LISTA DE DISCIPLINAS

Exercícios

Em coordenadas cilíndricas

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


2599   

Calcule as seguintes integrais triplas.

  1.  $\displaystyle\iiint\limits_{  E}  \sqrt{x^2 + y^2} \, dV$, em que $E$ é a região que está dentro do cilindro   $x^2 + y^2 = 16$ e entre os planos $z = -5$ e $z = 4$.

  2.  $\displaystyle\iiint\limits_{  E}  y \, dV$, em que $E$ é o sólido que está entre os cilindros $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$, acima do plano $xy$ e abaixo do plano $z = x + 2$.

  3.  $\displaystyle\iiint\limits_{  E}  x \, dV$, em que $E$ está delimitidado pelos planos $z = 0$ e $z = x + y + 5$ e pelos cilindros $x^2 + y^2 = 4$ e $x^2 + y^2 = 9$.


  1.  $384\pi$.

  2. $0$.

  3. $\dfrac{65\pi}{4}$.


2593   

Marque o ponto cujas coordenadas cilíndricas são $(2, \pi/4,1)$ e $(4, -\pi/3,5)$. Em seguida, encontre as coordenadas retangulares do ponto.


Para $(2, \pi/4,1):$ $(\sqrt{2},\sqrt{2},1)$ e para $(4, -\pi/3,5):$ $(2, -2\sqrt{3},5)$.


2603   

Determine o volume do sólido limitado pelo cilindro $x^2 + y^2 = 4$ e pelos planos $z = 0$ e $y + z = 3$.


$12\pi.$


2595   

Identifique a superfície cuja equação é dada por $z = 4 - r^2$.


$z = 4 - x^2 - y^2,$ o parabolóide circular com vértice $(0,0,4)$.


2604   

Vamos demonstrar a expressão geral para o volume de um cone circular de altura $h$ e raio da base $R$.

  1.  Representando o cone com vértice na origem e base no plano $z = h$, expresse $V$ por meio de uma integral dupla.

  2.  Calculando a integral, verifique que $V = \dfrac{\pi R^2 h}{3}$.


  1.  $V = 2 \displaystyle \int_{0}^{h} \int_{-\frac{R}{h}z}^{\frac{R}{h}z} \sqrt{\dfrac{R^{2}}{h^{2}} z^{2} - x^{2}} dx dz.$

  2.  Note que $\displaystyle \int_{0}^{h} \int_{-\frac{R}{h}z}^{\frac{R}{h}z} \sqrt{\dfrac{R^{2}}{h^{2}} z^{2} - x^{2}} dx dz = \dfrac{\pi R^{2}h}{6}$ é o volume da parte superior (ou inferior) do cone.


2600   

Calcule as seguintes integrais triplas.

  1.  $\displaystyle\iiint\limits_{  E}  x^2 \, dV$, em que $E$ é o sólido que está dentro do cilindro $x^2 + y^2 = 1$, acima do plano $z = 0$ e abaixo do cone $z^2 = 4x^2 + 4y^2$.

  2.  $\displaystyle\iiint\limits_{  E}   xyz \, dV,$ em que $E$ é o sólido limitado pelos paraboloides $z = x^2 + y^2$, $z = 8 - x^2 - y^2$.

  3.  $\displaystyle\int_{-2}^2\int_{-\sqrt{4 - y^2}}^{\sqrt{4 - y^2}}\int_{\sqrt{x^2 + y^2}}^2 xz \, dz dx dy$


  1.  $\dfrac{2\pi}{5}$.

  2.  $0.$

  3.  $0.$


2585   

Encontre o volume da região sólida limitada abaixo pelo plano $z = 0$, lateralmente pelo cilindro $x^2 + y^2 = 1$ e acima pelo paraboloide $z = x^2 + y^2$.



Temos que a região sólida $E$ está acima do plano $z=0$, abaixo do paraboloide $z=x^{2}+y^{2}$ e limitado lateralmente pelo cilindro $x^{2}+y^{2}=1$. Notemos que podemos dividir a região sólida em quatro porções simétricas. Assim, levando em consideração a porção da região sólida $E$ que está no primeiro octante, temos em coordenadas cilíndricas $$0\leq \theta \leq \frac{\pi}{2},\, 0\leq r \leq 1\,\, \mbox{e}\,\, 0\leq z\leq x^{2}+y^{2}=r^{2}.$$ Assim, o volume da região sólida $E$ é: $$V=\iiint\limits_{  E}1\,dV=4\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}\int_{0}^{r^{2}}1\,r\,dz\,dr\,d\theta$$ $$=4\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}zr\,\bigg|_{0}^{r^{2}}\,dr\,d\theta=4\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}r^{3}\,dr\,d\theta$$ $$=4\int_{0}^{\frac{\pi}{2}}\,d\theta\cdot \int_{0}^{1}r^{3}\,dr=4\cdot \theta\bigg|_{0}^{\frac{\pi}{2}}\cdot \frac{r^{4}}{4}\bigg|_{0}^{1}$$ $$=4\cdot \frac{\pi}{2}\cdot \frac{1}{4}=\frac{\pi}{2}.$$


