Exercícios
Integrais de superfície
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
A temperatura em um ponto $(x,y,z)$ em uma substância com condutividade $K=6,5$ é $u(x,y,z)=2y^{2}+2z^{2}.$ Determine a taxa de transmissão de calor nessa substância para dentro da superfície cilíndrica $y^{2}+z^{2}=6$, $0\leq x\leq 4.$
O fluxo de calor, com $u(x,y,z)=2y^{2}+2z^{2}$, é dado por
$${\bf F}(x,y,z)=-K \nabla u=-6,5(0{\bf i}+4y{\bf j}+4z{\bf k})=0{\bf i}-26y{\bf j}-26z{\bf k}.$$
Temos que $S$ é a superfície cilíndrica $y^{2}+z^{2}=6$ e $0\leq x \leq 4.$ As equações paramétricas de $S$ são:
$$x=x, y=\sqrt{6}\cos \theta \mbox{e} z=\sqrt{6}\sin \theta$$
onde $0\leq x \leq 4$ e $0\leq \theta \leq 2\pi.$
Então,
$${\bf r}(x,\theta)=x{\bf i}+\sqrt{6}\cos \theta{\bf j}+\sqrt{6}\sin \theta{\bf k}.$$
Como queremos o fluxo de calor para dentro de $S$ devemos calcular
$$\int \int\limits_{S}{\bf F}\cdot dS=\int \int\limits_{ D}{\bf F}({\bf r}(x,\theta))\cdot ({\bf r}_{x}\times {\bf r}_{\theta})dA.$$
Então,
$${\bf r}_{x}(x,\theta)={\bf i}+0{\bf j}+0{\bf k}$$
e
$${\bf r}_{\theta}(x,\theta)=0{\bf i}-\sqrt{6}\sin \theta{\bf j}-\sqrt{6}\cos \theta{\bf k}.$$
Logo,
$\begin{array}{rcl} {\bf r}_{x} \times {\bf r}_{\theta} &=& \left| \begin{array}{ccc}{\bf i} & {\bf j} & {\bf k}\\1 & 0 & 0\\0 & -\sqrt{6}\sin \theta & -\sqrt{6}\cos \theta \\ \end{array} \right| \\ &=& 0{\bf i}-\sqrt{6}\cos \theta{\bf j}-\sqrt{6}\sin \theta{\bf k}, \end{array}$
$${\bf F}({\bf r}(x,\theta))=(0{\bf i}-26\sqrt{6}\cos\theta{\bf j}-26\sqrt{6}\sin \theta{\bf k})$$
e
$${\bf F}({\bf r}(x,\theta))\cdot ({\bf r}_{x}\times {\bf r}_{\theta})=(0{\bf i}-26\sqrt{6}\cos\theta{\bf j}-26\sqrt{6}\sin \theta{\bf k}) \cdot (0{\bf i}-\sqrt{6}\cos \theta{\bf j}-\sqrt{6}\sin \theta{\bf k})=156$$
Assim, a taxa de fluxo de calor para dentro de $S$ é:
$$\int \int\limits_{S}{\bf F}\cdot dS=\int \int\limits_{ D}{\bf F}({\bf r}(x,\theta))\cdot ({\bf r}_{x}\times {\bf r}_{\theta})dA=\int \int\limits_{ D}156 dA=156\int \int\limits_{ D} 1 dA$$
$$=156\int_{0}^{2\pi}\int_{0}^{4}1dxd\theta=156\int_{0}^{2\pi}d\theta\cdot \int_{0}^{4}dx=156\cdot (\theta)\bigg|_{0}^{2\pi}\cdot (x)\bigg|_{0}^{4}=156\cdot 2\pi \cdot 4=1248 \pi.$$
Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot d{\bf R}$. $C$ é orientada no sentido anti-horário quando vista de cima.
- ${\bf F}(x,y,z) = xy{\bf i} + 2z{\bf j} + 3y{\bf k}$, $C$ é a curva de interseção do plano $x+z=5$ com o cilindro $x^2+y^2=9$.
$9\pi$.
Determine uma representação paramétrica para a superfície descrita a seguir. A parte do hiperboloide $x^{2}+y^{2}-z^{2}=1$ que está à direita do plano $xz.$
$x =u,$ $z = v,$ $y = \sqrt{1 - u^2 + v^2}.$
Determine uma fórmula para $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ semelhante à fórmula
$\displaystyle\iint\limits_{S}{\bf F}\cdot d{\bf S}=\displaystyle\iint\limits_{D}\left(-P\dfrac{\partial f}{\partial x}-Q\dfrac{\partial f}{\partial y}+R\right)dA$ para o caso onde $S$ é dada por $y=h(x,z)$ e ${\bf n}$ é o vetor normal unitário que aponta para a esquerda.
$\displaystyle \iint\limits_{S}{\bf F}\cdot d{\bf S}=\iint\limits_{D}\left(P -Q\dfrac{\partial k}{\partial y}-R\frac{\partial k}{\partial z} \right)dA.$
Determine uma representação paramétrica para a superfície descrita a seguir. A parte do plano $z=x+3$ que está dentro do cilindro $x^{2}+y^{2}=1.$
$x = r \cos(\theta),$ $y = r \sin(\theta),$ $z = 3 + r \cos(\theta),$ onde $0 \leq r \leq 1$ e $0\leq \theta \leq 2\pi.$
Prove a seguinte identidade \[ \iint\limits_\sigma\mathrm{rot\,}\mathbf{F}\cdot\mathbf{n}\,dS = 0, \] supondo que \(\mathbf{F}\) e \(\sigma\) satisfaçam as hipóteses do Teorema da Divergência.
Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).
- ${\bf F}(x,y,z)=x^{2}{\bf i}+y^{2}{\bf j}+z^{2}{\bf k}$ e $S$ é a fronteira do semicilindro sólido $0 \leq z \leq \sqrt{1-y^{2}}$, $0 \leq x \leq 2.$
$2\pi + \dfrac{8}{3}.$
Demonstre a identidade $\displaystyle\iint\limits_{S}\mbox{rot}\, {\bf F}\cdot dS=0$, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.
Pelo Teorema do Divergente, temos
$\displaystyle\iint\limits_{ S}\mbox{rot} {\bf F}\cdot dS = \iiint\limits_{ E}\mbox{div} (\mbox{rot} {\bf F})\,dV,$
em que $E$ é o sólido que tem $S$ como fronteira. Observe que
\begin{align*}
&\mbox{div} (\mbox{rot} {\bf F}) =\\ & \frac{\partial}{\partial x}(R_y - Q_z) + \frac{\partial}{\partial y}(P_z - R_x) + \frac{\partial}{\partial z}(Q_x - P_y) \\ & R_{xy} - Q_{xz} + P_{yz} - R_{yx} + Q_{zx} - P_{zy} = 0,
\end{align*}
pois, como as derivadas de segunda ordem são contínuas, temos, pelo Teorema de Clairaut, que $P_{yz} = P_{zy}$, $Q_{zx} = Q_{xz}$ e $R_{xy} = R_{yx}$. Portanto,
$\displaystyle\iint\limits_{S}\mbox{rot}{\bf F}\cdot dS=0.$
Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. ${\bf r}(u,v)=u^{2}\,{\bf i}+2u\,\sin v\,{\bf j}+u\,\cos v\,{\bf k}$; $u=1$, $v=0.$
Temos que ${\bf r}(u,v)=\underbrace{u^{2}}_{x(u,v)}\,{\bf i}+\underbrace{2u\,\sin v}_{y(u,v)}\,{\bf j}+\underbrace{u\,\cos v}_{z(u,v)}\,{\bf k}$
Primeiro, vamos calcular os vetores tangentes:
$$\begin{array}{rcl}{\bf r}_{u}&=&\frac{\partial x(u,v)}{\partial u}\,{\bf i}+\frac{\partial y(u,v)}{\partial u}\,{\bf j}+\frac{\partial z(u,v)}{\partial u}\,{\bf k}\\&=& 2u\,{\bf i}+2\,\sin v\,{\bf j}+\cos v\,{\bf k}\end{array}$$
e
$$\begin{array}{rcl}{\bf r}_{v}&=&\frac{\partial x(u,v)}{\partial v}\,{\bf i}+\frac{\partial y(u,v)}{\partial v}\,{\bf j}+\frac{\partial z(u,v)}{\partial v}\,{\bf k}\\&=& 0\,{\bf i}+2u\,\cos v\,{\bf j}-u\sin v\,{\bf k}\end{array}$$
Assim, o vetor normal ao plano tangente é:
$$\begin{array}{rcl}{\bf r}_{u}\times {\bf r}_{v}&=&\left|\begin{array}{ccc}{\bf i} & {\bf j} & {\bf k}\\2u & 2\sin v & \cos v\\0 & 2u\cos v & -u\sin v\\\end{array}\right|\\&=&(-2u\,\sin^{2}v-2u\cos^{2}v)\,{\bf i}+(2u^{2}\,\sin v)\,{\bf j}+(4u^{2}\,\cos v)\,{\bf k}\end{array}$$
Como $u=1$ e $v=0$ temos que o vetor normal é $-2\,{\bf i}+0\,{\bf j}+4\,{\bf k}.$
Portanto, uma equação do plano tangente no ponto ${\bf r}(1,0)=(1,0,1)$ é
$$-2\cdot(x-1)+0\cdot(y-0)+4\cdot (z-1)=0$$
$$-2x+2+4z-4=0$$
$$-2x+4z-2=0 \mbox{ou} x-2z+1=0$$
Determine a área da superfície dada pela parte da superfície $y=4x+z^{2}$ que está entre os planos $x=0$, $x=1$, $z=0$ e $z=1.$
$\dfrac{\sqrt{21}}{2} + \dfrac{17}{4} \left( \ln(2 + \sqrt{21}) - \ln(\sqrt{17}) \right).$
Calcule a integral de superfície $\displaystyle\iint\limits_{S}x^{2}yz dS$, onde $S$ é a parte do plano $z=1+2x+3y$ que está acima do retângulo $[0,3]\times [0,2].$
$171\sqrt{14}.$
Supondo que \(\sigma\) e \(G\) satisfaçam as hipóteses do Teorema da Divergência e que \(f\) e \(g\) sejam funções suficientemente regulares, prove as seguintes identidades (de Green):
\[\iint\limits_\sigma\left(f\nabla g\right)\cdot\mathbf{n}\,dS = \iiint\limits_G\left( f\Delta g+\nabla f\cdot\nabla g\right)\,dV, \]
\[\iint\limits_\sigma\left(f\nabla g-g\nabla f\right)\cdot\mathbf{n}\,dS = \iiint\limits_G\left( f\Delta g- g\Delta f\right)\,dV, \] onde \(\displaystyle \Delta f= \dfrac{\partial^2f}{\partial x^2}+\dfrac{\partial^2f}{\partial y^2}+\dfrac{\partial^2f}{\partial z^2}\) é denominado Laplaciano de \(f\).
Determine a área da superfície com equações paramétricas $x=u^{2}$, $y=uv$, $z=\dfrac{1}{2}v^{2}$, $0\leq u\leq 1$, $0\leq v\leq 2.$
$4.$
Utilizando o Teorema de Stokes, transforme a integral $\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.
- ${\bf F}(x,y,z) = y{\bf i} + x^2{\bf j}+z{\bf k}$, $S$ a superfície parametrizada por ${\bf R}(u,v) = (u,v,2u+v+1)$, $u\geq 0$, $u+v\leq 2$, sendo ${\bf n}$ a normal apontando para baixo.
Suponha que $S$ e $C$ satisfaçam as hipóteses do Teorema de Stokes e $f$ e $g$ tenham derivadas parciais de segunda ordem contínuas. Demonstre que $\displaystyle\int_C (f\nabla f)\cdot d{\bf R} = 0$
Note que $\mbox{rot} (f\nabla f) = {\bf 0}.$
Use o Teorema do Divergente para calcular $\displaystyle\iint \limits_{S}{\bf F}\cdot dS$, onde ${\bf F}(x,y,z)=z^{2}x\,{\bf i}+(\frac{1}{3}y^{3}+tg z)\,{\bf j}+(x^{2}z+y^{2})\,{\bf k}$ e $S$ é a metade de cima da esfera $x^{2}+y^{2}+z^{2}=1.$
[Sugestão: observe que $S$ não é uma superfície fechada. Calcule primeiro as integrais sobre $S_{1}$ e $S_{2}$, onde $S_{1}$ é o círculo $x^{2}+y^{2}\leq 1$, orientado para baixo, e $S_{2}=S\cup S_{1}.$]
Note que $\dfrac{\partial}{\partial x} \left( \dfrac{x}{|{\bf x}|^3} \right) = \dfrac{|{\bf x}|^2 - 3x^2}{|{\bf x}|^5},$ $\dfrac{\partial}{\partial y} \left( \dfrac{y}{|{\bf x}|^3} \right) = \dfrac{|{\bf x}|^2 - 3y^2}{|{\bf x}|^5}$ e $\dfrac{\partial}{\partial z} \left( \dfrac{x}{|{\bf x}|^3} \right) = \dfrac{|{\bf x}|^2 - 3z^2}{|{\bf x}|^5}.$
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=2xz\,{\bf i}+xyz\,{\bf j}+yz\,{\bf k}$ e $S$ é a superfície da região delimitada pelos planos coordenados e os planos $x+2z=4$ e $y=2.$
Suponha que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que $f$ seja uma função escalar com derivadas parciais contínuas. Demonstre que $\displaystyle\iint\limits_{S}f{\bf n}\,dS=\iiint\limits_{E}\nabla f\,dV.$ Estas integrais de superfície e triplas de funções vetoriais são vetores definidos integrando cada função componente. [Sugestão: comece aplicando o Teorema do Divergente a ${\bf F}=f{\bf c}$, onde ${\bf c}$ é um vetor constante arbitrário.]
