



Veja a subseção "Integrais de superfície de campos vetoriais"' da seção 16.7 do livro do Stewart.


2251   

Seja $S$ a parte do parabolóide $z=2-x^{2}-y^{2}$ que está acima do plano $z=1.$ Calcule o fluxo do campo vetorial ${\bf F}(x,y,z)=\frac{1}{(x^{2}+y^{2}+z^{2})^{3/2}}(x,y,z)$ através de $S.$


2618   

Uma partícula se move ao longo de segmentos de reta da origem aos pontos $(1,0,0)$, $(1,2,1)$, $(0,2,1)$ e de volta para a origem sob a influência do campo de forças ${\bf F}(x,y,z) = z^2{\bf i} + 2xy{\bf j} + 4y^2{\bf k}.$ Encontre o trabalho feito.


$3$.


2143   

Verifique que o Teorema do Divergente é verdadeiro para o campo vetorial ${\bf F}$ na região $E.$
${\bf F}(x,y,z)=xy\,{\bf i}+yz\,{\bf j}+zx\,{\bf k}$, $E$ é o cilindro sólido $x^{2}+y^{2}\leq 1$, $0\leq z\leq 1.$


$\displaystyle\iint_{S} {\bf F} \cdot d{\bf S} = \iiint_{E} \mbox{div} {\bf F} dV =  \dfrac{\pi}{2}.$


3147   

  1.  Use o Teorema de Green para provar que\[ \int_Cf(x)\,dx + g(y)\,dy = 0\] se \(f\) e \(g\) forem funções diferenciáveis e \(C\) for uma curva fechada simples lisa por partes.

  2.  O que isso nos diz sobre o campo vetorial \[ \mathbf{F}(x,y) = f(x)\mathbf{i}+g(y)\mathbf{j}?\]


2546   

Determine uma fórmula para $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ semelhante à fórmula

$\displaystyle\iint\limits_{S}{\bf F}\cdot d{\bf S}=\displaystyle\iint\limits_{D}\left(-P\dfrac{\partial f}{\partial x}-Q\dfrac{\partial f}{\partial y}+R\right)dA$ para o caso onde $S$ é dada por $y=h(x,z)$ e ${\bf n}$ é o vetor normal unitário que aponta para a esquerda.


$\displaystyle \iint\limits_{S}{\bf F}\cdot d{\bf S}=\iint\limits_{D}\left(P -Q\dfrac{\partial k}{\partial y}-R\frac{\partial k}{\partial z} \right)dA.$


2152   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=x^{4}\,{\bf i}-x^{3}z^{2}\,{\bf j}+4xy^{2}z\,{\bf k}$ e $S$ é a superfície do sólido limitado pelo cilindro $x^{2}+y^{2}=1$ e pelos planos $z=x+2$ e $z=0.$


2327   

Calcule a área da superfície dada por: ${\bf r}(u,v)=(\cos u,v,\sin u)$ e $u^{2}+4v^{2}\leq 1.$. (Sugerimos ao leitor desenhar a imagem da superfície.)


$\dfrac{\pi}{2}.$


2630   

Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.

  • ${\bf F}(x,y,z) = -y^2{\bf i} + x^2{\bf j} + z^2{\bf k}$, $S$ a superfície $x^2 + \dfrac{y^2}{4} + z^2 = 2$, $z \geq 1$, sendo ${\bf n}$ a normal que aponta para cima.


 $0$.


2463   

Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).

  • ${\bf F}(x,y,z)=x{\bf i}+y{\bf j}+z{\bf k}$, $S$ é a esfera $x^{2}+y^{2}+z^{2}=9.$


$108\pi.$


3135   

  1.  Seja \(\sigma\) a superfície de um sólido \(G\) com vetor normal unitário \(\mathbf{n}\) orientado para fora de \(\sigma\). Suponha que \(\mathbf{F}\) seja um campo vetorial com derivadas parciais de primeira ordem contínuas em \(\sigma\). Prove que \[\iint\limits_\sigma (\mathrm{rot\,}\mathbf{F})\cdot\mathbf{n}\,dS = 0.\] [Sugestão: tome \(C\) uma curva fechada simples em \(\sigma\) que separa a superfície em duas subsuperfícies \(\sigma_1\) e \(\sigma_2\) com fronteira comum \(C\). Aplique o Teorema de Stokes a \(\sigma_1\) e a \(\sigma_2\) e some os resultados.]

