LISTA DE DISCIPLINAS

Exercícios

Integrais triplas

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


2497   

Esboce o sólido cujo volume é dado pela integral iterada.

  1.  $\displaystyle\int_{0}^{1}\int_{0}^{1-x}\int_{0}^{2-2z}\;dy dz dx$

  2.  $\displaystyle\int_{0}^{2}\int_{0}^{2-y}\int_{0}^{4-y^{2}}\;dx dz dy$

  3.  $\displaystyle\int_{0}^{1}\int_{\sqrt{1-z}}^{\sqrt{4-z}}\int_{2}^{3}\;dx dy dz$

  4.  $\displaystyle\int_{0}^{2}\int_{x^{2}}^{2x}\int_{0}^{x+y}\;dz dy dx$


  1. (... fig)

  2. (... fig.)

  3.  $\displaystyle \left\lbrace (x,y,z); 2 \leq x \leq 3,  \sqrt{1 - z} \leq y \leq \sqrt{4 - z} , 0 \leq z \leq 1\right\rbrace.$

  4.  $\displaystyle \left\lbrace (x,y,z); 0 \leq x \leq 2,  x^{2} \leq y \leq 2x , 0 \leq z \leq x + y\right\rbrace.$


2948   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}z\,dxdydz$, onde $B$ é o conjunto $z\geq \sqrt{x^{2}+y^{2}}$ e $x^{2}+y^{2}+z^{2}\leq 1.$


$\dfrac{\pi}{8}.$


2429   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}x\;dx dy dz$, onde $E$ é o conjunto $0\leq x \leq 1$, $0\leq y \leq 1$ e \\ $x+y\leq z \leq x+y+1.$

  2.  $\displaystyle\iiint\limits_{  E}\sqrt{1-z^{2}}\;dx dy dz$, onde $E$ é o conjunto $0 \leq x \leq 1$, $0\leq z\leq 1$ e $0\leq y \leq z.$


  1.  $\dfrac{1}{2}.$

  2.  $\dfrac{1}{3}.$


2963   

O centróide de uma região $E$ é dado por

$$\overline{x}=\frac{1}{vol(E)}\int_{E}x\,dV,\;\;\;\; \overline{y}=\frac{1}{vol(E)}\int_{E}y\,dV\;\; \text{e}\;\; \overline{z}=\frac{1}{vol(E)}\int_{E}z\,dV.$$

Calcule o centróide da região dada em coordenadas esféricas por $0\leq \rho \leq 1$, $0\leq\phi \leq \pi/3$ e $0\leq \theta \leq 2\pi$ (observe que, devido à simetria da região, $\overline{x}$ e $\overline{y}$ se anulam, bastando calcular a terceira coordenada).


$\overline{z} = \dfrac{9}{16}.$


2454   

Calcule as integrais mudando a ordem de integração de maneira apropriada.

  1.  $\displaystyle\int_{0}^{4}\int_{0}^{1}\int_{2y}^{2}\dfrac{4\;\cos(x^{2})}{2\sqrt{z}}\;dx dy dz$

  2.    $\displaystyle\int_{0}^{1}\int_{0}^{1}\int_{x^{2}}^{1}12xze^{zy^{2}}\;dy dx dz$

  3.  $\displaystyle\int_{0}^{1}\int_{\sqrt[3]{z}}^{1}\int_{0}^{\ln 3}\dfrac{\pi e^{2x}\;\sin(\pi y^{2})}{y^{2}}\;dx dy dz$


  1.  $2 \sin(4).$

  2.  $3e - 6.$

  3.  $4.$


2595   

Identifique a superfície cuja equação é dada por $z = 4 - r^2$.


$z = 4 - x^2 - y^2,$ o parabolóide circular com vértice $(0,0,4)$.


2959   

Usando coordenadas esféricas, determine o volume do sólido que está acima do cone $\phi=\pi/3$ e abaixo da esfera $\rho=4\cos{\phi}.$


$10\pi.$


2941   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}(x^{2}+y^{2}+z^{2})^{2}\,dV$, onde $B$ é a bola com centro na origem e raio $5.$


$\dfrac{312500\pi}{7}.$


2962   

Usando coordenadas esféricas, determine o centroide e o momento de inércia em relação a um diâmetro de sua base do hemisfério sólido homogêneo de raio $a.$


Centróide: $\left(0,0,\dfrac{3a}{8} \right);$ momento de inércia: $\dfrac{4 K a^5 \pi}{15},$ onde $K$ é a densidade constante.


2540   

Um cubo sólido de $2$ unidades de lado é limitado pelos planos $x=\pm 1$, $z=\pm 1$, $y=3$ e $y=5.$ Encontre o centro de massa e os momentos de inércia desse cubo.


Centro de massa: $\displaystyle \left(0,4,0 \right),$ $I_{x} = \dfrac{400}{3},$ $I_{y} = \dfrac{16}{3},$ $I_{z} = \dfrac{400}{3}.$


2597   

Seja $D$ a região limitada abaixo pelo plano $z=0$, acima pela esfera   $x^2+y^2+z^2=4$ e dos lados pelo cilindo $x^2+y^2=1$. Monte as integrais triplas em coordenadas cilíndricas que dão o volume de $D$ usando as ordens de integração a seguir.