Note que se ${\bf n} = n_{1} {\bf i} + n_{2} {\bf j} + n_{3} {\bf k},$ então
\begin{align*} &\iint_{S} f \cdot {\bf n}\,dS \\ &= \left( \iint_{S} f n_{1}\,dS \right) {\bf i} + \left( \iint_{S} fn_{2}\,dS\right) {\bf j} + \left( \iint_{S} fn_{3}\,dS\right) {\bf k}\\ &= \left( \iiint_{E} \dfrac{\partial f}{\partial x}\,dV \right) {\bf i}+ \left( \iiint_{E} \dfrac{\partial f}{\partial y}\,dV\right) {\bf j} + \left( \iiint_{E} \dfrac{\partial f}{\partial z}\,dV \right) {\bf k}. \end{align*}
Determine, mas não calcule, a integral dupla da área da superfície com as equações paramétricas $x=au\cos v$, $y=bu\sin v$, $z=u^{2}$, $0\leq u\leq 2$, $0\leq v\leq 2\pi.$
Elimine os parâmetros para mostrar que a superfície é um paraboloide elíptico e escreva outra integral dupla que forneça sua área.
$\displaystyle \int^{2\pi}_{0}\int_{0}^{2} \sqrt{4b^2 u^4 \cos^{2}v + 4a^2 u^4 \sin^{2} v + a^2 b^2 u^2} dudv.$
$\displaystyle \int_{-2a}^{2a} \int^{b \sqrt{4 - \frac{x^2}{a^2}}}_{-b \sqrt{4 - \frac{x^2}{a^2}}} \sqrt{1 + \left(2\frac{x}{a^2}\right)^{2} + \left(2\frac{y}{b^2} \right)^{2}} dydx.$
Determine a área da superfície dada pela porção do cilindro $x^{2}+y^{2}=1$ entre os planos $z=1$ e $z=4.$
$6\pi.$
Seja ${\bf F}=(z tg^{-1}(y^{2}),z^{3}\ln(x^{2}+1),z).$ Determine o fluxo de ${\bf F}$ através da parte do parabolóide $x^{2}+y^{2}+z=2$ que está acima do plano $z=1$ e está orientada para cima. (Observe que a superfície acima não é fechada.)
Seja \(G\) um sólido com a superfície \(\sigma\) orientada por vetores normais unitários para fora, suponha que \(\phi\) tenha derivadas parciais de primeira e segunda ordens contínuas em algum conjunto aberto contendo \(G\) e seja \(D_{\mathbf{n}}\phi\) a derivada direcional de \(\phi\), onde \(\mathbf{n}\) é um vetor normal unitário para fora de \(\sigma\). Mostre que \[ \iint\limits_\sigma D_{\mathbf{n}}\phi\,dS = \iiint\limits_G\left[\dfrac{\partial^2\phi}{\partial x^2}+ \dfrac{\partial^2\phi}{\partial y^2} + \dfrac{\partial^2\phi}{\partial z^2} \right]\,dV. \]
Seja ${\bf F}(x,y,z)=(x+y+z^{2})\,{\bf k}$ e seja $S$ a fronteira do cilindro $x^{2}+y^{2}\leq 4$ e $0\leq z \leq 3.$ Calcule $\displaystyle\iint \limits_{S}{\bf F}\cdot {\bf n}\,dS$ onde ${\bf n}$ é a normal exterior, isto é, ${\bf n}$ é a normal que aponta para fora do cilindro.
A Lei de Coulomb afirma que a força eletrostática \(\mathbf{F}(\mathbf{r})\) que uma partícula com carga \(Q\) exerce sobre outra partícula com carga \(q\) é dada pela fórmula \[ \mathbf{F}(\mathbf{r}) = \dfrac{q\,Q}{4\pi\epsilon_0\|\mathbf{r}\|^3}\mathbf{r}, \] onde \(\mathbf{r}\) é o vetor posição da carga \(q\) em relação a \(Q\) e \(\epsilon_0\) é uma constante positiva (chamada permissividade do meio).
Expresse o campo vetorial \(\mathbf{F}(\mathbf{r})\) em forma de coordenadas \(\mathbf{F}(x,y,z)\) com \(Q\) na origem.
Calcule o trabalho realizado pelo campo vetorial \(\mathbf{F}\) sobre uma carga \(q\) que se move ao longo de um segmento de reta de \((3,0,0)\) para \((3,1,5)\).
Calcule a área da superfície dada por: ${\bf r}(u,v)=(\cos u,v,\sin u)$ e $u^{2}+4v^{2}\leq 1.$. (Sugerimos ao leitor desenhar a imagem da superfície.)
$\dfrac{\pi}{2}.$
Calcule a área da parte da superfície esférica $x^{2}+y^{2}+z^{2}=1$ que se encontra dentro do cone $z\geq \sqrt{x^{2}+y^{2}}.$
$\pi(2 - \sqrt{2}).$
Demonstre a identidade abaixo, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.
- $\displaystyle\iint\limits_{S}(f\nabla g-g\nabla f)\cdot {\bf n}\,dS=\displaystyle\iiint\limits_{E}(f\nabla^{2} g-g\nabla^{2} f)\,dV.$
Use o Teorema da Divergência e que $\nabla f \cdot \nabla g = \nabla g \cdot \nabla f.$
Aplique o Teorema da Divergência para achar $\displaystyle\iint \limits_{S}{\bf F}\cdot {\bf n}\,dS,$ sendo ${\bf F}(x,y,z)=(x^{2}+\sin yz)\,{\bf i}+(y-xe^{-z})\,{\bf j}+z^{2}\,{\bf k}$ e $S$ a superfície da região delimitada pelo cilindro $x^{2}+y^{2}=4$ e os planos $x+z=2$ e $z=0.$
$20\pi.$
Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).
- ${\bf F}(x,y,z)=xy{\bf i}+yz{\bf j}+zx{\bf k}$ e $S$ é a parte do parabolóide $z=4-x^{2}-y^{2}$ que está acima do quadrado $0\leq x\leq 1$, $0\leq y\leq 1$, com orientação para cima.
$\dfrac{713}{180}.$
Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F} \cdot d{\bf r}$, com ${\bf F} (x,y,z) = yz{\bf i} + 2xz{ \bf j} + e^{xy} {\bf k} $ e $C$ é a circunferência $x^2+y^2 = 16$, $z=5$, orientada no sentido anti-horário quando vista de cima.
Determine uma representação paramétrica para a superfície descrita a seguir. A superfície cortada do cilindro parabólico $z=4-y^{2}$ pelos planos $x=0$, $x=2$ e $z=0.$
$x = u,$ $y = v,$ $z = 4 - v^2,$ onde $0\leq u \leq 2$ e $-2 \leq v \leq 2.$
Ache $\displaystyle\iint \limits_{ S}{\bf F}\cdot {\bf n} dS$ se ${\bf n}$ é uma normal unitária superior de $S.$
- ${\bf F}=x{\bf i}+y{\bf j}+z{\bf k}$; $S$ é o hemisfério superior de $x^{2}+y^{2}+z^{2}=a^{2}.$
$2\pi a^3.$
Calcule a integral de superfície $\displaystyle\iint\limits_{S}yz dS$, onde $S$ é a parte do plano $x+y+z=1$ que está no primeiro octante.
$\dfrac{\sqrt{3}}{24}.$
Calcule a área da superfície dada por: ${\bf r}(u,v)=(u,v,u^{2}+v^{2})$ e $u^{2}+v^{2}\leq 4.$. (Sugerimos ao leitor desenhar a imagem da superfície.)
$\dfrac{\pi}{6}(17 \sqrt{17} - 1).$
Suponha que $S$ e $C$ satisfaçam as hipóteses do Teorema de Stokes e $f$ e $g$ tenham derivadas parciais de segunda ordem contínuas. Demonstre que $\displaystyle\int_C (f\nabla g)\cdot d{\bf R} = \displaystyle\iint_{S} (\nabla f \times \nabla g)\cdot d{\bf S}$
Note que $\mbox{rot} (f\nabla g) = \nabla f \times \nabla g.$
Calcule a integral de superfície $\displaystyle\iint\limits_{S}x dS$, onde $S$ é a superfície com equações paramétricas $x=u$, $y=v$, $z=u^{2}+v$, $0 \leq u \leq 1$, $u^{2} \leq v \leq 1.$
$\dfrac{\sqrt{2}}{10}(3\sqrt{3} - 2).$
Demonstre a identidade abaixo, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.
- $\displaystyle\iint\limits_{S}(f\nabla g)\cdot {\bf n}\,dS=\displaystyle\iiint\limits_{E}(f\nabla^{2}g+\nabla f+\nabla g)\,dV.$
Note que $\displaystyle\iint\limits_{S}(f\nabla g)\cdot {\bf n}\,dS=\displaystyle\iiint\limits_{E} \mbox{div} (f\nabla g)\,dV.$
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=x^{4}\,{\bf i}-x^{3}z^{2}\,{\bf j}+4xy^{2}z\,{\bf k}$ e $S$ é a superfície do sólido limitado pelo cilindro $x^{2}+y^{2}=1$ e pelos planos $z=x+2$ e $z=0.$
Calcule a integral de superfície $\displaystyle\iint\limits_{S}x^{2}z^{2}dS$, onde $S$ é a parte do cone $z^{2}=x^{2}+y^{2}$ que está entre os planos $z=1$ e $z=3.$
Temos que $S$ é a porção do cone $z^{2}=x^{2}+y^{2}$ para $1 \leq z \leq 3$, ou equivalentemente, $S$ é a parte da superfície $z=\sqrt{x^{2}+y^{2}}$ sobre a região $D=\{(x,y)| 1 \leq x^{2}+y^{2} \leq 9\}.$ Assim,
$\displaystyle\iint\limits_{S}x^{2}z^{2}dS=\displaystyle\iint\limits_{D}x^{2}(x^{2}+y^{2})\sqrt{\left(\dfrac{\partial z}{\partial x}\right)^{2}
+\left(\frac{\partial z}{\partial y}\right)^{2}+1}dA$
$=\displaystyle\iint\limits_{D}x^{2}(x^{2}+y^{2})\sqrt{\left(\frac{x}{\sqrt{x^{2}+y^{2}}}\right)^{2}+\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right)^{2}+1}dA$
$=\displaystyle\iint\limits_{D}x^{2}(x^{2}+y^{2})\sqrt{\frac{x^{2}+y^{2}}{x^{2}+y^{2}}+1}dA=\iint\limits_{D}\sqrt{2}x^{2}(x^{2}+y^{2})dA$
$=\sqrt{2}\displaystyle\iint\limits_{D}x^{2}(x^{2}+y^{2})dA.$
Por coordenadas polares, temos que $x=r\cos \theta, y=r\sin \theta, 1\leq r\leq 3 , 0\leq \theta \leq 2\pi \,\mbox{e} \, dA=r dr d\theta.$
Logo,
$\displaystyle\iint\limits_{S}x^{2}z^{2}dS=\sqrt{2}\int_{0}^{2\pi}\int_{1}^{3}(r^{2}\cos^{2}\theta)(r^{2})r dr d\theta =\sqrt{2}\int_{0}^{2\pi}\cos^{2}\theta d\theta \cdot \int_{1}^{3}r^{5}dr$
$=\sqrt{2}\cdot (\theta)\bigg|_{0}^{2\pi}\cdot \bigg(\frac{r^{6}}{6}\bigg)\bigg|_{1}^{3}=\sqrt{2}\cdot \pi \cdot \frac{1}{6}\cdot (3^{6}-1)=\frac{364\sqrt{2}}{3}\pi$
Calcule $\displaystyle\iint \limits_{S}{\bf u}\cdot {\bf n}\,dS$, sendo $S$ a fronteira de $B$ com normal exterior ${\bf n}$, sendo $B=\{(x,y,z)\in \mathbb{R}^{3}|\, 0\leq x\leq 1,\,0\leq y\leq x$ e $0\leq z\leq 4\}$ e ${\bf u}=xy\,{\bf i}+yz\,{\bf j}+z^{2}\,{\bf k}.$
Use o Teorema de Green para provar que\[ \int_Cf(x)\,dx + g(y)\,dy = 0\] se \(f\) e \(g\) forem funções diferenciáveis e \(C\) for uma curva fechada simples lisa por partes.