  2.  O campo vetorial \(\mathrm{rot\,}\mathbf{F}\) é denominado campo rotacional de \(\mathbf{F}\). Em palavras, interprete a fórmula do item anterior como uma afirmação sobre o fluxo do campo rotacional.


2468   

Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).

  • ${\bf F}(x,y,z)=(x^{2}+z){\bf i}+y^{2}z{\bf j}+(x^{2}+y^{2}+z){\bf k}$ e $S$ é a parte no primeiro octante do parabolóide $z=x^{2}+y^{2}$ intersectada pelo plano $z=4.$


$4\pi - \dfrac{320}{7}.$


2626   

Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.

  • ${\bf F}(x,y,z) = x{\bf j}$, $S$ a superfície $\{(x,y,z) \in \mathbb{R}^3; 0\leq z\leq 1, x^2+y^2=1,$$x\geq 0, y\geq 0\}$, sendo ${\bf n}$ a normal com componente $x$ positiva.


 $0$.


3138   

Use o Teorema da Divergência para encontrar todos os valores positivos \(k\) tais que \[ \mathbf{F}(\mathbf{r}) = \dfrac{\mathbf{r}}{\|\mathbf{r}\|^k} \] satisfaça a condição \(\mathrm{div\,}\mathbf{F}=0\) quando \(\mathbf{r}\neq \mathbf{0}\).


2320   

Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. ${\bf r}(u,v)=(3\sin 2u,6\sin^{2} u, v)$,$0\leq u\leq \pi$, no ponto ${\bf r}(\pi/3,0).$


$x^{2} + (y-3)^{2} = 9.$


2254   

Demonstre a identidade abaixo, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.

  1. $\displaystyle\iint\limits_{S} D_{n}f\,dS=\displaystyle\iiint\limits_{E}\nabla^{2}f\,dV.$



Lembre que $D_{n} f = \nabla f \cdot {\bf b}$ e $\mbox{div} (\nabla f) = \nabla^{2} f.$


2590   

Use a Lei de Gauss para achar a carga contida no hemisfério sólido $x^{2}+y^{2}+z^{2} \leq a^{2}$, $z\geq 0$, se o campo elétrico for ${\bf E}(x,y,z)=x{\bf i}+y{\bf j}+2z{\bf k}$.


$\dfrac{8\pi a^3 \epsilon_{0}}{3}$.


2249   

Seja ${\bf F}(x,y,z)=(x+y+z^{2})\,{\bf k}$ e seja $S$ a fronteira do cilindro $x^{2}+y^{2}\leq 4$ e $0\leq z \leq 3.$ Calcule $\displaystyle\iint \limits_{S}{\bf F}\cdot {\bf n}\,dS$ onde ${\bf n}$ é a normal exterior, isto é, ${\bf n}$ é a normal que aponta para fora do cilindro.


2196   

Se ${\bf F}=(xz,yz,2)$ e $E$ é a região dada por $x^{2}+y^{2}\leq 1$ e $0\leq z \leq 1,$ mostre que o Teorema do Divergente é verdadeiro neste caso. Calcule as duas integrais do enunciado do Teorema e mostre que elas têm o mesmo valor.



2619   

Suponha que $S$ e $C$ satisfaçam as hipóteses do Teorema de Stokes e $f$ e $g$ tenham derivadas parciais de segunda ordem contínuas. Demonstre que $\displaystyle\int_C (f\nabla g)\cdot d{\bf R} = \displaystyle\iint_{S} (\nabla f \times \nabla g)\cdot d{\bf S}$


Note que $\mbox{rot} (f\nabla g) = \nabla f \times \nabla g.$


2620   

Suponha que  $S$ e $C$ satisfaçam as hipóteses do Teorema de Stokes e $f$ e $g$ tenham derivadas parciais de segunda ordem contínuas. Demonstre que $\displaystyle\int_C (f\nabla f)\cdot d{\bf R} = 0$



Note que $\mbox{rot} (f\nabla f) = {\bf 0}.$


2294   

Determine uma representação paramétrica para a superfície descrita a seguir. O paraboloide $z=9-x^{2}-y^{2}$, $z\geq 0.$


$x = r \cos(\theta),$ $y = r \sin(\theta),$ $z = 9 - r^2,$ onde $0 \leq r \leq 3$ e $0\leq \theta \leq 2\pi.$


2589   

A água do mar tem densidade $1025 kg/m^{3}$ e escoa em um campo de velocidade ${\bf v}=y{\bf i}+x{\bf j}$, onde $x$, $y$ e $z$ são medidos em metros e as componentes de ${\bf v}$ em metros por segundo. Encontre a vazão para fora do hemisfério $x^{2}+y^{2}+z^{2}=9$, $z\geq 0.$


$0$ kg/s.