2588   

Seja $C$ o cilindro de base circular e eixo $(Oz)$, com raio $2$ e altura $3$, com base na origem e densidade inversamente proporcional $\grave{a}$ distância ao eixo.

  1. Determine o momento de inércia de $C$ com relação ao eixo $(Oz)$.

  2. Se $C$ gira em torno do eixo $(Oz)$ com energia cinética $K$, qual a velocidade instantânea nos pontos de sua superfície lateral? (Fórmulas: $\bullet$ Momento de inércia: $I=\iiint\limits_{C}\rho\cdot l^{2}\,dV$, onde $\rho$ é a densidade e $l$  é a distância ao eixo; $\bullet$ Energia cinética de rotação: $K=\dfrac{1}{2}I\omega^{2}.$)


  1.  $6\pi.$

  2.  $\displaystyle \sqrt{\frac{K}{3\pi}}.$


2601   

Seja $E$ a região limitada pelos paraboloides $z = x^2 + y^2$ e $z = 36 - 3x^2 - 3y^2$.

  1.  Ache o volume da região $E$.

  2.  Encontre o centroide de $E$ (centro de massa no caso em que a densidade é constante).


  1.  $162\pi.$

  2.  $(0,0,15)$.


2586   

Determine o volume do sólido que está acima do plano $xy$, abaixo do paraboloide $z = x^2 + y^2$ e que se encontra dentro do cilindro $x^2 + y^2 = 2x$ e fora do cilindro $x^2 + y^2 = 1.$



Temos que $0\leq z\leq x^{2}+y^{2}$. Como o sólido se encontra dentro do cilindro $x^{2}+y^{2}=2x$ e fora do cilindro $x^{2}+y^{2}=1$, devemos fazer a interseção desses dois cilindros, isto é, $$\left\{\begin{array}{cc} x^{2}+y^{2}=2x\\ x^{2}+y^{2}=1\\ \end{array} \right.\Rightarrow 2x=1\Leftrightarrow x=\frac{1}{2}$$ Em coordenadas cilíndricas temos que \begin{eqnarray*} x&=&r\cos \theta\\ y&=&r\sin \theta\\ z&=&z\\ dz\,dy\,dx&=&r\,dz\,dr\,d\theta \end{eqnarray*} Da equação $x^{2}+y^{2}=1$ temos que $$r^{2}=1\Longrightarrow r=\pm 1,$$ como devemos ter $r\geq 0$, então nesse caso $r=1.$ Da equação $x^{2}+y^{2}=2x$ temos que $$r^{2}=2r\,\cos \theta \Rightarrow r=2\cos \theta.$$  Agora, sendo $x=\frac{1}{2}$ e $r=1$ temos que $$\cos \theta=\frac{1}{2}\Rightarrow \theta=\pm \frac{\pi}{3}.$$ Assim, em coordenadas cilíndricas temos que o sólido $E$ é dado por $$E=\{(\theta,\,r,\,z)|\, -\frac{\pi}{3}\leq \theta \leq \frac{\pi}{3},\, 1\leq r\leq 2 \cos \theta,\,0\leq z\leq r^{2}\}.$$ Então, $$V=\iiint\limits_{  E}1\,dV= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\int_{1}^{2\cos \theta}\int_{0}^{r^{2}}1\,r\,dz\,dr\,d\theta= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\int_{1}^{2\cos \theta}zr\bigg|_{0}^{r}\,dr\,d\theta$$ $$=\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\int_{1}^{2\cos \theta}r^{3}\,dr\,d\theta= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\frac{r^{4}}{4}\bigg|_{1}^{2\cos \theta}\,d\theta =\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\bigg(4\cos^{4}\theta-\frac{1}{4}\bigg)\,d\theta$$ $$=4\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\underbrace{\cos^{4}\theta}_{\mbox{função   par}}\,d\theta-\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\underbrace{\frac{1}{4}}_{\mbox{função    par}}\,d\theta =8\int_{0}^{\frac{\pi}{3}}\cos^{4}\theta\,d\theta-2\int_{0}^{\frac{\pi}{3}}\frac{1}{4}\,d\theta$$ $$=8\bigg[\frac{3}{8}\theta+\frac{1}{4}\sin(2\theta)+\frac{1}{32}\sin(4\theta)\bigg]\bigg|_{0}^{\frac{\pi}{3}} -\bigg(\frac{1}{2}\theta\bigg)\bigg|_{0}^{\frac{\pi}{3}}$$ $$=8\bigg[\frac{3}{8}\cdot \frac{\pi}{3}+\frac{1}{4}\sin\bigg(\frac{2\pi}{3}\bigg)+\frac{1}{32}\sin\bigg(\frac{4\pi}{3}\bigg)\bigg]-\frac{1}{2}\cdot \frac{\pi}{3}$$ $$=\pi+\sqrt{3}-\frac{\sqrt{3}}{8}-\frac{\pi}{6}=\frac{5\pi}{6}+\frac{7\sqrt{3}}{8}.$$