O que isso nos diz sobre o campo vetorial \[ \mathbf{F}(x,y) = f(x)\mathbf{i}+g(y)\mathbf{j}?\]
Encontre a massa da lâmina descrita como sendo a porção do cilindro circular \(x^2+z^2=4\) que fica diretamente acima do retângulo \(\displaystyle R=\{(x,y)\in\mathbb{R}^2;\ 0\leq x\leq 1,\ 0\leq y\leq 4\}\) e tem densidade \(\delta_0\) constante.
\(\dfrac{4}{3}\pi\delta_0\)
Determine se os pontos $P(7,10,4)$ e $Q(5,22,5)$ estão na superfície ${\bf r}(u,v)=(2u+3v,1+5u-v,2+u+v)$.
$P$ não está na superfície; $Q$ está na superfície.
Calcule a integral de superfície $\displaystyle\iint\limits_{S}\sqrt{1+x^{2}+y^{2}}dS$, onde $S$ é o helicóide com equação vetorial ${\bf r}(u,v)=u\cos v{\bf i}+u\sin v{\bf j}+v{\bf k}$, $0 \leq u \leq 1$, $0 \leq v \leq \pi.$
$\dfrac{4\pi}{3}.$
Calcule $\displaystyle\iint\limits_{S}g(x,y,z)dS,$ onde $g(x,y,z)=x+y$ e $S$ é parte do primeiro octante do plano $2x+3y+z=6.$
$5\sqrt{14}.$
Considere um escoamento com velocidade ${\bf v}(x,y,z)$ e densidade $\rho(x,y,z)$, tal que ${\bf u}=\rho {\bf v}$ seja dado por ${\bf u}=x{\bf i}+y{\bf j}-2z{\bf k}$. Seja $S$ a superfície $x^{2}+y^{2}+z^{2}=4$, $z\geq \sqrt{2}$, e seja ${\bf n}$ a normal com componente $z>0$. Calcule o fluxo de ${\bf u}$ através de $S$. (Observe que, neste caso, o fluxo tem dimensões $MT^{-1}$ (massa por unidade de tempo).)
$-4\pi\sqrt{2}.$
Determine a área da superfície dada pela parte da superfície $z=xy$ que está dentro do cilindro $x^{2}+y^{2}=1$.
$\dfrac{2\pi}{3}(2\sqrt{2} - 1)$.
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=3xy^{2}\,{\bf i}+xe^{z}\,{\bf j}+z^{3}\,{\bf k}$, $S$ é a superfície do sólido delimitado pelo cilindro $y^{2}+z^{2}=1$ e pelos planos $x=-1$ e $x=2.$
Considere o campo vetorial \[\mathbf{F}(x,y,z)=(x-z)\mathbf{i}+(y-x)\mathbf{j}+(z-xy)\mathbf{k}. \]
Use o Teorema de Stokes para encontrar a circulação em torno do triângulo de vértices \(A=(1,0,0)\), \(B=(0,2,0)\) e \(C=(0,0,1)\), orientado no sentido anti-horário quando visto da origem para o primeiro octante.
Encontre a densidade de circulação de \(\mathbf{F}\) na origem na direção de \(\mathbf{k}\), ou seja, \(\displaystyle\mathrm{rot\,}\mathbf{F}(\mathbf{0})\cdot\mathbf{k}\).
Encontre o vetor unitário \(\mathbf{n}\) tal que a densidade de circulação de \(\mathbf{F}\) na origem seja máxima na direção de \(\mathbf{n}\).
\(\dfrac{3}{2}\)
\(-1\)
\(\displaystyle \mathbf{n}= -\dfrac{1}{\sqrt{2}}\mathbf{j} -\dfrac{1}{\sqrt{2}}\mathbf{k} \)
Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. ${\bf r}(u,v)=(u-v,u^{2}+v^{2},uv)$, no ponto ${\bf r}(1,1).$
Temos que ${\bf r}(u,v)=\underbrace{(u-v)}_{x(u,v)}\,{\bf i}+\underbrace{(u^{2}+v^{2})}_{y(u,v)}\,{\bf j}+\underbrace{uv}_{z(u,v)}\,{\bf k}$
Primeiro, vamos calcular os vetores tangentes:
$$\begin{array}{rcl}{\bf r}_{u}&=&\frac{\partial x(u,v)}{\partial u}\,{\bf i}+\frac{\partial y(u,v)}{\partial u}\,{\bf j}+\frac{\partial z(u,v)}{\partial u}\,{\bf k}\\&=& \,{\bf i}+2u\,{\bf j}+v\,{\bf k}\end{array}$$
e
$$\begin{array}{rcl}{\bf r}_{v}&=&\frac{\partial x(u,v)}{\partial v}\,{\bf i}+\frac{\partial y(u,v)}{\partial v}\,{\bf j}+\frac{\partial z(u,v)}{\partial v}\,{\bf k}\\&=& -\,{\bf i}+2v\,{\bf j}+u\,{\bf k}\end{array}$$
Assim, o vetor normal ao plano tangente é:
$$\begin{array}{rcl}{\bf r}_{u}\times {\bf r}_{v}&=&\left|\begin{array}{ccc}{\bf i}& {\bf j}&{\bf k}\\1 & 2u & v\\-1 & 2v & u\\\end{array}\right|\\&=&(-2u^{2}-2v^{2})\,{\bf i}-(u+v)\,{\bf j}+(2u+2v)\,{\bf k}\end{array}$$
Como $u=1$ e $v=1$ temos que o vetor normal é $-4\,{\bf i}-2\,{\bf j}+4\,{\bf k}.$
Portanto, uma equação do plano tangente no ponto ${\bf r}(1,1)=(0,2,1)$ é
$$-4\cdot(x-0)-2\cdot(y-2)+4\cdot (z-1)=0$$
$$-4x-2y+4+4z-4=0$$
$$-4x-2y+4z=0 \mbox{ou} 2x+y-2z=0$$
Verifique que o Teorema do Divergente é verdadeiro para o campo vetorial ${\bf F}$ na região $E.$
${\bf F}(x,y,z)=x\,{\bf i}+y\,{\bf j}+z\,{\bf k}$, $E$ é a bola unitária $x^{2}+y^{2}+z^{2}\leq 1.$
$\displaystyle\iint_{S} {\bf F} \cdot d{\bf S} = \iiint_{E} \mbox{div} {\bf F} dV = 4\pi.$
Calcule a área da parte da superfície cilíndrica $z^{2}+x^{2}=4$ que se encontra dentro do cilindro $x^{2}+y^{2}\leq 4$ e acima do plano $xy.$
$16.$
Use o Teorema de Stokes para calcular $\displaystyle\iint\limits_{ S}\mbox{rot}{\bf F}\cdot d{\bf S}.$
- ${\bf F}(x,y,z) = (e^{xy}\cos{z},(x^2+1)z,-y)$, $S$ é o hemisfério $x^2+y^2+z^2 = 1$, $x \geq 0$, orientado na direção positiva do eixo $x$.
$-2\pi$.
Ache $\displaystyle\iint \limits_{ S}{\bf F}\cdot {\bf n} dS$ se ${\bf n}$ é uma normal unitária superior de $S.$
- ${\bf F}=x{\bf i}-y{\bf j}$; $S$ é a parte no primeiro octante da esfera $x^{2}+y^{2}+z^{2}=a^{2}.$
$0.$
Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).
- ${\bf F}(x,y,z)=xze^{y}{\bf i}-xze^{y}{\bf j}+z{\bf k}$ e $S$ é a parte do plano $x+y+z=1$ no primeiro octante, com orientação para baixo.
$-\dfrac{1}{6}.$
Calcule o trabalho realizado pelo campo vetorial \[ \mathbf{F}(x,y,z) = x^2\mathbf{i}+4xy^3\mathbf{j}+y^2x\mathbf{k}\] sobre uma partícula que percorre o caminho \(C\) definido como o bordo da superfície \(\sigma\) contida no plano \(z=y\) e cuja projeção no plano \(xy\) corresponde ao retângulo \(R=\{(x,y)\in\mathbb{R}^2; 0\leq x\leq 1\),\ \(0\leq y\leq 3\}\). O sentido de percurso é tal que a fronteira de \(R\) é percorrida no sentido horário.
Note que calcular o trabalho \(\displaystyle W= \oint_C\mathbf{F}\cdot\,d\mathbf{r}\) assim diretamente exigiria quatro integrações separadas, uma para cada lado do retângulo. Entretanto, usando o Teorema de Stokes podemos, em vez disso, calcular uma (única!) integral de superfície \[ W= \iint\limits_\sigma\mathrm{rot\,}\mathbf{F}\cdot\mathbf{n}\,dS \] na qual \(\sigma\) é tomada com a orientação para baixo, como requerido pelo Teorema de Stokes. Como a superfície \(\sigma\) está contida no plano \(z=y\) e \[\mathrm{rot\,}\mathbf{F} = \left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \dfrac{\partial}{\partial x} & \dfrac{\partial}{\partial y} & \dfrac{\partial}{\partial z} \\ x^2 & 4xy^3 & xy^2 \end{array}\right| = 2xy\mathbf{i}-y^2\mathbf{j}+4y^3\mathbf{k}, \] segue então que \begin{align*} W= \iint\limits_\sigma\mathrm{rot\,}\mathbf{F}\cdot\mathbf{n}\,dS & = \iint\limits_R\mathrm{rot\,}\mathbf{F}\cdot\left( \dfrac{\partial z}{\partial x}\mathbf{i} +\dfrac{\partial z}{\partial y}\mathbf{j} - \mathbf{k}\right)\,dA \\ & = \iint\limits_R\left(2xy\mathbf{i}-y^2\mathbf{j}+4y^3\mathbf{k}\right)\cdot\left(0\mathbf{i}+\mathbf{h}-\mathbf{k}\right)\,dA \\ & = \int_0^1\int_0^3(-y^2-4y^3)\,dydx \\ & = - \int_0^1\left[\dfrac{y^3}{3}+y^4\right]_{y=0}^3\,dx \\ & = -\int_0^1 90\,dx = -90. \end{align*}
Se ${\bf F}=(xz,yz,2)$ e $E$ é a região dada por $x^{2}+y^{2}\leq 1$ e $0\leq z \leq 1,$ mostre que o Teorema do Divergente é verdadeiro neste caso. Calcule as duas integrais do enunciado do Teorema e mostre que elas têm o mesmo valor.
Uma partícula se move ao longo de segmentos de reta da origem aos pontos $(1,0,0)$, $(1,2,1)$, $(0,2,1)$ e de volta para a origem sob a influência do campo de forças ${\bf F}(x,y,z) = z^2{\bf i} + 2xy{\bf j} + 4y^2{\bf k}.$ Encontre o trabalho feito.
$3$.
Determine uma representação paramétrica para a superfície descrita a seguir. A parte do paraboloide elíptico $x+y^{2}+2z^{2}=4$ que está em frente ao plano $x=0.$
$y = u,$ $z = v,$ $x = 4 - u^2 - 2v^2,$ onde $u^{2} + 2v^2 \leq 4.$
Aplique o Teorema da Divergência para achar $\displaystyle\iint\limits_{S}{\bf F}\cdot {\bf n}\,dS.$, sendo ${\bf F}(x,y,z)=y^{3}e^{z}\,{\bf i}-xy\,{\bf j}+x \cdot \arctan y\,{\bf k}$ e $S$ a superfície da região delimitada pelos planos coordenados e o plano $x+y+z=1.$
Pelo Teorema do Divergente, temos
$$\iint\limits_{S}{\bf F}\cdot {\bf n}\,dS = \displaystyle\iiint\limits_{E}\text{div }{\bf F}\,dV,$$
em que $E$ é o sólido
que pode ser escrito como
$E = \{(x,y,z) \in \mathbb{R}^3: 0 \leq x \leq 1, 0 \leq y \leq 1-x \mbox{ e } 0 \leq z \leq 1-x-y\}.$
Observe que
\begin{array}{rcl}\text{div
}{\bf F} & = & \dfrac{\partial}{\partial x}(y^3e^z) +
\dfrac{\partial}{\partial y}(-xy) + \dfrac{\partial}{\partial
z}(x\arctan{y}) \\& = & 0 - x + 0 \\& = & -x.\end{array}
Assim,
\begin{array}{rcl}\iint\limits_{S}{\bf
F}\cdot {\bf n}\,dS & = &
\displaystyle\iiint\limits_{E}{\bf F}\,dV \\& = &
\iiint\limits_{E}-x\,dV \\& = &
\int_{0}^{1}\int_{0}^{1-x}\int_{0}^{1-x-y}-x\,dz dy dx \\& = &
\int_{0}^{1}\int_{0}^{1-x}-x(1-x-y)\,dy dx \\& = &
\int_{0}^{1}\left(-\frac{x}{2}+x^2-\frac{x^3}{3}\right)\,dx \\& =
& -\frac{1}{12}.\end{array}
Determine se os pontos $P(3,-1,5)$ e $Q(-1,3,4)$ estão na superfície ${\bf r}(u,v)=(u+v,u^{2}-v,u+v^{2})$.