2451   

Integre $g(x,y,z)=x+y+z$ sobre a superfície do cubo cortado do primeiro octante pelos planos $x=a$, $y=a$ e $z=a.$


$9a^3.$


2141   

Verifique que o Teorema do Divergente é verdadeiro para o campo vetorial ${\bf F}$ na região $E.$

${\bf F}(x,y,z)=3x\,{\bf i}+xy\,{\bf j}+2xz\,{\bf k}$, $E$ é o cubo limitado pelos planos $x=0$, $x=1$, $y=0$, $y=1$,  $z=0$ e $z=1.$


$\displaystyle\iint_{S} {\bf F} \cdot d{\bf S} = \iiint_{E} \mbox{div} {\bf F} dV = \dfrac{9}{2}.$



2288   

Determine uma representação paramétrica para a superfície descrita a seguir. A parte do hiperboloide $x^{2}+y^{2}-z^{2}=1$ que está à direita do plano $xz.$


$x =u,$ $z = v,$ $y = \sqrt{1 - u^2 + v^2}.$


2144   

Verifique que o Teorema do Divergente é verdadeiro para o campo vetorial ${\bf F}$ na região $E.$

${\bf F}(x,y,z)=x\,{\bf i}+y\,{\bf j}+z\,{\bf k}$, $E$ é a bola unitária $x^{2}+y^{2}+z^{2}\leq 1.$


$\displaystyle\iint_{S} {\bf F} \cdot d{\bf S} = \iiint_{E} \mbox{div} {\bf F} dV =  4\pi.$


2358   

Calcule a área da parte da superfície esférica $x^{2}+y^{2}+z^{2}=1$ que se encontra dentro do cone $z\geq \sqrt{x^{2}+y^{2}}.$


$\pi(2 - \sqrt{2}).$


2318   

Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. ${\bf r}(u,v)=(u,v,u^{2}+v^{2})$, no ponto ${\bf r}(1,1).$


$(x,y,z) = (1,1,2) + s(1,0,2) + t(0,1,2),$ $s,t \in \mathbb{R}.$


2325   

Calcule a área da superfície dada por: ${\bf r}(u,v)=(u,v,4-u^{2}-v^{2})$, $(u,v)\in K$, onde $K$ é o conjunto no plano $uv$ limitado pelo eixo $u$ e pela curva (em coordenadas polares) $\rho=e^{-\theta}$,$0\leq \theta \leq \pi.$. (Sugerimos ao leitor desenhar a imagem da superfície.)


$\displaystyle \dfrac{1}{72} \left( \ln\left(3\dfrac{\sqrt{e^{2\pi} + 4} + e^{\pi}}{\sqrt{e^{2\pi} + 4} - e^{\pi}} \right) + 3 \ln\left(\dfrac{\sqrt{5} - 1 }{\sqrt{5} + 1 }\right) - 8e^{3\pi} \sqrt{e^{2\pi} + 4}(e^{2\pi} + 1) + 16\sqrt{5} - 6\pi \right).$


2627   

Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.

  • ${\bf F}(x,y,z) = y{\bf i}$, $S$ a superfície $z = x^2+y^2$ com $z \leq 1$, sendo ${\bf n}$ a normal com componente $z$ positiva.


$-\pi$.


2142   

Verifique que o Teorema do Divergente é verdadeiro para o campo vetorial ${\bf F}$ na região $E.$

${\bf F}(x,y,z)=x^{2}\,{\bf i}+xy\,{\bf j}+z\,{\bf k}$, $E$ é o sólido delimitado pelo paraboloide $z=4-x^{2}-y^{2}$ e pelo plano $xy.$


$\displaystyle\iint_{S} {\bf F} \cdot d{\bf S} = \iiint_{E} \mbox{div} {\bf F} dV = 8\pi.$

2617   

Seja $C$ uma curva fechada, simples e lisa que está no plano $x+y+z=1$. Mostre que a integral de linha $\displaystyle\int_C zdx - 2xdy + 3ydz$ depende apenas da área da região englobada por $C$ e não da forma de $C$ ou de sua posição no plano.