  1.  $dzdrd\theta$

  2.  $drdzd\theta$

  3.  $d\theta dzdr$


  1.  $\displaystyle \int_{0}^{2\pi} \int_{0}^{1} \int_{0}^{\sqrt{4 - r^2}} r dz dr d\theta.$

  2.  $\displaystyle \int_{0}^{2\pi} \int_{0}^{\sqrt{3}} \int_{0}^{1} r  drdzd\theta +  \int_{0}^{2\pi} \int_{\sqrt{3}}^{2} \int_{0}^{\sqrt{4 - z^2}} r  drdzd\theta.$

  3.  $\displaystyle \int_{0}^{1} \int_{0}^{\sqrt{4 - r^2}} \int_{0}^{2\pi} r  d\theta dzdr.$


2950   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{E}xyz\,dV$, onde $E$ é o sólido limitado pelos paraboloides $z=x^{2}+y^{2}$ e $z=8-x^{2}-y^{2}.$


$0.$


2946   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}x\,dxdydz$, onde $B$ é o conjunto $\dfrac{x^{2}}{4}+\dfrac{y^{2}}{9}+z^{2}\leq 1$ e $x\geq 0.$


$3\pi.$


2953   

Usando coordenadas esféricas, determine o volume da parte da bola $\rho\leq a$ que está entre os cones $\phi=\pi/6$ e $\phi=\pi/3.$


$\displaystyle \left( \sqrt{3} - 1 \right) \dfrac{\pi a^3}{3}.$


3116   

Seja \(G\) a região sólida dentro da esfera de raio \(2\) centrada na origem e acima do plano \(z=1\). Mostre (ou verifique) os seguintes resultados:

  1.  O volume de \(G\) é dado por \[\iiint\limits_G\,dV = \int_0^{2\pi}\int_0^{\sqrt{3}}\int_1^{\sqrt{4-r^2}}r\,dzdrd\theta \]

  2.  \[\iiint\limits_G\dfrac{z}{x^2+y^2+z^2}\,dV = \int_0^{2\pi}\int_0^{\sqrt{3}}\int_1^{\sqrt{4-r^2}}\dfrac{rz}{r^2+z^2}\,dzdrd\theta \]


2498   

Esboce a região limitada pelos gráficos das equações e use uma integral tripla para calcular seu volume.

  1.  $z+x^{2}=4$, $y+z=4$, $y=0$ e $z=0.$

  2.  $y=2-z^{2}$, $y=z^{2}$, $x+z=4$ e $x=0.$

  3.  $y^{2}+z^{2}=1$, $x+y+z=2$ e $x=0.$


  1.  $\dfrac{128}{5}.$

  2.  $\dfrac{32}{3}.$

  3.  $2\pi.$


2598   

Considere a integral tripla iterada $$\int_{-\sqrt{2}}^{\sqrt{2}}\int_{-\sqrt{2-x^2}}^{\sqrt{2-x^2}}\int_{x^2 + y^2}^{4-x^2-y^2} dz dy dx.$$

  1.  Transforme a integral utilizando coordenadas cilíndricas.

  2.  Calcule a integral.

  3.  Descreva o sólido cujo volume é dado por essa integral.


  1.  $\displaystyle \int_{0}^{2\pi}\int_{0}^{\sqrt{2}}\int_{ r^2}^{4-r^{2}} r dz dr d\theta.$

  2.  $4\pi.$

  3.  Região entre os parabolóides $z = x^2 + y^2$ e $z = 4 - x^2 - y^2$.


2967   

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinaretermine o volume da região limitada acima pelo paraboloide  $z=5-x^{2}-y^{2}$ e abaixo pelo paraboloide $z=4x^{2}+4y^{2}.$


$\dfrac{5\pi}{2}.$


3120   

Usando coordenadas esféricas, calcule a massa da esfera sólida de raio \(a\) com densidade proporcional à distância ao centro (tomando \(k\) como a constante de proporcionalidade).


 \(k\pi a^4\)


2428   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}z\,dV$, onde $E$ é limitado pelo cilindro $y^{2}+z^{2}=9$ e pelos planos $x=0$, $y=3x$ e $z=0$ no primeiro octante.

  2.  $\displaystyle\iiint\limits_{  E}xyz\;dx dy dz$, onde $E$ é o paralelepípedo $0\leq x\leq 2$, $0\leq y\leq 1$, e $1\leq z\leq 2.$


  1.  $\dfrac{27}{8}.$

  2.  $\dfrac{3}{2}.$


2601   

Seja $E$ a região limitada pelos paraboloides $z = x^2 + y^2$ e $z = 36 - 3x^2 - 3y^2$.

  1.  Ache o volume da região $E$.

  2.  Encontre o centroide de $E$ (centro de massa no caso em que a densidade é constante).


  1.  $162\pi.$

  2.  $(0,0,15)$.


2585   

Encontre o volume da região sólida limitada abaixo pelo plano $z = 0$, lateralmente pelo cilindro $x^2 + y^2 = 1$ e acima pelo paraboloide $z = x^2 + y^2$.



Temos que a região sólida $E$ está acima do plano $z=0$, abaixo do paraboloide $z=x^{2}+y^{2}$ e limitado lateralmente pelo cilindro $x^{2}+y^{2}=1$. Notemos que podemos dividir a região sólida em quatro porções simétricas. Assim, levando em consideração a porção da região sólida $E$ que está no primeiro octante, temos em coordenadas cilíndricas $$0\leq \theta \leq \frac{\pi}{2},\, 0\leq r \leq 1\,\, \mbox{e}\,\, 0\leq z\leq x^{2}+y^{2}=r^{2}.$$ Assim, o volume da região sólida $E$ é: $$V=\iiint\limits_{  E}1\,dV=4\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}\int_{0}^{r^{2}}1\,r\,dz\,dr\,d\theta$$ $$=4\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}zr\,\bigg|_{0}^{r^{2}}\,dr\,d\theta=4\int_{0}^{\frac{\pi}{2}}\int_{0}^{1}r^{3}\,dr\,d\theta$$ $$=4\int_{0}^{\frac{\pi}{2}}\,d\theta\cdot \int_{0}^{1}r^{3}\,dr=4\cdot \theta\bigg|_{0}^{\frac{\pi}{2}}\cdot \frac{r^{4}}{4}\bigg|_{0}^{1}$$ $$=4\cdot \frac{\pi}{2}\cdot \frac{1}{4}=\frac{\pi}{2}.$$


3055   

 Faça o esboço do sólido cujo volume é dado pela integral e calcule essa integral.