$P$ está na superfície; $Q$ não está na superfície.
Sejam \(\alpha\) e \(\beta\) dois ângulos que satisfazem \(\displaystyle 0<\beta-\alpha\leq 2\pi\) e suponha que \( r= f(\theta)\) seja uma curva polar lisa com \(f(\theta)>0\) no intervalo \([\alpha,\beta]\). Use a fórmula \[ A = \dfrac{1}{2}\int_C-y\,dx+x\,dy \] para encontrar a área da região \(R\) englobada pela curva \(r=f(\theta)\) e os raios \(\theta=\alpha\) e \(\theta=\beta\).
Calcule $\displaystyle\iint \limits_{S}{\bf u}\cdot {\bf n}\,dS$, sendo $B=\{(x,y,z)\in \mathbb{R}^{3}|\, x^{2}+y^{2}+z^{2}\leq 1\}$ e ${\bf u}=x\,{\bf i}+y\,{\bf j}+z^{2}\,{\bf k}.$
Seja $S$ a parte do parabolóide $z=2-x^{2}-y^{2}$ que está acima do plano $z=1.$ Calcule o fluxo do campo vetorial ${\bf F}(x,y,z)=\frac{1}{(x^{2}+y^{2}+z^{2})^{3/2}}(x,y,z)$ através de $S.$
Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. ${\bf r}(u,v)=(3\sin 2u,6\sin^{2} u, v)$,$0\leq u\leq \pi$, no ponto ${\bf r}(\pi/3,0).$
$x^{2} + (y-3)^{2} = 9.$
Calcule a área da superfície dada por: ${\bf r}(u,v)=(u,v,2-u-v)$ e $u^{2}+v^{2}\leq 1.$. (Sugerimos ao leitor desenhar a imagem da superfície.)
$\pi \sqrt{3}.$
Calcule a integral de superfície $\displaystyle\iint\limits_{S}\dfrac{z}{\sqrt{1+4x^{2}+4y^{2}}}dS$, onde $S$ é a parte do parabolóide
$z=1-x^{2}-y^{2}$ que se encontra dentro do cilindro $x^{2}+y^{2}\leq 2y.$
Parametrizando a superfície $S$, temos as equações paramétricas:
$x=u, y=v \, \mbox{e} \, z=1-u^{2}-v^{2}.$
Então,
${\bf r}(u,v)=u{\bf i}+v{\bf j}+(1-u^{2}-v^{2}){\bf k}.$
Logo,
$f({\bf r}(u,v))=\dfrac{1-u^{2}-v^{2}}{\sqrt{1-4u^{2}-4v^{2}}},$ ${\bf r}_{u}={\bf i}+0{\bf j}-2u{\bf k}$ e ${\bf r}_{v}=0{\bf i}+{\bf j}-2v{\bf k}.$
Temos que
${\bf r}_{u}\times {\bf r}_{v}=\left| \begin{array}{ccc} {\bf i} & {\bf j} & {\bf k}\\ 1 & 0 & -2u\\ 0 & 1 & -2v \end{array} \right| = 2u{\bf i}+2v{\bf j}+{\bf k}$,
implicando que $|{\bf r}_{u}\times {\bf r}_{v}|=\sqrt{(2u)^{2}+(2v)^{2}+1^{2}}=\sqrt{1+4u^{2}+4v^{2}}.$ Assim,
$\displaystyle\iint\limits_{S}\dfrac{z}{\sqrt{1+4x^{2}+4y^{2}}}dS=\displaystyle\iint\limits_{D} f({\bf r}(u.v))|{\bf r}_{u}\times {\bf r}_{v}| du dv$ $=\displaystyle\iint\limits_{D} \frac{1-u^{2}-v^{2}}{\sqrt{1-4u^{2}-4v^{2}}} \sqrt{1+4u^{2}+4v^{2}} du dv=\displaystyle\iint\limits_{D}(1-u^{2}-v^{2})du dv$.
Notemos que
$D=\{(u,v)| u^{2}+v^{2}\leq 2v\}=\{(u,v)|u^{2}+(v-1)^{2}\leq 1\}.$
Em coordenadas polares teremos que
$u=r\cos \theta, v-1=r\sin \theta,$
$du dv=\left| \begin{array}{cc}
\dfrac{\partial u}{\partial r} & \dfrac{\partial u}{\partial \theta}\\
\dfrac{\partial v}{\partial r} & \dfrac{\partial v}{\partial \theta}
\end{array} \right|$, $ dr d\theta=\left| \begin{array}{cc} \cos \theta & -r\sin \theta\\ \sin \theta & r\cos \theta \end{array} \right| \, e \, du dv=r dr d\theta.$
Como $u^{2}+u^{2}=2u \Rightarrow r^{2}\cos^{2}\theta+r^{2}\sin^{2}\theta=r\sin \theta \Rightarrow r=2\sin \theta,$ então $0\leq r \leq 2\sin \theta \, \mbox{e} \, 0 \leq \theta \leq \pi.$
Logo
$\displaystyle\iint\limits_{S}\dfrac{z} {\sqrt{1+4x^{2}+4y^{2}}}dS=\displaystyle\int_{0}^{\pi}\displaystyle\int_{0}^{2\sin \theta}(1-r^{2}\cos^{2} \theta-r^{2}\sin^{2}\theta)r dr d\theta$
$\displaystyle\int_{0}^{\pi}\displaystyle\int_{0}^{2\sin \theta}(1-r^{2})r dr d\theta=\displaystyle\int_{0}^{\pi}\int_{0}^{2\sin \theta}(r-r^{3})dr d\theta$ $=\displaystyle\int_{0}^{\pi}(2\sin^{2}\theta-4\sin^{4}\theta)\bigg|_{0}^{2\sin \theta}d\theta=2\int_{0}^{\pi}\sin^{2}\theta d\theta-4\int_{0}^{\pi}\sin^{4}\theta$
$=2\cdot\left(\dfrac{\theta}{2}-\frac{1}{4}\sin 2\theta\right)\bigg|_{0}^{\pi}-4\cdot \left(-\dfrac{1}{4}\sin^{3}
\theta \cos \theta+\dfrac{3}{8}\theta-\dfrac{3}{16}\sin 2\theta\right)\bigg|_{0}^{\pi}$
$=2\cdot \dfrac{\pi}{2}-4\cdot\left(\dfrac{3}{8}\pi\right)=-\dfrac{\pi}{2}.$
Use o Teorema de Stokes para calcular $\displaystyle\iint\limits_{ S}\mbox{rot}{\bf F}\cdot d{\bf S}.$
- ${\bf F}(x,y,z) = xyz{\bf i} + xy{\bf j} + x^2yz{\bf k}$ e $S$ é formada pelo topo e pelos quatro lados (mas não pelo fundo) do cubo com vértices $(\pm 1,\pm 1,\pm 1)$, com orientação para fora.
$0.$
Calcule a integral de superfície $\displaystyle\iint\limits_{S}y dS$, onde $S$ é a superfície com equações paramétricas $x=u$, $y=v$, $z=1-u^{2}$, $0\leq u\leq 1$, $0\leq v\leq \sqrt{u}.$
Seja \(\mathbf{F}(x,y)= (ye^{xy}-1)\mathbf{i} + xe^{xy}\mathbf{j}.\)
Mostre que \(\mathbf{F}\) é um campo vetorial conservativo.
Calcule uma função potencial de \(\mathbf{F}\).
Calcule o trabalho realizado pelo campo vetorial sobre uma partícula que se move ao longo da curva representada pelas seguintes equações paramétricas \begin{align*} x & = t+ \arcsin(\sin t) \\ y & = \dfrac{2}{\pi}\arcsin(\sin t), \ \left(0\leq t\leq 8\pi\right). \end{align*}
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=x^{3}y\,{\bf i}-x^{2}y^{2}\,{\bf j}-x^{2}yz\,{\bf k}$ e $S$ é a superfície do sólido delimitado pelo hiperbolóide $x^{2}+y^{2}-z^{2}=1$ e pelos planos $z=-2$ e $z=2.$
Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot d{\bf R}$. $C$ é orientada no sentido anti-horário quando vista de cima.
- ${\bf F}(x,y,z) = (x+y^2){\bf i} + (y+z^2){\bf j} + (z+x^2){\bf k}$, $C$ é o triângulo com vértices $(1,0,0)$, $(0,1,0)$, $(0,0,1)$.
$1$.
Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.
- ${\bf F}(x,y,z) = x{\bf j}$, $S$ a superfície $\{(x,y,z) \in \mathbb{R}^3; 0\leq z\leq 1, x^2+y^2=1,$$x\geq 0, y\geq 0\}$, sendo ${\bf n}$ a normal com componente $x$ positiva.
$0$.
Determine uma representação paramétrica para a superfície descrita a seguir. A porção do cilindro $(x-2)^{2}+z^{2}=4$ entre os planos $y=0$ e $y=3.$
$x = 4\cos^{2}(v),$ $y = u,$ $z = 4\cos(v)\sin(v),$ onde $-\dfrac{\pi}{2}\leq v \leq \dfrac{\pi}{2}$ e $0 \leq u \leq 3.$
Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.
- ${\bf F}(x,y,z) = y{\bf i}$, $S$ a superfície $x^2+y^2+z^2 = 2$, $x^2+y^2\leq 1$ e $z \geq 0$, sendo ${\bf n}$ a normal apontando para cima.
$-\pi$.
Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(u,v,u^{2}+v^{2})$, $(u,v)\in \mathbb{R}^{2}.$.
Paraboloide de rotação $z = x^2 + y^2.$
Demonstre a identidade abaixo, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.
- $\displaystyle\iint\limits_{S}{\bf a}\cdot {\bf n}\,dS=0$, onde ${\bf a}$ é um vetor constante.
Dica: Note que $\mbox{div} {\bf a} = 0.$
Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(v\,\cos u,v\sin u,v)$, $0\leq u\leq 2\pi$,\, $0\leq v \leq h$, onde $h>0$ é um real dado.
Face lateral do cone $\sqrt{x^{2} + y^{2}} \leq z \leq h$.
Calcule a integral de superfície $\displaystyle\iint\limits_{S}xy dS$, onde $S$ é a superfície com equações paramétricas $x=u-v$, $y=u+v$, $z=2u+v+1$, $0 \leq u \leq 1$, $0 \leq v \leq u.$
Aplique o Teorema da Divergência para achar $\displaystyle\iint \limits_{S}{\bf F}\cdot {\bf n}\,dS,$ sendo ${\bf F}(x,y,z)=y\,\sin x\,{\bf i}+y^{2}z\,{\bf j}+(x+3z)\,{\bf k}$ e $S$ é a superfície da região delimitada pelos planos $x=\pm 1$, $y=\pm 1$ e $z=\pm 1.$
$24.$
Calcule $\displaystyle\iint \limits_{S}{\bf u}\cdot {\bf n}\,dS$, sendo $B=\{(x,y,z)\in \mathbb{R}^{3}|\,x^{2}+y^{2}+z^{2}\leq 1$ e $z\geq x+y\}$ e ${\bf u}=-2xy\,{\bf i}+y^{2}\,{\bf j}+3z\,{\bf k}.$
Utilizando o Teorema de Stokes, transforme a integral $\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.
- ${\bf F}(x,y,z) = y{\bf k}$, $S$ a superfície parametrizada por ${\bf R} (u,v) = (u,v,u^2+v^2)$, $u^2+v^2 \leq 1$, sendo ${\bf n}$ a normal apontando para cima.