$\displaystyle\int_C zdx - 2xdy + 3ydz = \dfrac{2}{\sqrt{3}} \times $ (área da região englobada por $C$).


2628   

Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.

  • ${\bf F}(x,y,z) = y{\bf i}$, $S$ a superfície $x^2+y^2+z^2 = 2$, $x^2+y^2\leq 1$ e $z \geq 0$, sendo ${\bf n}$ a normal apontando para cima.


$-\pi$.


2511   

Ache $\displaystyle\iint \limits_{ S}{\bf F}\cdot {\bf n} dS$ se ${\bf n}$ é uma normal unitária superior de $S.$


${\bf F}=2{\bf i}+5{\bf j}+3{\bf k}$; $S$ é a parte do cone $z=(x^{2}+y^{2})^{1/2}$ interior ao cilindro $x^{2}+y^{2}=1.$


$3\pi.$


2267   

Determine a área da superfície dada pela parte do paraboloide hiperbólico $z=y^{2}-x^{2}$ que está entre os cilindros $x^{2}+y^{2}=1$ e $x^{2}+y^{2}=4.$



Temos que $z=f(x,y)=y^{2}-x^{2}$ com $1\leq x^{2}+y^{2}\leq 4$. Então,

$$A(S)=\iint\limits_{ D}\sqrt{1+\bigg(\frac{\partial z}{\partial x}\bigg)^{2}+\bigg(\frac{\partial z}{\partial y}\bigg)^{2}}\,dA$$

$$=\iint\limits_{ D}\sqrt{1+(2y)^{2}+(-2x)^{2}}\,dA=\iint\limits_{ D}\sqrt{1+4y^{2}+4x^{2}}\,dA.$$

Usando coordenadas polares temos que

$$x=r\,\cos \theta,\,\,\,\,\, y=r\,\sin \theta \Rightarrow 0\leq \theta\leq \frac{\pi}{2}\,\, \mbox{e}\,\, 1\leq r \leq 2.$$

Assim,

$$A(S)=\int_{0}^{2\pi}\int_{1}^{2}\sqrt{1+4r^{2}}\,r\,dr\,d\theta=\int_{0}^{2\pi}d\theta \cdot \underbrace{\int_{1}^{2}\sqrt{1+4r^{2}}r\,dr}_{\substack{u=1+4r^{2}\\ du=8r\,dr}}$$

$$=\theta\bigg|_{0}^{2\pi}\cdot \int_{5}^{17}u^{1/2}\cdot r\cdot \frac{du}{8r}=2\pi\cdot \frac{1}{8}\int_{5}^{17}u^{1/2}\,du=\frac{\pi}{4}\cdot \frac{2}{3}u^{3/2}\bigg|_{5}^{17}$$

$$=\frac{\pi}{6}\cdot(17^{3/2}-5^{3/2}).$$


2623   

Utilizando o Teorema de Stokes, transforme a integral $\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.

  • ${\bf F}(x,y,z) = y{\bf i}-x^2{\bf j}+5{\bf k}$, $S$ a superfície parametrizada por ${\bf R}(u,v) = (u,v,1-u^2)$, $u \geq 0$, $v \geq 0$, $u+v\leq 1$, sendo ${\bf n}$ a normal apontando para cima.


$-\dfrac{5}{6}.$


2193   

Calcule $\displaystyle\iint \limits_{S}{\bf u}\cdot {\bf n}\,dS$, sendo $B=\{(x,y,z)\in \mathbb{R}^{3}|\, x^{2}+y^{2}\leq 1,\,x^{2}+y^{2}\leq z \leq 5-x^{2}-y^{2}\}$ e ${\bf u}=3xy\,{\bf i}-\dfrac{3}{2}y^{2}\,{\bf j}+z\,{\bf k}.$


$36\pi.$


2541   

Encontre o fluxo do campo ${\bf F}$ ao longo da porção da superfície dada no sentido especificado.

  • ${\bf F}(x,y,z)=-{\bf i}+2{\bf j}+3{\bf k}$; $S$ é a superfície retangular $z=0$, $0\leq x\leq 2$, $0\leq y \leq 3$, sentido ${\bf k}.$


$18.$



3143   

Considere o campo vetorial \(\mathbf{F}(x,y,z)=x^2\mathbf{i} + y^2\mathbf{j}+z^2\mathbf{k}\) e a superfície \(\sigma\) descrita como sendo a porção do cone \(z=\sqrt{x^2+y^2}\) abaixo do plano \(z=1\) e tendo orientação para cima. Verifique o Teorema de Stokes calculando, separadamente, a integral de linha e a integral dupla e, em seguida, comparando os valores.