$\displaystyle \int_0^4 \int_0^{2\pi}\int_r^4 r \, dz d\theta dr$


ma211lista8q32ares.png


2602   

Calcule, usando integração, o volume do sólido limitados pelas superfícies $z = 1$, $z = 2$ e $z = \sqrt{x^2 + y^2}.$


$\dfrac{7\pi}{6}.$


2945   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}x\,dxdydz$, onde $B$ é o conjunto $x\geq 0$ e $x^{2}+y^{2}+z^{2}\leq 4.$


$4\pi$.


2482   

Use a integral tripla para determinar o volume do sólido dado.

  1.  $x^{2}+y^{2}\leq 4$ e $x^{2}+y^{2}+z^{2}\leq 9.$

  2.  $x^{2}+4y^{2}+9z^{2}\leq 1.$

  3.  $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}+\dfrac{z^{2}}{c^{2}}$,  $(a>0,\;b>0\;e\;c>0).$

  4.  $x^{2}+y^{2}\leq z \leq 4x+2y.$


  1.  $\left(36 - \dfrac{20\sqrt{5}}{3} \right)\pi.$

  2.  $\dfrac{2\pi}{9}.$

  3.  $\dfrac{4\pi abc}{3}.$

  4.  $\dfrac{25\pi}{4}$


2431   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}(x^{2}+z^{2})\;dx dy dz$, onde $E$ é o cilindro $x^{2}+y^{2}\leq 1$ e $0\leq z \leq 1.$

  2.  $\displaystyle\iiint\limits_{  E}\;dx dy dz$, onde $E$ é o conjunto $x^{2}+y^{2}\leq z \leq 2x+2y-1.$


  1.  $\dfrac{7\pi}{12}.$

  2.  $\dfrac{\pi}{2}.$


3053   

Esboce o sólido cujo volume é dado pela integral iterada.

$\displaystyle\int_{0}^{1}\int_{0}^{1-x}\int_{0}^{2-2z}\;dy dz dx$


ma211lista8q12ares.png


2957   

Usando coordenadas esféricas, determine o volume da região cortada do cilindro sólido $x^{2}+y^{2}\leq 1$ pela esfera $x^{2}+y^{2}+z^{2}=4.$


$\dfrac{4\pi(8 - 3\sqrt{3})}{3}.$


2929   

Esboce o sólido cujo volume é dado pela integral abaixo e calcule-a.

$$\int_{0}^{\pi/6}\!\!\int_{0}^{\pi/2}\!\!\int_{0}^{3}\rho^{2}\sin{\phi}\;d\rho d\theta d\phi$$


ma211-list9-ex10_sol.png

2951   

Seja $D$ a região limitada abaixo pelo plano $z=0$, acima pela esfera  $x^{2}+y^{2}+z^{2}=4$ e dos lados pelo cilindro $x^{2}+y^{2}=1$. Monte as integrais triplas em coordenadas esféricas que dão o volume de $D$ usando as ordens de integração a seguir.

  1. $d\rho\,d\phi\,d\theta$;

  2. $d\phi\,d\rho\,d\theta$.


  1. $\displaystyle \int_{0}^{2\pi}\int_{0}^{\pi/6}\int_{0}^{2} \rho^{2}\sin(\phi)\; d\rho d\phi d\theta + \int_{0}^{2\pi}\int_{\pi/6}^{\pi/2}\int_{0}^{\csc(\phi)} \rho^{2}\sin(\phi)\; d\rho d\phi d\theta.$

  2. $\displaystyle \int_{0}^{2\pi}\int_{1}^{2}\int_{\pi/6}^{\arcsin(1/\rho)} \rho^{2}\sin(\phi)\; d\phi d\rho d\theta + \int_{0}^{2\pi}\int_{0}^{2}\int_{0}^{\pi/6} \rho^{2}\sin(\phi)\; d\phi d\rho d\theta.$


3121   

Usando coordenadas esféricas, calcule a massa do sólido compreendido entre as esferas \(x^2+y^2+z^2=1\) e \(x^2+y^2+z^2=4\), com densidade \(\delta(x,y,z)=(x^2+y^2+z^2)^{-1/2}.\)


2435   

Calcule a integral tripla.

  1. $\displaystyle\iiint\limits_{  E}2z\;dx dy dz$, onde $E$ é o conjunto $x^{2}+y^{2}+z^{2}\leq 4$ e $z\geq 0.$

  2. $\displaystyle\iiint\limits_{  E}2z\;dx dy dz$, onde $E$ é o conjunto $4x^{2}+9y^{2}+z^{2}\leq 4$ e $z\geq 0.$


  1.  $8\pi.$

  2.  $0.$


3056   

 Faça o esboço do sólido cujo volume é dado pela integral e calcule essa integral.

$\displaystyle \int_0^{\pi/2}\int_0^2\!\!\int_0^{9 - r^2} r dz dr d\theta$


ma211lista8q32bres.png


2970   

Calcule a integral, transformando para coordenadas esféricas. $\displaystyle\int_{-a}^{a}\int_{-\sqrt{a^{2}-y^{2}}}^{\sqrt{a^{2}-y^{2}}}\int_{-\sqrt{a^{2}-x^{2}-y^{2}}}^{\sqrt{a-x^{2}-y^{2}}}(x^{2}z+y^{2}z+z^{3})\,dzdxdy$.