$0.$
Calcule $\displaystyle\iint \limits_{S}{\bf u}\cdot {\bf n}\,dS$, sendo $B=\{(x,y,z)\in \mathbb{R}^{3}|\, x^{2}+y^{2}\leq 1,\,x^{2}+y^{2}\leq z \leq 5-x^{2}-y^{2}\}$ e ${\bf u}=3xy\,{\bf i}-\dfrac{3}{2}y^{2}\,{\bf j}+z\,{\bf k}.$
$36\pi.$
Encontre o fluxo exterior do campo ${\bf F}(x,y,z)=z^{2}{\bf i}+x{\bf j}-3z{\bf k}$ através da superfície cortada do cilindro parabólico $z=4-y^{2}$ pelos planos $x=0$, $x=1$ e $z=0.$
$-32.$
Mostre que as equações paramétricas $x=a \cosh u\cos v$, $y=b\cosh u \sin v$, $z=c\sinh u$, representam um hiperboloide de uma folha.
Note que $\dfrac{x^{2}}{a^{2}} + \dfrac{y^{2}}{b^{2}} - \dfrac{z^{2}}{c^{2}} = 1$.
Prove a seguinte identidade \[ \iint\limits_\sigma\nabla f\cdot\mathbf{n}\,dS = \iiint\limits_G\Delta f\,dV, \] supondo que \(\sigma\) e \(G\) satisfaçam as hipóteses do Teorema da Diverência e que \(f(x,y,z)\) cumpra os requisitos de diferenciabilidade necessários. Acima, \(\displaystyle \Delta f= \dfrac{\partial^2f}{\partial x^2}+\dfrac{\partial^2f}{\partial y^2}+\dfrac{\partial^2f}{\partial z^2}\) é denominado Laplaciano de \(f\).
Encontre o trabalho realizado pelo campo de forças \[ \mathbf{F}(x,y)= y^2\mathbf{i} + xy\mathbf{j} \] para mover uma partícula de \((0,0)\) até \((1,1)\) ao longo da parábola \(y=x^2\).
Considere a superfície parametrizada por
$${\bf r}(u,v)=(uv,u+v,u-v).$$
Determine o valor de $c$ de forma que o ponto $(c,1,0)$ pertença à superfície.
Calcule a área da parte da superfície correspondente à variação $u^{2}+v^{2}\leq 1.$
$\dfrac{1}{4}.$
$\left(\sqrt{6} - \dfrac{4}{3} \right)2\pi.$
Determine a área da superfície $z=\frac{2}{3}(x^{3/2}+y^{3/2})$, $0\leq x \leq 1$ e $0\leq y\leq 1.$
$\dfrac{4}{15}(3^{5/2} - 2^{7/2} + 1).$
Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).
- ${\bf F}(x,y,z)=(x^{2}+z){\bf i}+y^{2}z{\bf j}+(x^{2}+y^{2}+z){\bf k}$ e $S$ é a parte no primeiro octante do parabolóide $z=x^{2}+y^{2}$ intersectada pelo plano $z=4.$
$4\pi - \dfrac{320}{7}.$
Calcule $\displaystyle\iint\limits_{S}g(x,y,z)dS,$ onde $g(x,y,z)=(x^{2}+y^{2}+z^{2})^{1/2}$ e $S$ é a porção do parabolóide $2z=x^{2}+y^{2}$ interior ao cilindro $x^{2}+y^{2}=2y.$
$\dfrac{5\pi}{2}.$
Calcule a área da superfície dada por: ${\bf r}(u,v)=(u,v,1-u-v)$, $u\geq 0$, $v\geq 0$ e $u+v\leq 1.$. (Sugerimos ao leitor desenhar a imagem da superfície.)
$\dfrac{\sqrt{3}}{2}.$
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=yz\,{\bf i}+xz\,{\bf j}+xy\,{\bf k}$ e $S$ é o gráfico de $x^{2/3}+y^{2/3}+z^{2/3}=1.$
Determine uma representação paramétrica para a superfície descrita a seguir. A parte da esfera $x^{2}+y^{2}+z^{2}=4$ que está acima do cone $z=\sqrt{x^{2}+y^{2}}.$
$x = 2\sin(\phi)\cos(\theta),$ $y = 2\sin(\phi)\sin(\theta),$ $z = 2\cos(\phi),$ onde $0\leq \phi \leq \frac{\pi}{4}$ e $0 \leq \theta \leq 2\pi.$
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=3x\,{\bf i}+xz\,{\bf j}+z^{2}\,{\bf k}$ e $S$ é a superfície da região delimitada pelo parabolóide $z=4-x^{2}-y^{2}$ e o plano-$xy.$
Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. $x=u^{2}$, $y=v^{2}$, $z=uv$; $u=1$, $v=1.$
$x + y - 2z = 0.$
Determine uma representação paramétrica para a superfície descrita a seguir. A parte do cilindro $y^{2}+z^{2}=16$ que está entre os planos $x=0$ e $x=5.$
$x = u,$ $y = 4\cos (\theta),$ $z = 4\sin(\theta),$ onde $0 \leq u \leq 5,$ $0 \leq \theta \leq 2\pi.$
Determine a representação paramétrica do toro obtido girando em torno do eixo $z$ o círculo do plano $xz$ com centro em $(b,0,0)$ e raio $a < b.$ [Sugestão: tome como parâmetros os ângulos $\theta$ e $\alpha$ mostrados na figura.]
Use a representação paramétrica do item anterior para achar a área do toro.
$x = b\cos(\theta) + a\cos(\alpha)\cos(\theta),$ $y = b\sin(\theta) + a\cos(\alpha)\sin(\theta),$ $z = a\sin(\alpha),$ onde $0 \leq \alpha \leq 2\pi,$ $0 \leq \theta \leq 2\pi.$
$4\pi^2 ab.$
Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).
- ${\bf F}(x,y,z)=x{\bf i}-y{\bf j}+z{\bf k}$ e $S$ é a superfície do sólido delimitado pelos gráficos de $z=x^{2}+y^{2}$ e $z=4.$
$8\pi.$
Verifique que o Teorema de Stokes é verdadeiro para o campo vetorial ${\bf F}$ dado e a superfície $S$.
- ${\bf F}(x,y,z) = y{\bf i} + z{\bf j} + x{\bf k}$, $S$ é o hemisfério $x^2+y^2+z^2=1$, $y \geq 0$, orientado na direção positiva do eixo $y$.
$\displaystyle\int_{C} {\bf F} \cdot d{\bf R} = \displaystyle\iint_{S} \mbox{rot} {\bf F} \cdot d{\bf S} = -\pi$.
Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).
- ${\bf F}(x,y,z)=x{\bf i}+y{\bf j}+z{\bf k}$ e $S$ é a parte no primeiro octante do plano $2x+3y+z=6.$
$18.$
Calcule $\displaystyle\iint\limits_{S}g(x,y,z)dS,$ sendo $g(x,y,z)=x^{2}$ e $S$ o hemisfério superior de $x^{2}+y^{2}+z^{2}=a^{2}.$
$\dfrac{2\pi a^4}{3}.$
Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.
- ${\bf F}(x,y,z) = y{\bf i} + x{\bf j} + xz{\bf k}$, $S$ a superfície $z = x+y+2$ e $x^2 + \dfrac{y^2}{4} \leq 1$, sendo ${\bf n}$ a normal que aponta para baixo.
$4\pi$.
Identifique a superfície que tem equação paramétrica ${\bf r}(u,v)=2\,\sin u\,{\bf i}+3\,\cos u\,{\bf j}+v\,{\bf k}$, $0\leq v\leq 2.$.
$\dfrac{x^2}{4} + \dfrac{y^{2}}{9} = 1,$ com $0\leq z \leq 2.$
Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).
- ${\bf F}(x,y,z)=x{\bf i}+2y{\bf j}+3z{\bf k}$ e $S$ é o cubo com vértices $(\pm 1, \pm 1,\pm 1).$
$48.$
Seja ${\bf F}$ um campo inverso do quadrado, ou seja, ${\bf F}(r)=cr/|r|^{3}$ para alguma constante $c$, onde $r=x{\bf i}+y{\bf j}+z{\bf k}.$ Mostre que o fluxo de ${\bf F}$ por uma esfera $S$ com centro na origem é independente do raio de $S.$
$\displaystyle \iint\limits_{S}{\bf F}\cdot d \bf S = 4\pi c.$
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=e^{x}\,\sin y\,{\bf i}+e^{x}\,\cos y\,{\bf j}+yz^{2}\,{\bf k}$ e $S$ é a superfície da caixa delimitada pelos planos $x=0$, $x=1$, $y=0$, $y=1$, $z=0$ e $z=2.$
Encontre o fluxo do campo ${\bf F}$ ao longo da porção da superfície dada no sentido especificado.
- ${\bf F}(x,y,z)=-{\bf i}+2{\bf j}+3{\bf k}$; $S$ é a superfície retangular $z=0$, $0\leq x\leq 2$, $0\leq y \leq 3$, sentido ${\bf k}.$
$18.$
Calcule $\displaystyle\iint\limits_{S}g(x,y,z)dS,$ sendo $g(x,y,z)=x^{2}+y^{2}+z^{2}$ e $S$ a parte do plano $z=y+4$ interior ao cilindro $x^{2}+y^{2}=4.$
$76\pi \sqrt{2}.$
Encontre a massa da lâmina descrita como sendo a porção do parabolóide \(2z=x^2+y^2\) que fica dentro do cilindro \(x^2+y^2=8\) e tem densidade \(\delta_0\) constante.
Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=\bigg(v\cos u,v\sin u,\dfrac{1}{v^{2}}\bigg)$, $0\leq u\leq 2\pi$, $v>0.$
Gráfico de $f(x,y) = \dfrac{1}{x^2 + y^2}.$
Verifique que o Teorema de Stokes é verdadeiro para o campo vetorial ${\bf F}$ dado e a superfície $S$.
- ${\bf F}(x,y,z) = y^2{\bf i} + x{\bf j} + z^2{\bf k}$, $S$ é a parte do parabolóide $z = x^2 + y^2$ que está acima do plano $z = 1$, orientado para cima.
$\displaystyle\int_{C} {\bf F} \cdot d{\bf R} = \displaystyle\iint_{S} \mbox{rot} {\bf F} \cdot d{\bf S} = \pi.$
Determine a área da superfície dada pela porção do cone $z=2\sqrt{x^{2}+y^{2}}$ entre os planos $z=2$ e $z=6.$
$8\sqrt{5}\pi.$
Encontre o fluxo exterior do campo ${\bf F}=2xy{\bf i}+2yz{\bf j}+2xz{\bf k}$ ao longo da superfície do cubo cortado do primeiro octante pelos planos $x=a$, $y=a$ e $z=a.$
$3\pi a^4.$
Determine uma representação paramétrica para a superfície descrita a seguir. O paraboloide $z=x^{2}+y^{2}$, \, $z\leq 4.$
$x = r \cos(\theta),$ $y = r \sin(\theta),$ $z = r^2,$ onde $0 \leq r \leq 2$ e $0\leq \theta \leq 2\pi.$
Dados um hemisfério $H$ e uma parte $P$ de um paraboloide, suponha que ${\bf F}$ seja um campo vetorial sobre $\mathbb{R}^3$ cujas componentes tenham derivadas parciais contínuas. Explique por que
$$\displaystyle\iint\limits_{H}\mbox{rot}{\bf F}\cdot{\bf S} = \iint\limits_{P}\mbox{rot}{\bf F}\cdot{\bf S}.$$
Note que $H$ e $P$ satisfazem as hipóteses do Teorema de Stokes. Logo,
$$\displaystyle \iint \limits_{H} \mbox{rot } {\bf F} \cdot {\bf S} = \int \limits_{C} {\bf F} \cdot d{\bf r} = \iint \limits_{P} \mbox{rot }{\bf F}\cdot{\bf S},$$
onde $C$ é a curva de fronteira.
Use o Teorema da Divergência para encontrar todos os valores positivos \(k\) tais que \[ \mathbf{F}(\mathbf{r}) = \dfrac{\mathbf{r}}{\|\mathbf{r}\|^k} \] satisfaça a condição \(\mathrm{div\,}\mathbf{F}=0\) quando \(\mathbf{r}\neq \mathbf{0}\).
Demonstre a identidade abaixo, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.