2321   

  1. Determine uma representação paramétrica ${\bf r}:D\subset \mathbb{R}^{2}\rightarrow \mathbb{R}^{3}$ do paraboloide elíptico $z=\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}.$

  2. Calcule a equação do plano tangente à superfície paramétrica dada no item (a) no ponto $(-a\pi,0,\pi^{2}).$


  1. $x = u,$ $y = v,$ $z = \dfrac{u^{2}}{a^{2}}+\dfrac{v^{2}}{b^{2}},$ onde $u,v \in \mathbb{R}.$

  2. $2\pi(x + a\pi) + a(z - \pi^{2}) = 0.$


2469   

Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).

  • ${\bf F}(x,y,z)=(x+y){\bf i}+z{\bf j}+xz{\bf k}$ e $S$ é a superfície do cubo de vértices $(\pm 1,\pm 1, \pm 1).$


$8.$


2512   

Ache $\displaystyle\iint \limits_{ S}{\bf F}\cdot {\bf n} dS$ se ${\bf n}$ é uma normal unitária superior de $S.$


${\bf F}=x{\bf i}+y{\bf j}+z{\bf k}$; $S$ é a parte do plano $3x+2y+z=12$ intersectada pelos planos $x=0$,$y=0$, $x=1$ e $y=2.$


$24.$


2323   

Calcule a área da superfície dada por: ${\bf r}(u,v)=(u,v,2-u-v)$ e $u^{2}+v^{2}\leq 1.$. (Sugerimos ao leitor desenhar a imagem da superfície.)


$\pi \sqrt{3}.$


2424   

Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F} \cdot d{\bf r}$, com ${\bf F} (x,y,z) = yz{\bf i} + 2xz{ \bf j} + e^{xy} {\bf k} $ e $C$ é a circunferência $x^2+y^2 = 16$, $z=5$, orientada no sentido anti-horário quando vista de cima.


2270   

Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. ${\bf r}(u,v)=(u-v,u^{2}+v^{2},uv)$, no ponto ${\bf r}(1,1).$



Temos que ${\bf r}(u,v)=\underbrace{(u-v)}_{x(u,v)}\,{\bf i}+\underbrace{(u^{2}+v^{2})}_{y(u,v)}\,{\bf j}+\underbrace{uv}_{z(u,v)}\,{\bf k}$

Primeiro, vamos calcular os vetores tangentes:

$$\begin{array}{rcl}{\bf r}_{u}&=&\frac{\partial x(u,v)}{\partial u}\,{\bf i}+\frac{\partial y(u,v)}{\partial u}\,{\bf j}+\frac{\partial z(u,v)}{\partial u}\,{\bf k}\\&=& \,{\bf i}+2u\,{\bf j}+v\,{\bf k}\end{array}$$

e

$$\begin{array}{rcl}{\bf r}_{v}&=&\frac{\partial x(u,v)}{\partial v}\,{\bf i}+\frac{\partial y(u,v)}{\partial v}\,{\bf j}+\frac{\partial z(u,v)}{\partial v}\,{\bf k}\\&=& -\,{\bf i}+2v\,{\bf j}+u\,{\bf k}\end{array}$$


Assim, o vetor normal ao plano tangente é:

$$\begin{array}{rcl}{\bf r}_{u}\times {\bf r}_{v}&=&\left|\begin{array}{ccc}{\bf i}& {\bf j}&{\bf k}\\1 & 2u & v\\-1 & 2v & u\\\end{array}\right|\\&=&(-2u^{2}-2v^{2})\,{\bf i}-(u+v)\,{\bf j}+(2u+2v)\,{\bf k}\end{array}$$


Como $u=1$ e $v=1$ temos que o vetor normal é $-4\,{\bf i}-2\,{\bf j}+4\,{\bf k}.$