$0.$


2587   

Calcule a massa do cilindro $x^{2}+y^{2}\leq 4$ e $0\leq z \leq 2$, sabendo que a densidade no ponto $(x,y,z)$ é o dobro da distância do ponto ao plano $z=0.$


$16\pi.$


2916   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B} z \,dxdydz$, onde $B$ é o conjunto $1\leq x^{2}+y^{2}+z^{2}\leq 4$ e $z\geq 0.$



Usando coordenadas esféricas, o sólido pode ser descrito por

$$B = \left\{(\rho, \theta, \phi): 1 \leq \rho \leq 2, 0 \leq \theta \leq 2\pi \mbox{ e } 0 \leq \phi \leq \frac{\pi}{2}\right\}.$$

Lembre que o Jacobiano dessa transformação é $\rho^2 \sin{\phi}$. Assim, obtemos

\begin{array}{rcl}\displaystyle\iiint\limits_{B} z \,dxdydz & = & \displaystyle\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}\int_{1}^{2}(\rho \cos{\phi})(\rho^2 \sin{\phi})\,d\rho d\phi d\theta \\  & = & \displaystyle\int_{0}^{2\pi}\int_{0}^{\frac{\pi}{2}}\left.\left(\frac{\rho^4}{4} \frac{\sin{2\phi}}{2}\right|_{\rho=1}^{\rho=2}\right)\, d\phi d\theta \\  & = & \displaystyle\int_{0}^{2\pi}\left.\left(\frac{(16-1)}{8} \frac{(-\cos{2\phi)}}{2}\right|_{\phi=0}^{\rho=\frac{\pi}{2}}\right)\, d\theta \\  & = & \left.-\frac{15}{16}(-1-1) \theta \right|_{\theta=0}^{\theta=2\pi} = \frac{15\pi}{4}.    \end{array}


2944   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{E}xyz\,dV$, onde $E$ está entre as esferas $\rho=2$ e $\rho=4$ e acima do cone $\phi=\pi/3.$


$0.$


2421   

Calcule a integral tripla $\displaystyle\iiint\limits_{B}xyz^{2}\,dV$, onde $B$ é a caixa retangular dada por $B=\{(x,y,z) \in \mathbb{R}^3|\;0\leq x\leq 1,\;-1\leq y\leq 2,\;0\leq z\leq 3\}$, integrando primeiro em relação a $y$, depois a $z$ e então a $x$.


$\dfrac{27}{4}.$


2915   

Um sólido está acima do cone $z=\sqrt{x^{2}+y^{2}}$ e abaixo da esfera $x^{2}+y^{2}+z^{2}=z.$ Escreva uma descrição do sólido em termos de desigualdades envolvendo coordenadas esféricas.



A mudança de coordenadas retangulares para coordenadas cartesianas é dada por

$$\begin{cases}x = \rho \cos{\theta} \sin{\phi} \\y = \rho \sin{\theta} \sin{\phi}\\z = \rho \cos{\phi},\end{cases}$$

em que $\rho \geq 0$, $\theta \in [0,2\pi]$ e $\phi \in [0,\pi]$. Observe que $\sin{\phi} \geq 0$ quando $\phi \in [0,\pi]$. Logo, a equação do cone em coordenadas esféricas pode ser escrita como $\rho \cos{\phi} = \sqrt{\rho^2 \sin^2{\phi}} = \rho\sin{\phi}$. A origem $(0,0,0)$ pertence ao cone e é dada por $\rho = 0$. Nos demais pontos, $\rho \neq 0$, donde $\phi = \pi/4$.

A equação da esfera em coordenadas esféricas pode ser escrita como $\rho^2=\rho\cos{\phi}$. A origem $(0,0,0)$ pertence à esfera e é dada por $\rho=0$. Nos demais pontos, $\rho \neq 0$, donde $\rho = \cos{\phi}$.

Portanto, o sólido pode ser descrito em coordenadas esféricas por

$$E = \left\{(\rho, \theta, \phi): 0 \leq \rho \leq \cos{\phi}, 0 \leq \theta \leq 2\pi \mbox{ e } 0 \leq \phi \leq \frac{\pi}{4}\right\}.$$

ma211-list9-ex1_sol.png


2455   

Encontre a constante $a$ tal que $$\int_{0}^{1}\int_{0}^{4-a-x^{2}}\int_{a}^{4-x^{2}-y}\;dz dy dx=\frac{4}{15}.$$


$\dfrac{13}{3}$ ou $3.$


2971   

Mostre que

$$\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\sqrt{x^{2}+y^{2}+z^{2}}\,e^{-(x^{2}+y^{2}+z^{2})}\,dxdydz=2\pi.$$

(A integral imprópria tripla é definida como o limite da integral tripla sobre uma esfera sólida quando o raio da esfera aumenta indefinidamente.)


Note que $$\begin{split}&\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\sqrt{x^{2}+y^{2}+z^{2}}\,e^{-(x^{2}+y^{2}+z^{2})}\,dxdydz  \\&= \lim_{R \to \infty} \int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{R} \rho e^{-\rho^2}\rho^2 \sin(\phi)\;d\rho d\phi d\theta.\end{split}$$



2966   

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinaretermine o volume da região limitada abaixo pelo plano $z=0$, lateralmente pelo cilindro $x^{2}+y^{2}=1$ e acima pelo paraboloide $z=x^{2}+y^{2}$.


$\dfrac{\pi}{2}.$


2969   

Calcule a integral, transformando para coordenadas esféricas. $\displaystyle\int_{0}^{2}\int_{0}^{\sqrt{4-y^{2}}}\int_{0}^{\sqrt{4-x^{2}-y^{2}}}\dfrac{1}{x^{2}+y^{2}+z^{2}}\,dzdxdy$.