- $\displaystyle\iint\limits_{S} D_{n}f\,dS=\displaystyle\iiint\limits_{E}\nabla^{2}f\,dV.$
Lembre que $D_{n} f = \nabla f \cdot {\bf b}$ e $\mbox{div} (\nabla f) = \nabla^{2} f.$
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=3xy^{2}\,{\bf i}+xe^{z}\,{\bf j}+z^{3}\,{\bf k}$ e $S$ é a superfície do sólido delimitado pelo cilindro $y^{2}+z^{2}=1$ e pelos planos $x=-1$ e $x=2.$
Determine a área da superfície dada pela parte de baixo da esfera $x^{2}+y^{2}+z^{2}=2$ cortada pelo cone $z=\sqrt{x^{2}+y^{2}}.$
Sejam
$$\left \{\begin{array}{cc}x=r\,\sin \phi\,\cos \theta\\y=r\,\sin \phi\,\sin \theta\\z=r\,\cos \phi\\\end{array}\right. \Rightarrow r=\sqrt{x^{2}+y^{2}+z^{2}}=\sqrt{2},\, \mbox{na\,esfera}.$$
Temos que
$$x^{2}+y^{2}+z^{2}=2 \mbox{e}\,\,\,\, z=\sqrt{x^{2}+y^{2}}\Rightarrow z^{2}+z^{2}=2\Rightarrow z^{2}=1\Rightarrow z=1\,(\mbox{pois}\, z\geq 0).$$
Logo, $\phi=\frac{\pi}{4}.$ Para a parte inferior da esfera cortado pelo cone, temos que $\phi=\pi.$
Então,
$$r(\phi,\theta)=(\sqrt{2}\,\sin \phi,\,\cos\theta)\,{\bf i}+(\sqrt{2}\,\sin \phi\,\sin \theta)\,{\bf j}+(\sqrt{2}\,\cos \phi)\,{\bf k},$$
$$\frac{\pi}{4}\leq \phi\leq \pi\,\,\,\, \mbox{e}\,\,\,\, 0\leq \theta \leq 2\pi.$$
Isso implica que
$$r_{\phi}(\phi,\theta)=(\sqrt{2}\,\cos \phi,\,\cos\theta)\,{\bf i}+(\sqrt{2}\,\cos \phi\,\sin \theta)\,{\bf j}-(\sqrt{2}\,\sin \phi)\,{\bf k}$$
e
$$r_{\theta}(\phi,\theta)=(-\sqrt{2}\,\sin \phi,\,\sin\theta)\,{\bf i}+(\sqrt{2}\,\sin \phi\,\cos \theta)\,{\bf j}+0\,{\bf k}$$
Logo,
$$\begin{array}{rcl}r_{\phi}\times r_{\theta}&=&\left|\begin{array}{ccc}{\bf i}&{\bf j}&{\bf k}\\\sqrt{2}\,\cos \phi\,\cos \theta & \sqrt{2}\,\cos \phi\,\sin \theta& -\sqrt{2}\,\sin \phi\\-\sqrt{2}\,\sin \phi\,\sin \theta & \sqrt{2}\,\sin \phi\,\cos \theta & 0\end{array}\right|\\&=&(2\,\sin^{2}\phi\,\cos \theta)\,{\bf i}+(2\sin^{2}\phi\,\sin \theta)\,{\bf j}+(2\,\sin \phi \,\cos \phi)\,{\bf k}.\\\end{array}$$
Isso resulta que
$$\begin{array}{rcl}|r_{\phi}\times r_{\theta}|&=&\sqrt{4\sin^{2}\phi\,\cos^{2}\theta+4\,\sin^{4}\,\sin^{2}\theta+4\sin^{2}\phi\,\cos^{2}\phi}\\&=&\sqrt{4\,\sin^{2}\phi}=2|\sin\phi|=2\sin \phi \bigg(\mbox{pois},\, \frac{\pi}{4}\leq \phi \leq \pi\bigg).\end{array}$$
Assim,
$$A=\iint\limits_{ D}|r_{\phi}\times r_{\theta}|\,dA=\int_{\frac{\pi}{4}}^{\pi}\int_{0}^{2\pi}2\sin \phi\, d\theta d \phi=2\int_{\frac{\pi}{4}}^{\pi}\sin \phi\,d\phi \cdot \int_{0}^{2\pi}d\theta$$
$$=2\cdot (-\cos \phi)\bigg|_{\frac{\pi}{4}}^{\pi}\cdot \theta\bigg|_{0}^{2\pi}=2\cdot \bigg(1-\frac{\sqrt{2}}{2}\bigg)\cdot 2\pi=4\pi\bigg(1-\frac{\sqrt{2}}{2}\bigg)=\pi(4-2\sqrt{2})$$
Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. ${\bf r}(u,v)=(u,v,u^{2}+v^{2})$, no ponto ${\bf r}(1,1).$
$(x,y,z) = (1,1,2) + s(1,0,2) + t(0,1,2),$ $s,t \in \mathbb{R}.$
Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. ${\bf r}(u,v)=(\arctan (uv),e^{u^{2}-v^{2}},u-v)$, no ponto ${\bf r}(1,-1).$
$(x,y,z) = \left(-\dfrac{\pi}{4},1,2\right) + s\left(-\dfrac{1}{2},2,1\right) + t\left(\dfrac{1}{2},2,-1\right),$ $s,t \in \mathbb{R}.$
Ache $\displaystyle\iint \limits_{ S}{\bf F}\cdot {\bf n} dS$ se ${\bf n}$ é uma normal unitária superior de $S.$
${\bf F}=x{\bf i}+y{\bf j}+z{\bf k}$; $S$ é a parte do plano $3x+2y+z=12$ intersectada pelos planos $x=0$,$y=0$, $x=1$ e $y=2.$
$24.$
Use o Teorema de Stokes para calcular $\displaystyle\iint\limits_{ S}\mbox{rot}{\bf F}\cdot d{\bf S}.$
- ${\bf F}(x,y,z) = x{\bf i} - z{\bf j} + y{\bf k}$, $S$ é a parte do plano $x+z=1$ dentro do cilindro $x^2+y^2 = 1$, com orientação para cima.
$2\pi.$
Considere o campo vetorial \(\mathbf{F}(x,y,z)=x^2\mathbf{i} + y^2\mathbf{j}+z^2\mathbf{k}\) e a superfície \(\sigma\) descrita como sendo a porção do cone \(z=\sqrt{x^2+y^2}\) abaixo do plano \(z=1\) e tendo orientação para cima. Verifique o Teorema de Stokes calculando, separadamente, a integral de linha e a integral dupla e, em seguida, comparando os valores.
Seja $A=\{(0,y,z)\in \mathbb{R}^{3}| z^{2}+(y-2)^{2}=1\}$; ache a área da superfície gerada pela rotação em torno do eixo $Oz$ do conjunto $A.$
$8\pi^2.$
Integre $g(x,y,z)=x+y+z$ sobre a superfície do cubo cortado do primeiro octante pelos planos $x=a$, $y=a$ e $z=a.$
$9a^3.$
Determine uma representação paramétrica ${\bf r}:D\subset \mathbb{R}^{2}\rightarrow \mathbb{R}^{3}$ do paraboloide elíptico $z=\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}.$
Calcule a equação do plano tangente à superfície paramétrica dada no item (a) no ponto $(-a\pi,0,\pi^{2}).$
$x = u,$ $y = v,$ $z = \dfrac{u^{2}}{a^{2}}+\dfrac{v^{2}}{b^{2}},$ onde $u,v \in \mathbb{R}.$
$2\pi(x + a\pi) + a(z - \pi^{2}) = 0.$
Determine a área da superfície dada pela parte do paraboloide hiperbólico $z=y^{2}-x^{2}$ que está entre os cilindros $x^{2}+y^{2}=1$ e $x^{2}+y^{2}=4.$
Temos que $z=f(x,y)=y^{2}-x^{2}$ com $1\leq x^{2}+y^{2}\leq 4$. Então,
$$A(S)=\iint\limits_{ D}\sqrt{1+\bigg(\frac{\partial z}{\partial x}\bigg)^{2}+\bigg(\frac{\partial z}{\partial y}\bigg)^{2}}\,dA$$
$$=\iint\limits_{ D}\sqrt{1+(2y)^{2}+(-2x)^{2}}\,dA=\iint\limits_{ D}\sqrt{1+4y^{2}+4x^{2}}\,dA.$$
Usando coordenadas polares temos que
$$x=r\,\cos \theta,\,\,\,\,\, y=r\,\sin \theta \Rightarrow 0\leq \theta\leq \frac{\pi}{2}\,\, \mbox{e}\,\, 1\leq r \leq 2.$$
Assim,
$$A(S)=\int_{0}^{2\pi}\int_{1}^{2}\sqrt{1+4r^{2}}\,r\,dr\,d\theta=\int_{0}^{2\pi}d\theta \cdot \underbrace{\int_{1}^{2}\sqrt{1+4r^{2}}r\,dr}_{\substack{u=1+4r^{2}\\ du=8r\,dr}}$$
$$=\theta\bigg|_{0}^{2\pi}\cdot \int_{5}^{17}u^{1/2}\cdot r\cdot \frac{du}{8r}=2\pi\cdot \frac{1}{8}\int_{5}^{17}u^{1/2}\,du=\frac{\pi}{4}\cdot \frac{2}{3}u^{3/2}\bigg|_{5}^{17}$$
$$=\frac{\pi}{6}\cdot(17^{3/2}-5^{3/2}).$$
Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.
- ${\bf F}(x,y,z) = y{\bf i}$, $S$ a superfície $z = x^2+y^2$ com $z \leq 1$, sendo ${\bf n}$ a normal com componente $z$ positiva.
$-\pi$.
Calcule a integral de superfície $\displaystyle\iint\limits_{S}y dS$, onde $S$ é a parte do parabolóide $y=x^{2}+z^{2}$ que está dentro do cilindro $x^{2}+z^{2}=4.$
$\dfrac{\pi(391\sqrt{17}+1)}{60}.$
Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.
- ${\bf F}(x,y,z) = y{\bf i} + x^2{\bf j} + z{\bf k}$, $S$ a superfície $x^2+y^2 = 1$, $0\leq z \leq 1$ e $y\geq 0$, sendo ${\bf n}$ a normal com componente $y\geq 0$.
$0$.
Suponha que $S$ e $C$ satisfaçam as hipóteses do Teorema de Stokes e $f$ e $g$ tenham derivadas parciais de segunda ordem contínuas. Demonstre que $\displaystyle\int_C (f\nabla g + g\nabla f) \cdot d{\bf R} = 0$
Note que $\mbox{rot} (f\nabla g + g\nabla f) = {\bf 0}.$
Determine a área da superfície dada pela parte do plano $3x+2y+z=6$ que está no primeiro octante.
$3\sqrt{14}.$
Seja $f:K\rightarrow \mathbb{R}$ de classe $C^{1}$ no compacto $K$ com fronteira de conteúdo nulo e interior não-vazio. Mostre que a área da superfície $z=f(x,y)$ (isto é, da superfície ${\bf r}$ dada por $x=u$, $y=v$ e $z=f(u,v)$) é dada pela fórmula
$$\iint\limits_{ K}\sqrt{1+\bigg(\frac{\partial f}{\partial x}\bigg)^{2}+\bigg(\frac{\partial f}{\partial y}\bigg)^{2}}dxdy.$$
Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot d{\bf R}$. Em cada caso, $C$ é orientada no sentido anti-horário quando vista de cima.
- ${\bf F}(x,y,z) = x^2z{\bf i} + xy^2{\bf j} + z^2{\bf k}$, $C$ é a curva de interseção do plano $x+y+z=1$ com o cilindro $x^2+y^2 = 9$.
$\dfrac{81\pi}{2}.$
Verifique que $\mbox{div} {\bf E}=0$ para o campo elétrico ${\bf E}({\bf x})=\dfrac{\epsilon Q}{|{\bf x}|^{3}}{\bf x}.$
Seja \(\sigma\) a superfície de um sólido \(G\) com vetor normal unitário \(\mathbf{n}\) orientado para fora de \(\sigma\). Suponha que \(\mathbf{F}\) seja um campo vetorial com derivadas parciais de primeira ordem contínuas em \(\sigma\). Prove que \[\iint\limits_\sigma (\mathrm{rot\,}\mathbf{F})\cdot\mathbf{n}\,dS = 0.\] [Sugestão: tome \(C\) uma curva fechada simples em \(\sigma\) que separa a superfície em duas subsuperfícies \(\sigma_1\) e \(\sigma_2\) com fronteira comum \(C\). Aplique o Teorema de Stokes a \(\sigma_1\) e a \(\sigma_2\) e some os resultados.]
O campo vetorial \(\mathrm{rot\,}\mathbf{F}\) é denominado campo rotacional de \(\mathbf{F}\). Em palavras, interprete a fórmula do item anterior como uma afirmação sobre o fluxo do campo rotacional.
Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(u,v,1-u^{2})$, $u\geq 0$, $v\geq 0$ e $u+v\leq 1.$
${\bf r}(u,v)=(u,v,1-u^{2})$, $u\geq 0$,\, $v\geq 0$ e $u+v\leq 1.$
Calcule a integral de superfície $\displaystyle\iint\limits_{S}yz dS$, onde $S$ é a superfície com equações paramétricas $x=u^{2}$, $y=u \sin v$, $z=u\cos v$, $0 \leq u \leq 1$, $0 \leq v \leq \pi/2.$
$\dfrac{5\sqrt{5}}{48} + \dfrac{1}{240}.$
Faça uma correspondência entre as equações e os gráficos identificados a seguir, enumerador respectivamente por $I-VI$, e justifique sua resposta. Determine quais famílias de curvas da grade têm $u$ constante e quais têm $v$ constante.