Portanto, uma equação do plano tangente no ponto ${\bf r}(1,1)=(0,2,1)$ é

$$-4\cdot(x-0)-2\cdot(y-2)+4\cdot (z-1)=0$$

$$-4x-2y+4+4z-4=0$$

$$-4x-2y+4z=0    \mbox{ou}     2x+y-2z=0$$


3033   

Dados um hemisfério $H$ e uma parte $P$ de um paraboloide, suponha que ${\bf F}$ seja um campo vetorial sobre $\mathbb{R}^3$ cujas componentes tenham derivadas parciais contínuas. Explique por que

$$\displaystyle\iint\limits_{H}\mbox{rot}{\bf F}\cdot{\bf S} = \iint\limits_{P}\mbox{rot}{\bf F}\cdot{\bf S}.$$

ma211-list14-ex24_a.png

ma211-list14-ex24_b.png


Note que $H$ e $P$ satisfazem as hipóteses do Teorema de Stokes. Logo,
$$\displaystyle \iint \limits_{H} \mbox{rot } {\bf F} \cdot {\bf S} = \int \limits_{C} {\bf F} \cdot d{\bf r} = \iint \limits_{P} \mbox{rot }{\bf F}\cdot{\bf S},$$

onde $C$ é a curva de fronteira.


2145   

Aplique o Teorema da Divergência para achar $\displaystyle\iint \limits_{S}{\bf F}\cdot {\bf n}\,dS,$  sendo ${\bf F}(x,y,z)=y\,\sin x\,{\bf i}+y^{2}z\,{\bf j}+(x+3z)\,{\bf k}$ e $S$ é a superfície da região delimitada pelos planos $x=\pm 1$, $y=\pm 1$ e $z=\pm 1.$


$24.$


2043   

Aplique o Teorema da Divergência para achar $\displaystyle\iint\limits_{S}{\bf F}\cdot {\bf n}\,dS.$, sendo ${\bf F}(x,y,z)=y^{3}e^{z}\,{\bf i}-xy\,{\bf j}+x \cdot \arctan y\,{\bf k}$ e $S$ a superfície da região delimitada pelos planos coordenados e o plano $x+y+z=1.$



Pelo Teorema do Divergente, temos
$$\iint\limits_{S}{\bf F}\cdot {\bf n}\,dS = \displaystyle\iiint\limits_{E}\text{div }{\bf F}\,dV,$$
em que $E$ é o sólido

ma211-list15-ex1_sol.png

que pode ser escrito como
$E = \{(x,y,z) \in \mathbb{R}^3: 0 \leq x \leq 1, 0 \leq y \leq 1-x \mbox{ e } 0 \leq z \leq 1-x-y\}.$
Observe que
\begin{array}{rcl}\text{div }{\bf F} & = & \dfrac{\partial}{\partial x}(y^3e^z) + \dfrac{\partial}{\partial y}(-xy) + \dfrac{\partial}{\partial z}(x\arctan{y}) \\& = & 0 - x + 0 \\& = & -x.\end{array}
Assim,
\begin{array}{rcl}\iint\limits_{S}{\bf F}\cdot {\bf n}\,dS & = & \displaystyle\iiint\limits_{E}{\bf F}\,dV \\& = & \iiint\limits_{E}-x\,dV \\& = & \int_{0}^{1}\int_{0}^{1-x}\int_{0}^{1-x-y}-x\,dz dy dx \\& = & \int_{0}^{1}\int_{0}^{1-x}-x(1-x-y)\,dy dx \\& = & \int_{0}^{1}\left(-\frac{x}{2}+x^2-\frac{x^3}{3}\right)\,dx \\& = & -\frac{1}{12}.\end{array}


2340   

Determine a área da superfície dada pela parte do plano $x+2y+z=4$ que está dentro do cilindro $x^{2}+y^{2}=4$.


$4\sqrt{6}\pi.$


2148   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=3xy^{2}\,{\bf i}+xe^{z}\,{\bf j}+z^{3}\,{\bf k}$, $S$ é a superfície do sólido delimitado pelo cilindro $y^{2}+z^{2}=1$ e pelos planos $x=-1$ e $x=2.$


2608   

Use o Teorema de Stokes para calcular $\displaystyle\iint\limits_{ S}\mbox{rot}{\bf F}\cdot d{\bf S}.$

  • ${\bf F}(x,y,z) = (e^{xy}\cos{z},(x^2+1)z,-y)$, $S$ é o hemisfério $x^2+y^2+z^2 = 1$, $x \geq 0$, orientado na direção positiva do eixo $x$.



$-2\pi$.