$\pi.$


2949   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}\sqrt{x^{2}+y^{2}+z^{2}}\,dxdydz$, onde $B$ é a interseção da semi-esfera  $x^{2}+y^{2}+z^{2}\leq 4$, $z\geq 0$, com o cilindro $x^{2}+y^{2}\leq 1.$


$\displaystyle \dfrac{\pi}{4}\left( 32- 14\sqrt{3} + \ln(2 + \sqrt{3})\right).$


2535   

Ache o centro de massa de $E$, em que:

  1.  A densidade de um ponto $P$ de um sólido cúbico $E$ de aresta $a$ é diretamente proporcional ao quadrado da distância de $P$ a um vértice fixo do cubo.

  2.  $E$ é o tetraedro delimitado pelos planos coordenados e o plano  $2x+5y+z=10$ e a densidade em $P(x,y,z)$ é diretamente proporcional $\grave{a}$ distância do plano $xz$ a $P.$


  1.  $\displaystyle \left( \dfrac{7a}{12},\dfrac{7a}{12},\dfrac{7a}{12} \right).$

  2.  $\displaystyle \left( 1,\dfrac{4}{5},2 \right).$


2928   

Esboce o sólido descrito por $\rho \leq 2$, $0\leq \phi \leq \pi/2$ e $0\leq \theta \leq \pi/2.$



ma211-list9-ex9_sol.png


2596   

 Uma casca cilíndrica tem $20$ cm de comprimento, com raio interno de 6 cm e raio externo de $7$ cm. Escreva desigualdades que descrevam a casca em um sistema de coordenadas adequado. Explique como você posicionou o sistema de coordenadas em relação à casca.


$6 \leq r \leq 7,$ $0 \leq \theta \leq 2\pi,$ $0 \leq z \leq 20.$


2430   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}\sqrt{1-z^{2}}\;dx dy dz$, onde $E$ é o cubo $0\leq x\leq 1$, $0\leq y\leq 1$ e $0\leq z\leq 1.$

  2.  $\displaystyle\iiint\limits_{  E}\;dx dy dz$, onde $E$ é o conjunto $x^{2}+y^{2}\leq z \leq 2x.$


  1.  $\dfrac{\pi}{4}.$

  2.  $\dfrac{\pi}{2}.$


2599   

Calcule as seguintes integrais triplas.

  1.  $\displaystyle\iiint\limits_{  E}  \sqrt{x^2 + y^2} \, dV$, em que $E$ é a região que está dentro do cilindro   $x^2 + y^2 = 16$ e entre os planos $z = -5$ e $z = 4$.

  2.  $\displaystyle\iiint\limits_{  E}  y \, dV$, em que $E$ é o sólido que está entre os cilindros $x^2 + y^2 = 1$ e $x^2 + y^2 = 4$, acima do plano $xy$ e abaixo do plano $z = x + 2$.

  3.  $\displaystyle\iiint\limits_{  E}  x \, dV$, em que $E$ está delimitidado pelos planos $z = 0$ e $z = x + y + 5$ e pelos cilindros $x^2 + y^2 = 4$ e $x^2 + y^2 = 9$.


  1.  $384\pi$.

  2. $0$.

  3. $\dfrac{65\pi}{4}$.


2932   

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{2\pi}\int_{0}^{\pi}\int_{0}^{(1-\cos{\phi})/2}\rho^{2}\sin{\phi}\,d\rho d\phi d\theta$.


$\dfrac{\pi}{3}.$


2433   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}2z\;dx dy dz$, onde $E$ é o conjunto $x^{2}+y^{2}\leq 1$, $x^{2}+y^{2}+z^{2}\leq 4$ e $z\geq 0.$

  2.  $\displaystyle\iiint\limits_{  E}x\;dx dy dz$, onde $E$ é o conjunto $x^{2}-y^{2}\leq z \leq 1-2y^{2}.$


  1.  $\dfrac{7\pi}{2}.$

  2.  $0.$


3051   

A figura mostra a região da integral

$$\int_{0}^{1}\int_{0}^{1-x^{2}}\int_{0}^{1-x}f(x,y,z)\;dy dz dx.$$

Reescreva essa integral como uma integral iterada equivalente nas cinco outras ordens.

ma211lista8q16.png


$\int_{0}^{1}\int_{\sqrt{x}}^{1}\int_{0}^{1-y}f(x,y,z)\;dz dy dx = \int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)\;dz dx dy $
$= \int_{0}^{1}\int_{0}^{1 - z}\int_{0}^{y^2}f(x,y,z)\;dx dy dz = \int_{0}^{1}\int_{0}^{1 - y}\int_{0}^{y^2}f(x,y,z)\;dx dz dy $
$= \int_{0}^{1}\int_{0}^{1 - \sqrt{x}}\int_{\sqrt{x}}^{1-z}f(x,y,z)\;dy dz dx = \int_{0}^{1}\int_{0}^{(1 - z)^2}\int_{\sqrt{x}}^{1-z}f(x,y,z)\;dy dx dz.$


2926   

Identifique a superfície cuja equação é $\rho=\sin{\theta}\sin{\phi}.$


Esfera de raio $\dfrac{1}{2}$ centrada no ponto $\left(0,\dfrac{1}{2},0\right).$


2483   

Use a integral tripla para determinar o volume do sólido dado.