${\bf r}(u,v)=u\cos v{\bf i}+u\sin v{\bf j}+v{\bf k}.$
${\bf r}(u,v)=u\cos v{\bf i}+u\sin v{\bf j}+\sin u{\bf k}$, $-\pi\leq u\leq \pi.$
${\bf r}(u,v)=\sin v{\bf i}+\cos u\sin 2v{\bf j}+\sin u\sin 2v{\bf k}.$
$x=(1-u)(3+\cos v)\cos 4\pi u$, $y=(1-u)(3+\cos v)\sin 4\pi u$,$z=3u+(1-u)\sin v.$
$x=\cos^{3}u\cos^{3}v$, $y=\sin^{3}u\cos^{3}v$, $z=\sin^{3}v.$
$x=(1-|u|)\cos v$, $y=(1-|u|)\sin v$, $z=u.$
- IV.
- I.
- II.
- V.
- III.
- VI
Seja $C$ uma curva fechada, simples e lisa que está no plano $x+y+z=1$. Mostre que a integral de linha $\displaystyle\int_C zdx - 2xdy + 3ydz$ depende apenas da área da região englobada por $C$ e não da forma de $C$ ou de sua posição no plano.
$\displaystyle\int_C zdx - 2xdy + 3ydz = \dfrac{2}{\sqrt{3}} \times $ (área da região englobada por $C$).
Seja $S$ a superfície $z=f(x,y)$, $(x,y)\in K$, de classe $C^{1}$ num aberto contendo $K$. (Observação: trata-se da superfície dada por $x=u$, $y=v$ e $z=f(u,v)$). Seja ${\bf n}$ a normal a $S$ com componente $z>0$ e seja ${\bf F}=P{\bf i}+Q{\bf j}+R{\bf k}$ um campo vetorial contínuo na imagem de $S$. Mostre que $\displaystyle\iint\limits_{S}{\bf F}\cdot {\bf n}dS=\displaystyle\iint\limits_{K}\left[ -P\dfrac{\partial f}{\partial x}(x,y)-Q\dfrac{\partial f}{\partial y}+R\right]dx dy,$ onde $P$, $Q$ e $R$ são calculadas em $(x,y,f(x,y)).$
Veja a subseção "Integrais de superfície de campos vetoriais"' da seção 16.7 do livro do Stewart.
Use o Teorema do Divergente para calcular $\displaystyle\iint \limits_{S}(2x+2y+z^{2})\,dS$ onde $S$ é a esfera $x^{2}+y^{2}+z^{2}=1.$
A superfície $S$ em questão é a esfera unitária, que é a fronteira da bola unitária $B$ dada por $x^2+y^2+z^2 \leq 1$ e tem vetor normal num ponto $(x,y,z)$ igual a $(x,y,z)$ (o qual aponta para ``fora").
Observe que podemos transformar o integrando $2x+2y+z^{2}$ em $(2,2,z) \cdot (x,y,z)$ e essa escrita é interessante, já que o segundo vetor é exatamente o vetor normal a $S$. Agora estamos em condições de aplicar o Teorema do Divergente quando tomamos o campo ${\bf F}(x,y,z) = (2,2,z)$. Assim,
\begin{array}{rcl}\displaystyle\iint\limits_{S}(2x+2y+z^{2})\,dS & = & \iint\limits_{ S}(2,2,z) \cdot (x,y,z)\,dS \\& = & \int\int\int \limits_{ S}{\bf F} \cdot {\bf n}\,dS \\& = & \iiint\limits_{ B}\text{div } F\,dV \\& = & \iiint\limits_{ B}(0+0+1)\,dV \\& = & V(B) = \frac{4\pi}{3}.\end{array}
Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.
- ${\bf F}(x,y,z) = -y^2{\bf i} + x^2{\bf j} + z^2{\bf k}$, $S$ a superfície $x^2 + \dfrac{y^2}{4} + z^2 = 2$, $z \geq 1$, sendo ${\bf n}$ a normal que aponta para cima.
$0$.
Um fluido tem densidade $870kg/m^{3}$ e escoa com velocidade $v=z{\bf i}+y^{2}{\bf j}+x^{2}{\bf k},$ onde $x$, $y$ e $z$ são medidos em metros e as componentes de $v$ em metros por segundo. Encontre a vazão para fora do cilindro $x^{2}+y^{2}=4$, $0\leq z\leq 1.$
$0$ kg/s.
Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).
- ${\bf F}(x,y,z)=(x+y){\bf i}+z{\bf j}+xz{\bf k}$ e $S$ é a superfície do cubo de vértices $(\pm 1,\pm 1, \pm 1).$
$8.$
Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(u,\sqrt{1-u^{2}-v^{2}},v)$, $u^{2}+v^{2}\leq 1.$
Semi superfície esférica $x^2 + y^2 + z^2 = 1,$ $y \geq 0.$
Utilizando o Teorema de Stokes, transforme a integral $\displaystyle\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.
- ${\bf F}(x,y,z) = -y{\bf i} + x{\bf j} + x^2{\bf k}$, $S$ a superfície $x^2+y^2+z^2 = 4$, $\sqrt{2} \leq z \leq \sqrt{3}$ e $y \geq 0$, sendo ${\bf n}$ a normal apontando para cima.
$\pi$.
Determine uma representação paramétrica para a superfície descrita a seguir. A porção da esfera $x^{2}+y^{2}+z^{2}=3$ entre os planos $z=\sqrt{3}/2$ e $z=-\sqrt{3}/2.$
$x = \sqrt{3}\sin(\phi)\cos(\theta),$ $y = \sqrt{3}\sin(\phi)\sin(\theta),$ $z = \sqrt{3}\cos(\phi),$ onde $\dfrac{\pi}{3} \leq \phi \leq \dfrac{2\pi}{3}$ e $0 \leq \theta \leq 2\pi.$
${\bf F}(x,y,z)=3x\,{\bf i}+xy\,{\bf j}+2xz\,{\bf k}$, $E$ é o cubo limitado pelos planos $x=0$, $x=1$, $y=0$, $y=1$, $z=0$ e $z=1.$
Encontre a área da superfície $z=1+3x+3y^{2}$ que está acima do triângulo com vértices $(0,0)$, $(0,1)$ e $(2,1).$
$\dfrac{1}{54}\left(46\sqrt{46} - 10\sqrt{10} \right).$
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=(x^{2}+z^{2})\,{\bf i}+(y^{2}-2xy)\,{\bf j}+(4z-2yz)\,{\bf k}$ e $S$ é a superfície da região delimitada pelo cone $x=\sqrt{y^{2}+z^{2}}$ e pelo plano $x=9.$
Encontre a área da parte da esfera $x^{2}+y^{2}+z^{2}=a^{2}$ que está dentro do cilindro $x^{2}+y^{2}=ax.$
$2a^2 (\pi - 2).$
Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(1,u,v)$, $0\leq u\leq 1$, $0\leq v \leq 1.$
Região quadrada do plano $x = 1:$ $0 \leq y \leq 1$ e $0 \leq z \leq 1.$
Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot d{\bf R}$. $C$ é orientada no sentido anti-horário quando vista de cima.
- ${\bf F}(x,y,z) = (2xyz-2y,x^2+2x,x^2+2y)$, $C$ é a circunferência $y^2+z^2=1$, $x=2$.
$2\pi$.
Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot d{\bf R}$. $C$ é orientada no sentido anti-horário quando vista de cima.
- ${\bf F}(x,y,z) = (y+z,-z,y)$, $C$ é a curva obtida como interseção do cilindro $x^2+y^2=2y$ com o plano $y = z$.
$\dfrac{4\pi}{3}$.
Use a Lei de Gauss para achar a carga contida no hemisfério sólido $x^{2}+y^{2}+z^{2} \leq a^{2}$, $z\geq 0$, se o campo elétrico for ${\bf E}(x,y,z)=x{\bf i}+y{\bf j}+2z{\bf k}$.
$\dfrac{8\pi a^3 \epsilon_{0}}{3}$.
Integre $g(x,y,z)=x+y+z$ sobre a porção do plano $2x+2y+z=2$ que está no primeiro octante.
$2.$
Encontre o fluxo do campo ${\bf F}$ ao longo da porção da superfície dada no sentido especificado.
- ${\bf F}(x,y,z)=yx^{2}{\bf i}-2{\bf j}+xz{\bf k}$; $S$ é a superfície retangular $y=0$, $-1\leq x \leq 2$, $2\leq z \leq 7$, sentido $-{\bf j}.$
$30.$
A água do mar tem densidade $1025 kg/m^{3}$ e escoa em um campo de velocidade ${\bf v}=y{\bf i}+x{\bf j}$, onde $x$, $y$ e $z$ são medidos em metros e as componentes de ${\bf v}$ em metros por segundo. Encontre a vazão para fora do hemisfério $x^{2}+y^{2}+z^{2}=9$, $z\geq 0.$
Identifique e faça um esboço da imagem da superfície parametrizada dada por ${\bf r}(u,v)=(u,v,1-u-v)$, $u\geq 0$, $v\geq 0$ e $u+v\leq 1.$
Região triangular do plano $x + y + z = 1:$ $0 \leq x \leq 1, $ $0 \leq y \leq 1,$ $0 \leq z \leq 1.$
Seja $S$ a parte do cone $x^{2}=y^{2}+z^{2}$ que está dentro do cilindro $x^{2}+y^{2}=a^{2}$ e no primeiro octante. Determine a área da superfície $S.$
$\dfrac{\pi a^2}{4}$.
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=(\cos z+xy^{2})\,{\bf i}+xe^{-z}\,{\bf j}+(\sin y+x^{2}z)\,{\bf k}$ e $S$ é a superfície do sólido limitado pelo parabolóide $z=x^{2}+y^{2}$ e pelo plano $z=4.$
Utilizando o Teorema de Stokes, transforme a integral $\iint_{ S}\mbox{rot}{\bf F}\cdot{\bf n}dS$ numa integral de linha e calcule.
- ${\bf F}(x,y,z) = y{\bf i}-x^2{\bf j}+5{\bf k}$, $S$ a superfície parametrizada por ${\bf R}(u,v) = (u,v,1-u^2)$, $u \geq 0$, $v \geq 0$, $u+v\leq 1$, sendo ${\bf n}$ a normal apontando para cima.
$-\dfrac{5}{6}.$
Calcule a integral de superfície $\displaystyle\iint\limits_{S}y^{2}dS$, onde $S$ é a parte da esfera $x^{2}+y^{2}+z^{2}=4$ que está dentro
do cilindro $x^{2}+y^{2}=1$ e acima do plano $xy.$
$\pi\left( \dfrac{32}{3} - 6\sqrt{3}\right).$
Enuncie o Teorema da Divergência e o Teorema de Stokes, incluindo todas as hipóteses envolvidas.
Verifique que o Teorema do Divergente é verdadeiro para o campo vetorial ${\bf F}$ na região $E.$
${\bf F}(x,y,z)=x^{2}\,{\bf i}+xy\,{\bf j}+z\,{\bf k}$, $E$ é o sólido delimitado pelo paraboloide $z=4-x^{2}-y^{2}$ e pelo plano $xy.$
$\displaystyle\iint_{S} {\bf F} \cdot d{\bf S} = \iiint_{E} \mbox{div} {\bf F} dV = 8\pi.$
Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).
- ${\bf F}(x,y,z)=y{\bf j}-z{\bf k}$ e $S$ é formada pelo parabolóide $y=x^{2}+z^{2}$, $0 \leq y \leq 1$ e pelo círculo $x^{2}+z^{2} \leq 1$, $y=1.$
$0.$
Calcule a integral de superfície $\displaystyle\iint\limits_{S}z dS$, onde $S$ é a superfície $x=y+2z^{2}$, $0 \leq y\leq 1$, $0 \leq z \leq 1.$
$\dfrac{13\sqrt{2}}{12}.$
Use o Teorema do Divergente para calcular o fluxo de ${\bf F}$ através de $S,$ onde ${\bf F}(x,y,z)=(5x^{3}+12xy^{2})\,{\bf i}+(y^{3}+e^{y}\,\sin z)\,{\bf j}+(5z^{3}+e^{y}\,\cos z)\,{\bf k}$ e $S$ é a superfície do sólido entre as esferas $x^{2}+y^{2}+z^{2}=1$ e $x^{2}+y^{2}+z^{2}=2.$
Se $S$ é uma esfera e ${\bf F}$ satisfaz as hipóteses do Teorema de Stokes, mostre que $\displaystyle\iint\limits_{S}\mbox{rot}{\bf F} \cdot d{\bf S} = 0$.