2439   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}yz dS$, onde $S$ é a superfície com equações paramétricas $x=u^{2}$, $y=u \sin v$, $z=u\cos v$, $0 \leq u \leq 1$, $0 \leq v \leq \pi/2.$


$\dfrac{5\sqrt{5}}{48} + \dfrac{1}{240}.$


3145   

A Lei de Coulomb afirma que a força eletrostática \(\mathbf{F}(\mathbf{r})\) que uma partícula com carga \(Q\) exerce sobre outra partícula com carga \(q\) é dada pela fórmula \[ \mathbf{F}(\mathbf{r}) = \dfrac{q\,Q}{4\pi\epsilon_0\|\mathbf{r}\|^3}\mathbf{r}, \] onde \(\mathbf{r}\) é o vetor posição da carga \(q\) em relação a \(Q\) e \(\epsilon_0\) é uma constante positiva (chamada permissividade do meio).

  1.  Expresse o campo vetorial \(\mathbf{F}(\mathbf{r})\) em forma de coordenadas \(\mathbf{F}(x,y,z)\) com \(Q\) na origem.

  2.  Calcule o trabalho realizado pelo campo vetorial \(\mathbf{F}\) sobre uma carga \(q\) que se move ao longo de um segmento de reta de \((3,0,0)\) para \((3,1,5)\).


2304   

Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=\bigg(v\cos u,v\sin u,\dfrac{1}{v^{2}}\bigg)$, $0\leq u\leq 2\pi$, $v>0.$


Gráfico de $f(x,y) = \dfrac{1}{x^2 + y^2}.$


3141   

Supondo que \(\sigma\) e \(G\) satisfaçam as hipóteses do Teorema da Divergência e que \(f\) e \(g\) sejam funções suficientemente regulares, prove as seguintes identidades (de Green):

  1.  \[\iint\limits_\sigma\left(f\nabla g\right)\cdot\mathbf{n}\,dS = \iiint\limits_G\left( f\Delta g+\nabla f\cdot\nabla g\right)\,dV, \]

  2.  \[\iint\limits_\sigma\left(f\nabla g-g\nabla f\right)\cdot\mathbf{n}\,dS = \iiint\limits_G\left( f\Delta g- g\Delta f\right)\,dV, \] onde \(\displaystyle \Delta f= \dfrac{\partial^2f}{\partial x^2}+\dfrac{\partial^2f}{\partial y^2}+\dfrac{\partial^2f}{\partial z^2}\) é denominado Laplaciano de \(f\).


3134   

Considere o campo vetorial \[\mathbf{F}(x,y,z)=(x-z)\mathbf{i}+(y-x)\mathbf{j}+(z-xy)\mathbf{k}. \]

  1.  Use o Teorema de Stokes para encontrar a circulação em torno do triângulo de vértices \(A=(1,0,0)\), \(B=(0,2,0)\) e \(C=(0,0,1)\), orientado no sentido anti-horário quando visto da origem para o primeiro octante.

  2.  Encontre a densidade de circulação de \(\mathbf{F}\) na origem na direção de \(\mathbf{k}\), ou seja, \(\displaystyle\mathrm{rot\,}\mathbf{F}(\mathbf{0})\cdot\mathbf{k}\).

  3.  Encontre o vetor unitário \(\mathbf{n}\) tal que a densidade de circulação de \(\mathbf{F}\) na origem seja máxima na direção de \(\mathbf{n}\).


  1.  \(\dfrac{3}{2}\)

  2.  \(-1\)

  3.  \(\displaystyle \mathbf{n}= -\dfrac{1}{\sqrt{2}}\mathbf{j} -\dfrac{1}{\sqrt{2}}\mathbf{k} \)


2296   

Determine uma representação paramétrica para a superfície descrita a seguir. A porção da esfera $x^{2}+y^{2}+z^{2}=3$ entre os planos $z=\sqrt{3}/2$ e $z=-\sqrt{3}/2.$


$x = \sqrt{3}\sin(\phi)\cos(\theta),$ $y = \sqrt{3}\sin(\phi)\sin(\theta),$ $z = \sqrt{3}\cos(\phi),$ onde $\dfrac{\pi}{3} \leq \phi \leq \dfrac{2\pi}{3}$ e $0 \leq \theta \leq 2\pi.$


2154   

Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=(x^{2}+z^{2})\,{\bf i}+(y^{2}-2xy)\,{\bf j}+(4z-2yz)\,{\bf k}$ e $S$ é a superfície da região delimitada pelo cone $x=\sqrt{y^{2}+z^{2}}$ e pelo plano $x=9.$


2252   

Demonstre a identidade abaixo, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.