  1.  $x^{2}+y^{2}\leq 1$ e $x^{2}+z^{2}\leq 1.$

  2.  $(x-a)^{2}+y^{2}\leq a^{2}$, $x^{2}+y^{2}+z^{2}\leq 4a^{2}$, $z\geq 0$ $(a>0).$

  3.  $x^{2}+y^{2}\leq a^{2}$ e $x^{2}+z^{2}\leq a^{2}$ $(a>0).$

  4.  $x^{2}+y^{2}+z^{2}\leq a^{2}$ e $z\geq \dfrac{a}{2}$ $(a>0).$


  1.  $\dfrac{16}{3}.$

  2.  $\dfrac{16a^3}{3} \left(\dfrac{\pi}{2} - \dfrac{2}{3}\right).$

  3.  $\dfrac{16a^3}{3}.$

  4.  $\dfrac{5\pi a^3}{24}.$


2603   

Determine o volume do sólido limitado pelo cilindro $x^2 + y^2 = 4$ e pelos planos $z = 0$ e $y + z = 3$.


$12\pi.$


2537   

Suponha que o sólido tenha densidade constante $k$. Encontre os momentos de inércia para um cubo com comprimento do lado $L$ se um vértice está localizado na origem e três arestas estão nos eixos coordenados.


$\displaystyle I_{x} = I_{y} = I_{z} = \dfrac{2kL^5}{3}.$


2593   

Marque o ponto cujas coordenadas cilíndricas são $(2, \pi/4,1)$ e $(4, -\pi/3,5)$. Em seguida, encontre as coordenadas retangulares do ponto.


Para $(2, \pi/4,1):$ $(\sqrt{2},\sqrt{2},1)$ e para $(4, -\pi/3,5):$ $(2, -2\sqrt{3},5)$.


3052   

Esboce o sólido descrito pelas desigualdades $0 \leq r \leq 2$, $-\pi/2 \leq \theta \leq \pi/2$ e $0 \leq z \leq 1$.


ma211lista8q29res.png


2536   

Calcule a massa do sólido $x+y+z\leq 1$, $x\geq 0$, $y\geq 0$ e $z\geq 0$, sendo a densidade dada por $\rho(x,y,z)=x+y.$


$\dfrac{1}{12}.$


2924   

Marque o ponto cujas coordenadas esféricas é $(1,0,0)$ e encontre as coordenadas retangulares do ponto.


$(0,0,1).$

ma211-list9-ex5_sol.png


2436   

Calcule a integral tripla.

  1. $\displaystyle\iiint\limits_{  E}\cos{z} \; dx dy dz$, onde $E$ é o conjunto $0\leq x \leq \dfrac{\pi}{2}$, $0\leq y \leq \dfrac{\pi}{2}$ e $x-y\leq z \leq x+y.$

  2. $\displaystyle\iiint\limits_{  E}(y-x)\;dx dy dz$, onde $E$ é o conjunto $4\leq x+y\leq 8$, $\dfrac{1}{x}\leq y\leq \dfrac{2}{x}$,  $y> x$ e $0\leq z \leq \dfrac{\sqrt[3]{xy}}{\sqrt{x+y}}.$


  1.  $2.$

  2.  $3 - 6\sqrt[3]{2} - 2\sqrt{2} + 6 \sqrt[6]{2^5}.$


2968   

Calcule a integral, transformando para coordenadas esféricas. $\displaystyle\int_{0}^{1}\int_{0}^{\sqrt{1-x^{2}}}\int_{\sqrt{x^{2}+y^{2}}}^{\sqrt{2-x^{2}-y^{2}}}xy\,dzdydx$.


$\dfrac{(4\sqrt{2} - 5)}{15}.$


3049   

 Calcule a integral tripla $\int\int\int\limits_{T}x^{2}dV$, 

onde $T$ é o tetraedro sólido com vértices $(0,0,0)$, $(1,0,0)$, $(0,1,0)$ e $(0,0,1).$



Para resolvermos a integral tripla, vamos desenhar dois diagramas: um da região sólida $T$ (Figura 1) e o outro a sua projeção $D$ no plano $xy$ (Figura 2). 

ma211lista8q1res.png

A fronteira inferior do tetraedro $T$ é o plano $z=0$ e a superior é o plano $x+y+z=1$ (ou $z=1-x-y$). 

Notemos que os planos $x+y+z=1$ e $z=0$ se interceptam na reta $x+y=1$ (ou $y=1-x$) no plano $xy.$ 

Logo a projeção de $T$ é a região triangular da Figura 2 e temos 

$$T=\{(x,y,z)|\,0\leq x \leq 1,\, 0\leq y \leq 1-x,\, 0\leq z \leq 1-x-y\}.$$

Assim, 

$$\int\int\int\limits_{T}x^{2}\,dV=\int_{0}^{1}\int_{0}^{1-x}\int_{0}^{1-x-z}x^{2}\,dz\,dy\,dx=\int_{0}^{1}\int_{0}^{1-x}x^{2}z\bigg|_{0}^{1-x-y}\,dy\,dx$$

$$=\int_{0}^{1}\int_{0}^{1-x}x^{2}(1-x-y)\,dy\,dx=\int_{0}^{1}\int_{0}^{1-x}(x^{2}-x^{3}-x^{2}y)\,dy\,dx$$

$$=\int_{0}^{1}\bigg(x^{2}y-x^{3}y-x^{2}\frac{y^{2}}{2}\bigg)\bigg|_{0}^{1-x}\,dx=\int_{0}^{1}\bigg(x^{2}(1-x)-x^{3}(1-x)-\frac{x^{2}}{2}(1-x)^{2}\bigg)dx$$

$$=\int_{0}^{1}\bigg(\frac{x^{2}}{2}-x^{3}+\frac{x^{4}}{2}\bigg)\,dx =\bigg[\frac{1}{2}\cdot\frac{x^{3}}{3}-\frac{x^{4}}{4}+\frac{1}{2}\cdot\frac{x^{5}}{5}\bigg]\bigg|_{0}^{1}=\frac{1}{60}.$$