2596   

 Uma casca cilíndrica tem $20$ cm de comprimento, com raio interno de 6 cm e raio externo de $7$ cm. Escreva desigualdades que descrevam a casca em um sistema de coordenadas adequado. Explique como você posicionou o sistema de coordenadas em relação à casca.


$6 \leq r \leq 7,$ $0 \leq \theta \leq 2\pi,$ $0 \leq z \leq 20.$


3116   

Seja \(G\) a região sólida dentro da esfera de raio \(2\) centrada na origem e acima do plano \(z=1\). Mostre (ou verifique) os seguintes resultados:

  1.  O volume de \(G\) é dado por \[\iiint\limits_G\,dV = \int_0^{2\pi}\int_0^{\sqrt{3}}\int_1^{\sqrt{4-r^2}}r\,dzdrd\theta \]

  2.  \[\iiint\limits_G\dfrac{z}{x^2+y^2+z^2}\,dV = \int_0^{2\pi}\int_0^{\sqrt{3}}\int_1^{\sqrt{4-r^2}}\dfrac{rz}{r^2+z^2}\,dzdrd\theta \]


2598   

Considere a integral tripla iterada $$\int_{-\sqrt{2}}^{\sqrt{2}}\int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}}\int_{x^2 + y^2}^{4-x^2-y^2} dz dy dx.$$

  1.  Transforme a integral utilizando coordenadas cilíndricas.

  2.  Calcule a integral.

  3.  Descreva o sólido cujo volume é dado por essa integral.


  1.  $\displaystyle \int_{0}^{2\pi}\int_{0}^{\sqrt{2}}\int_{ r^2}^{4-r^{2}} r dz dr d\theta.$

  2.  $4\pi.$

  3.  Região entre os parabolóides $z = x^2 + y^2$ e $z = 4 - x^2 - y^2$.


2594   

Mude as coordenadas de $(1,-1,4)$ de retangulares para cilíndricas.


 $\displaystyle (\sqrt{2}, \dfrac{7\pi}{4}, 4).$


2597   

Seja $D$ a região limitada abaixo pelo plano $z=0$, acima pela esfera   $x^2+y^2+z^2=4$ e dos lados pelo cilindo $x^2+y^2=1$. Monte as integrais triplas em coordenadas cilíndricas que dão o volume de $D$ usando as ordens de integração a seguir.

  1.  $dzdrd\theta$

  2.  $drdzd\theta$

  3.  $d\theta dzdr$


  1.  $\displaystyle \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{\sqrt{4 - r^2}} r dz dr d\theta.$

  2.  $\displaystyle \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \int_{0}^{1} r  drdzd\theta +  \int_{0}^{2\pi} \int_{\sqrt{3}}^{2} \int_{0}^{\sqrt{4 - z^2}} r  drdzd\theta.$

  3.  $\displaystyle \int_{0}^{1} \int_{0}^{\sqrt{4 - r^2}} \int_{0}^{2\pi} r  d\theta dzdr.$


2602   

Calcule, usando integração, o volume do sólido limitados pelas superfícies $z = 1$, $z = 2$ e $z = \sqrt{x^2 + y^2}.$


$\dfrac{7\pi}{6}.$


2587   

Calcule a massa do cilindro $x^{2}+y^{2}\leq 4$ e $0\leq z \leq 2$, sabendo que a densidade no ponto $(x,y,z)$ é o dobro da distância do ponto ao plano $z=0.$


$16\pi.$