  1. $\displaystyle\iint\limits_{S}{\bf a}\cdot {\bf n}\,dS=0$, onde ${\bf a}$ é um vetor constante.



Dica: Note que $\mbox{div} {\bf a} = 0.$


2138   

Seja $S$ o gráfico de $f(x,y)=x^{2}+y^{2}$, $x^{2}+y^{2}\leq 1$ e seja ${\bf n}$ a normal a $S$ com componete $z\leq 0$. Seja ${\bf F}(x,y,z)=x^{2}y\,{\bf i}-xy^{2}\,{\bf j}+{\bf k}$. Calcule $\iint \limits_{S}{\bf F}\cdot {\bf n}\, dS.$



Observe que $S$ não é uma superfície fechada (isto é, $S$ não é a fronteira de um sólido $E$). Para que possamos utilizar o Teorema do Divergente, vamos considerar a superfície $S_2$ constituída pelo parabolóide $S$ e pelo círculo $S_1$ dado por $x^2+y^2 \leq 1$ em $z=1$. Como $S_2$ é uma superfície fechada, usamos a escolha da normal ${\bf n_2}$ em $S_2$ que está apontando ``para fora". Sejam ${\bf n_1}$ a normal a $S_1$ (apontando para cima) e ${\bf n}$ a normal a $S$ (apontando para fora).

ma211-list15-ex2_sol.png

Temos
$\displaystyle\iint\limits_{S_2}{\bf F}\cdot {\bf n_2}\,dS = \iint\limits_{S}{\bf F}\cdot {\bf n}\,dS + \iint \limits_{S_1}{\bf F}\cdot {\bf n_1}\,dS,$
isto é,
$\displaystyle\iint\limits_{S}{\bf F}\cdot {\bf n}\,dS = \iint\limits_{S_2}{\bf F}\cdot {\bf n_2}\,dS - \iint \limits_{ S_1}{\bf F}\cdot {\bf n_1}\,dS.$
Pelo Teorema do Divergente,
$$\iint\limits_{S_2}{\bf F}\cdot {\bf n_2}\,dS = \iiint\limits_{E}(2xy-2xy+0)\,dV = 0,$$
em que $E$ é o sólido que possui $S_2$ como fronteira.
Para determinar $\displaystyle\iint\limits_{S_1}{\bf F}\cdot {\bf n_1}\,dS$, devemos encontrar uma parametrização para $S_1$ e determinar o vetor normal ${\bf n_1}$. Considere a seguinte parametrização de $S_1$: $r(u,v) = (u,v,1)$, com $u^2+v^2 \leq 1$. Daí, $r_u(u,v) = (1,0,0)$ e $r_v(u,v) = (0,1,0)$. Logo, $r_u \times r_v = (0,0,1)$ é um vetor normal a $S_1$. Devemos tomar ${\bf n_1} = (0,0,1)$ para que aponte para cima. Então,
$\displaystyle\iint \limits_{S_1}{\bf F}\cdot {\bf n_1}\,dS = \iint\limits_{D}(u^2v,-uv^2,1)\cdot(0,0,1)\,dA,$
em que $D = \{(u,v) \in \mathbb{R}^2; u^2+v^2 \leq 1\}$. Portanto,
$\displaystyle\iint \limits_{S_1}{\bf F}\cdot {\bf n_1}\,dS =  \iint\limits_{D}1\,dA = A(D) = \pi,$
donde concluímos que
$\displaystyle\iint \limits_{S}{\bf F}\cdot {\bf n}\,dS = 0 - \pi = -\pi.$


2624   

Utilizando o Teorema de Stokes, transforme a integral $\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.

  • ${\bf F}(x,y,z) = y{\bf i} + x^2{\bf j}+z{\bf k}$, $S$ a superfície parametrizada por ${\bf R}(u,v) = (u,v,2u+v+1)$, $u\geq 0$, $u+v\leq 2$, sendo ${\bf n}$ a normal apontando para baixo.


$-\dfrac{2}{3}.$


2444   

Calcule a integral de superfície $\displaystyle\iint\limits_{S}x dS$, onde $S$ é a superfície com equações paramétricas $x=u$, $y=v$, $z=u^{2}+v$, $0 \leq u \leq 1$, $u^{2} \leq v \leq 1.$


$\dfrac{\sqrt{2}}{10}(3\sqrt{3} - 2).$