2586   

Determine o volume do sólido que está acima do plano $xy$, abaixo do paraboloide $z = x^2 + y^2$ e que se encontra dentro do cilindro $x^2 + y^2 = 2x$ e fora do cilindro $x^2 + y^2 = 1.$



Temos que $0\leq z\leq x^{2}+y^{2}$. Como o sólido se encontra dentro do cilindro $x^{2}+y^{2}=2x$ e fora do cilindro $x^{2}+y^{2}=1$, devemos fazer a interseção desses dois cilindros, isto é, $$\left\{\begin{array}{cc} x^{2}+y^{2}=2x\\ x^{2}+y^{2}=1\\ \end{array} \right.\Rightarrow 2x=1\Leftrightarrow x=\frac{1}{2}$$ Em coordenadas cilíndricas temos que \begin{eqnarray*} x&=&r\cos \theta\\ y&=&r\sin \theta\\ z&=&z\\ dz\,dy\,dx&=&r\,dz\,dr\,d\theta \end{eqnarray*} Da equação $x^{2}+y^{2}=1$ temos que $$r^{2}=1\Longrightarrow r=\pm 1,$$ como devemos ter $r\geq 0$, então nesse caso $r=1.$ Da equação $x^{2}+y^{2}=2x$ temos que $$r^{2}=2r\,\cos \theta \Rightarrow r=2\cos \theta.$$  Agora, sendo $x=\frac{1}{2}$ e $r=1$ temos que $$\cos \theta=\frac{1}{2}\Rightarrow \theta=\pm \frac{\pi}{3}.$$ Assim, em coordenadas cilíndricas temos que o sólido $E$ é dado por $$E=\{(\theta,\,r,\,z)|\, -\frac{\pi}{3}\leq \theta \leq \frac{\pi}{3},\, 1\leq r\leq 2 \cos \theta,\,0\leq z\leq r^{2}\}.$$ Então, $$V=\iiint\limits_{  E}1\,dV= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\int_{1}^{2\cos \theta}\int_{0}^{r^{2}}1\,r\,dz\,dr\,d\theta= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\int_{1}^{2\cos \theta}zr\bigg|_{0}^{r}\,dr\,d\theta$$ $$=\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\int_{1}^{2\cos \theta}r^{3}\,dr\,d\theta= \int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\frac{r^{4}}{4}\bigg|_{1}^{2\cos \theta}\,d\theta =\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\bigg(4\cos^{4}\theta-\frac{1}{4}\bigg)\,d\theta$$ $$=4\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\underbrace{\cos^{4}\theta}_{\mbox{função   par}}\,d\theta-\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}}\underbrace{\frac{1}{4}}_{\mbox{função    par}}\,d\theta =8\int_{0}^{\frac{\pi}{3}}\cos^{4}\theta\,d\theta-2\int_{0}^{\frac{\pi}{3}}\frac{1}{4}\,d\theta$$ $$=8\bigg[\frac{3}{8}\theta+\frac{1}{4}\sin(2\theta)+\frac{1}{32}\sin(4\theta)\bigg]\bigg|_{0}^{\frac{\pi}{3}} -\bigg(\frac{1}{2}\theta\bigg)\bigg|_{0}^{\frac{\pi}{3}}$$ $$=8\bigg[\frac{3}{8}\cdot \frac{\pi}{3}+\frac{1}{4}\sin\bigg(\frac{2\pi}{3}\bigg)+\frac{1}{32}\sin\bigg(\frac{4\pi}{3}\bigg)\bigg]-\frac{1}{2}\cdot \frac{\pi}{3}$$ $$=\pi+\sqrt{3}-\frac{\sqrt{3}}{8}-\frac{\pi}{6}=\frac{5\pi}{6}+\frac{7\sqrt{3}}{8}.$$


3054   

Esboce o sólido cujo volume é dado pela integral iterada.

$\displaystyle\int_{0}^{2}\int_{0}^{2-y}\int_{0}^{4-y^{2}}\;dx dz dy$



ma211lista8q12bres.png

2942   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{H}(9-x^{2}-y^{2})\,dV$, onde $H$ é o hemisfério sólido $x^{2}+y^{2}+z^{2}\leq 9$ e $z\geq 0.$


$\dfrac{486\pi}{5}.$


3050   

A figura mostra a região de integração da integral

$$\int_{0}^{1}\int_{\sqrt{x}}^{1}\int_{0}^{1-y}f(x,y,z)\;dz dy dx.$$

Reescreva essa integral como uma integral iterada equivalente nas cinco outras ordens.

ma211lista8q15.png


$\int_{0}^{1}\int_{\sqrt{x}}^{1}\int_{0}^{1-y}f(x,y,z)\;dz dy dx = \int_{0}^{1}\int_{0}^{y^2}\int_{0}^{1-y}f(x,y,z)\;dz dx dy $
$= \int_{0}^{1}\int_{0}^{1 - z}\int_{0}^{y^2}f(x,y,z)\;dx dy dz = \int_{0}^{1}\int_{0}^{1 - y}\int_{0}^{y^2}f(x,y,z)\;dx dz dy $
$= \int_{0}^{1}\int_{0}^{1 - \sqrt{x}}\int_{\sqrt{x}}^{1-z}f(x,y,z)\;dy dz dx = \int_{0}^{1}\int_{0}^{(1 - z)^2}\int_{\sqrt{x}}^{1-z}f(x,y,z)\;dy dx dz.$


2533   

Escreva seis integrais triplas iteradas diferentes para o volume do sólido retangular no  primeiro octante limitado pelos planos coordenados e pelos planos $x=1$, $y=2$ e $z=3$. Calcule uma das integrais.