Identifique a superfície que tem equação paramétrica ${\bf r}(u,v)=(u+v)\,{\bf i}+(3-v)\,{\bf j}+(1+4u+5v)\,{\bf k}.$.
$4x - y - z = -4.$
Ache $\displaystyle\iint \limits_{ S}{\bf F}\cdot {\bf n} dS$ se ${\bf n}$ é uma normal unitária superior de $S.$
${\bf F}=2{\bf i}+5{\bf j}+3{\bf k}$; $S$ é a parte do cone $z=(x^{2}+y^{2})^{1/2}$ interior ao cilindro $x^{2}+y^{2}=1.$
Em 1831, o físico Michael Faraday descobriu que uma corrente elétrica pode ser produzida variando-se o fluxo magnético através de um arco condutor. Suas experiências mostraram que a força eletromotriz \(\mathbf{E}\) está relacionada com a indução magnética \(\mathbf{B}\) pela equação \[ \oint_C\mathbf{E}\cdot\,d\mathbf{r} = - \iint\limits_\sigma\dfrac{\partial\mathbf{B}}{\partial t}\cdot\mathbf{n}\,dS.\] Use este resultado para fazer uma conjectura acerca da relação entre \(\mathrm{rot\,}\mathbf{E}\) e \(\mathbf{B}\). Explique seu raciocínio.
Calcule a área da superfície dada por: ${\bf r}(u,v)=(u,v,4-u^{2}-v^{2})$, $(u,v)\in K$, onde $K$ é o conjunto no plano $uv$ limitado pelo eixo $u$ e pela curva (em coordenadas polares) $\rho=e^{-\theta}$,$0\leq \theta \leq \pi.$. (Sugerimos ao leitor desenhar a imagem da superfície.)
$\displaystyle \dfrac{1}{72} \left( \ln\left(3\dfrac{\sqrt{e^{2\pi} + 4} + e^{\pi}}{\sqrt{e^{2\pi} + 4} - e^{\pi}} \right) + 3 \ln\left(\dfrac{\sqrt{5} - 1 }{\sqrt{5} + 1 }\right) - 8e^{3\pi} \sqrt{e^{2\pi} + 4}(e^{2\pi} + 1) + 16\sqrt{5} - 6\pi \right).$
Determine uma representação paramétrica para a superfície descrita a seguir. O plano que passa pelo ponto $(1,2,-3)$ e contém os vetores ${\bf i}+{\bf j}-{\bf k}$ e ${\bf i}-{\bf j}+{\bf k}.$
$x= 1 + u + v,$ $y = 2 + u - v,$ $z = 3 - u + v.$
Determine uma representação paramétrica para a superfície descrita a seguir. A porção no primeiro octante do cone $z=\sqrt{x^{2}+y^{2}}/2$ entre os planos $z=0$ e $z=3.$
$x = r \cos(\theta),$ $y = r \sin(\theta),$ $z = \dfrac{r}{2},$ onde $0 \leq r \leq 6$ e $0\leq \theta \leq \dfrac{\pi}{2}.$
Seja \(\displaystyle \mathbf{F}(x,y,z)=f(x,y,z)\mathbf{i}+ g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}\) e suponha que \(f\), \(g\) e \(h\) sejam contínuas e tenham derivadas parciais de primeira ordem contínuas numa região. Mostre que se \(\mathbf{F}\) é conservativo numa região esférica aberta então \(\mathrm{rot\,}\mathbf{F} = \mathbf{0}\) nessa região. [Sugestão: use que se \(\mathbf{F}\) for conservativo numa região, então \[ \dfrac{\partial f}{\partial y}=\dfrac{\partial g}{\partial x},\quad \dfrac{\partial f}{\partial z}=\dfrac{\partial h}{\partial x},\quad \dfrac{\partial g}{\partial z}=\dfrac{\partial h}{\partial y} \] nessa mesma região.]
Seja $S$ o gráfico de $f(x,y)=x^{2}+y^{2}$, $x^{2}+y^{2}\leq 1$ e seja ${\bf n}$ a normal a $S$ com componete $z\leq 0$. Seja ${\bf F}(x,y,z)=x^{2}y\,{\bf i}-xy^{2}\,{\bf j}+{\bf k}$. Calcule $\iint \limits_{S}{\bf F}\cdot {\bf n}\, dS.$
Observe que $S$ não é uma superfície fechada (isto é, $S$ não é a fronteira de um sólido $E$). Para que possamos utilizar o Teorema do Divergente, vamos considerar a superfície $S_2$ constituída pelo parabolóide $S$ e pelo círculo $S_1$ dado por $x^2+y^2 \leq 1$ em $z=1$. Como $S_2$ é uma superfície fechada, usamos a escolha da normal ${\bf n_2}$ em $S_2$ que está apontando ``para fora". Sejam ${\bf n_1}$ a normal a $S_1$ (apontando para cima) e ${\bf n}$ a normal a $S$ (apontando para fora).
Temos
$\displaystyle\iint\limits_{S_2}{\bf F}\cdot {\bf n_2}\,dS = \iint\limits_{S}{\bf F}\cdot {\bf n}\,dS + \iint \limits_{S_1}{\bf F}\cdot {\bf n_1}\,dS,$
isto é,
$\displaystyle\iint\limits_{S}{\bf F}\cdot {\bf n}\,dS = \iint\limits_{S_2}{\bf F}\cdot {\bf n_2}\,dS - \iint \limits_{ S_1}{\bf F}\cdot {\bf n_1}\,dS.$
Pelo Teorema do Divergente,
$$\iint\limits_{S_2}{\bf F}\cdot {\bf n_2}\,dS = \iiint\limits_{E}(2xy-2xy+0)\,dV = 0,$$
em que $E$ é o sólido que possui $S_2$ como fronteira.
Para determinar $\displaystyle\iint\limits_{S_1}{\bf F}\cdot {\bf n_1}\,dS$, devemos encontrar uma parametrização para $S_1$ e determinar o vetor normal ${\bf n_1}$. Considere a seguinte parametrização de $S_1$: $r(u,v) = (u,v,1)$, com $u^2+v^2 \leq 1$. Daí, $r_u(u,v) = (1,0,0)$ e $r_v(u,v) = (0,1,0)$. Logo, $r_u \times r_v = (0,0,1)$ é um vetor normal a $S_1$. Devemos tomar ${\bf n_1} = (0,0,1)$ para que aponte para cima. Então,
$\displaystyle\iint \limits_{S_1}{\bf F}\cdot {\bf n_1}\,dS = \iint\limits_{D}(u^2v,-uv^2,1)\cdot(0,0,1)\,dA,$
em que $D = \{(u,v) \in \mathbb{R}^2; u^2+v^2 \leq 1\}$. Portanto,
$\displaystyle\iint \limits_{S_1}{\bf F}\cdot {\bf n_1}\,dS = \iint\limits_{D}1\,dA = A(D) = \pi,$
donde concluímos que
$\displaystyle\iint \limits_{S}{\bf F}\cdot {\bf n}\,dS = 0 - \pi = -\pi.$
Calcule a integral de superfície $\displaystyle\iint \limits_{ S}{\bf F}\cdot d{\bf S}$ para o campo vetorial ${\bf F}$ e superfície orientada $S$ dados abaixo. Em outras palavras, determine o fluxo de ${\bf F}$ através de $S$. Para superfícies fechadas, use a orientação positiva (para fora).
- ${\bf F}(x,y,z)=x{\bf i}+y{\bf j}+z{\bf k}$, $S$ é a esfera $x^{2}+y^{2}+z^{2}=9.$
$108\pi.$
Determine uma equação do plano tangente à superfície parametrizada dada no ponto especificado. $x=u+v$, $y=3u^{2}$, $z=u-v$; $(2,3,0).$
$3x - y + 3z = 3.$
Determine uma representação paramétrica para a superfície descrita a seguir. O paraboloide $z=9-x^{2}-y^{2}$, $z\geq 0.$
$x = r \cos(\theta),$ $y = r \sin(\theta),$ $z = 9 - r^2,$ onde $0 \leq r \leq 3$ e $0\leq \theta \leq 2\pi.$
Determine a área da superfície dada pela parte do plano $x+2y+z=4$ que está dentro do cilindro $x^{2}+y^{2}=4$.
$4\sqrt{6}\pi.$
Use o Teorema de Stokes para calcular $\displaystyle\int_C {\bf F}\cdot d{\bf R}$. $C$ é orientada no sentido anti-horário quando vista de cima.
- ${\bf F}(x,y,z) = (x^2-y){\bf i} + 4z{\bf j} + x^2{\bf k}$, $C$ é a curva de interseção do plano $z=2$ com o cone $z=\sqrt{x^2+y^2}$.
$4\pi$.
Demonstre a identidade abaixo, supondo que $S$ e $E$ satisfaçam as condições do Teorema do Divergente e que as funções escalares e as componentes dos campos vetoriais tenham derivadas parciais de segunda ordem contínuas.
- $V(E)=\dfrac{1}{3}\displaystyle\iint\limits_{S}{\bf F}\cdot dS$, onde ${\bf F}(x,y,z)=x\,{\bf i}+y\,{\bf j}+z\,{\bf k}.$
Dica: Note que $\displaystyle\iiint\limits_{E}{\mbox{div} {\bf F}}\, dV = \iiint \limits_{E}{3}\,dV$.
Considere o campo vetorial \(\mathbf{F}(x,y,z)=(x-y)\mathbf{i} + (y-z)\mathbf{j}+(z-x)\mathbf{k}\) e a superfície \(\sigma\)
descrita como sendo a porção do plano \(x+y+z=1\) no primeiro octante e orientada para cima. Verifique o Teorema de Stokes
calculando, separadamente, a integral de linha e a integral dupla e, em seguida, comparando os valores.
\(\dfrac{3}{2}\)
Calcule a área da superfície dada por: ${\bf r}(u,v)=\bigg(u,v,\dfrac{1}{2}u^{2}\bigg)$,$0\leq v\leq u$ e $u\leq 2.$. (Sugerimos ao leitor desenhar a imagem da superfície.)
$\dfrac{1}{3}\left(5\sqrt{5} - 1 \right).$
Um sólido ocupa a região $E$ com superfície $S$ e está imerso em um líquido com densidade constante $\rho$. Escolhemos um sistema de
coordenadas de modo que o plano $xy$ coincida com a superfície do líquido e valores positivos de $z$ sejam medidos para baixo, adentrando o líquido. Então, a pressão na profundidade $z$ é $p=\rho g z$, onde $g$ é a aceleração da gravidade. A força de empuxo total sobre o sólido devida $\grave{a}$ distribuição de pressão é dada pela integral de superfície
${\bf F}=-\displaystyle\iint\limits_{S} p{\bf n}\,dS$ onde ${\bf n}$ é o vetor normal unitário apontando para fora. Use o resultado do exercício anterior para mostrar que ${\bf F}=-W{\bf k}$, onde $W$ é o peso do líquido deslocado pelo sólido. (Observe que ${\bf F}$ é orientado para cima porque $z$ está orientado para baixo.) O resultado é o Princípio de Arquimedes: a força de empuxo sobre um objeto é igual ao
peso do líquido deslocado.
Note que $\displaystyle {\bf F}=-\int_{S} p {\bf n} \,dS = -\iiint_{E} \nabla p\,dV = -\iiint_{E} \nabla p\,dV = - \iiint_{E} \nabla (\rho g z)\,dV.$
Conclua usando que $W = \rho g V(E),$ onde $V(E)$ é o volume de $E.$
Integre $g(x,y,z)=xyz$ sobre a superfície do sólido retangular cortado do primeiro octante pelos planos $x=a$, $y=b$ e $z=c.$
$\dfrac{abc(ab+ac+bc)}{4}.$
Verifique que o Teorema do Divergente é verdadeiro para o campo vetorial ${\bf F}$ na região $E.$
${\bf F}(x,y,z)=xy\,{\bf i}+yz\,{\bf j}+zx\,{\bf k}$, $E$ é o cilindro sólido $x^{2}+y^{2}\leq 1$, $0\leq z\leq 1.$
$\displaystyle\iint_{S} {\bf F} \cdot d{\bf S} = \iiint_{E} \mbox{div} {\bf F} dV = \dfrac{\pi}{2}.$
Use o Teorema de Stokes para calcular $\displaystyle\iint\limits_{ S}\mbox{rot}{\bf F}\cdot d{\bf S}.$
- ${\bf F}(x,y,z) = x^2z^2{\bf i} + y^2z^2{\bf j} + xyz {\bf k}$ e $S$ é a parte do parabolóide $z = x^2+y^2$ que está dentro do cilindro $x^2+y^2=4$, orientado para cima.
$0.$