$$\begin{split} 6 &= \int_{0}^{1}\int_{0}^{2}\int_{0}^{3} dz dy dx = \int_{0}^{2}\int_{0}^{1}\int_{0}^{3} dz dx dy = \int_{0}^{3}\int_{0}^{2}\int_{0}^{1} dx dy dz\\ &= \int_{0}^{2}\int_{0}^{3}\int_{0}^{1} dx dz dy = \int_{0}^{3}\int_{0}^{1}\int_{0}^{2} dy dx dz = \int_{0}^{1}\int_{0}^{3}\int_{0}^{2} dy dx dx. \end{split} $$


2427   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E} x^2 e^y\,dV$, onde $E$ é delimitado pelo cilindro parabólico $z=1-y^{2}$ e pelos planos $z=0$, $x=1$ e $x=-1.$

  2.  $\displaystyle\iiint\limits_{  E}x\,dV$, onde $E$ é limitado pelo paraboloide $x=4y^{2}+4z^{2}$ e  pelo plano $x=4.$


  1.  $\dfrac{8}{3e}.$

  2.  $\dfrac{16\pi}{3}.$


2954   

Usando coordenadas esféricas, determine o volume do elipsoide $\dfrac{x^{2}}{a^{2}}+\dfrac{y^{2}}{b^{2}}+\dfrac{z^{2}}{c^{2}}\leq 1.$


$\dfrac{4 \pi abc}{3}.$


2426   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}2x\,dV$, onde $E=\{(x,y,z)|\;0\leq y\leq 2,\,0\leq x\leq \sqrt{4-y^{2}},\;\\ 0\leq z\leq y\}.$

  2.  $\displaystyle\iiint\limits_{  E}6xy\,dV$, onde $E$ está abaixo do plano $z=1+x+y$ e acima da região do plano $xy$ limitada pelas curvas $y=\sqrt{x}$, $y=0$ e $x=1.$


  1.  $4.$

  2.  $\dfrac{65}{28}.$


2958   

Usando coordenadas esféricas, determine o volume do sólido que está acima do plano $z=2\sqrt{3}$ e abaixo da esfera $x^{2}+y^{2}+z^{2}=16.$


$\dfrac{88\pi}{3}.$


3118   

Use coordenadas esféricas para encontrar o volume do sólido: limitado acima pela esfera \(\rho=4\) e abaixo pelo cone \(\phi=\pi/3\).


\(\dfrac{64\pi}{3}\)


2964   

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinar o volume e o centroide do sólido $E$ que está acima do cone $z=\sqrt{x^{2}+y^{2}}$ e abaixo da esfera $x^{2}+y^{2}+z^{2}=1.$


Volume: $\dfrac{\pi(2 - \sqrt{2})}{3};$ centróide: $\left(0,0, \dfrac{3}{8(2 - \sqrt{2})} \right).$


3152   

Mostre que o determinante Jacobiano da mudança de coordenadas cartesianas para esféricas é $-\rho^2 \sin \varphi$.


2961   

Usando coordenadas esféricas, determine o volume do sólido que está dentro da esfera $x^{2}+y^{2}+z^{2}=4$, acima do plano $xy$ e abaixo do cone $z=\sqrt{x^{2}+y^{2}}.$



$\dfrac{8\sqrt{2}\pi}{3}.$


2956   

Usando coordenadas esféricas, determine o volume da menor região cortada da esfera sólida $\rho \leq 2$ pelo plano $z=1.$


$\dfrac{5\pi}{3}.$


2943   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{E}z\,dV$, onde $E$ está entre as esferas $x^{2}+y^{2}+z^{2}=1$ e $x^{2}+y^{2}+z^{2}=4$, no primeiro octante.



$\dfrac{15\pi}{16}.$


2432   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}y\;dx dy dz$, onde $E$ é o conjunto $x^{2}+4y^{2}\leq 1$ e $0\leq z \leq 1.$

  2.  $\displaystyle\iiint\limits_{  E}x\;dx dy dz$, onde $E$ é o conjunto $x^{2}+y^{2}\leq 4$, $x\geq 0$ e \\ $x+y\leq z \leq x+y+1.$


  1.  $0.$

  2.  $\dfrac{16}{3}.$


2925   

Mude o ponto $(1,\sqrt{3},2\sqrt{3})$ dado em coordenadas retangulares para esféricas.


$\displaystyle \left( 4, \dfrac{\pi}{3}, \dfrac{\pi}{6} \right).$


2931   

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{2\pi}\int_{0}^{\pi/4}\int_{0}^{2}(\rho\cos{\phi})\rho^{2}\sin{\phi}\,d\rho d\phi d\theta$.


$2\pi.$


3115   

Seja \(G\) a caixa retangular definida pelas desigualdades \(a\leq x\leq b\),  \(c\leq y\leq d\) e \(k\leq z\leq l\). Mostre que \[\iiint\limits_G f(x)g(y)h(z)\,dV = \left[\int_a^bf(x)\,dx\right]\left[\int_c^dg(y)\,dy\right]\left[\int_k^lh(z)\,dz\right].\]


2947   

Calcule utilizando coordenadas esféricas. $\displaystyle\iiint\limits_{B}\sqrt{x+y}\sqrt[3]{x+2y-z}\,dxdydz$, onde $B$ é a região $1\leq x+y\leq 2$, $0\leq x+2y-z\leq 1$ e $0\leq z\leq 1.$


$\sqrt{2} - \dfrac{1}{2}.$


2481   

Use a integral tripla para determinar o volume do sólido dado.

  1.  $0\leq x \leq 1$, $0\leq y \leq 1$ e $0\leq z \leq 5-x^{2}-3y^{2}.$

  2.  $0\leq x \leq 1$, $0\leq y \leq x^{2}$ e $0\leq z \leq x+y^{2}.$

  3. $x^{2}+y^{2}\leq z \leq 4.$

  4.  $x^{2}+4y^{2}\leq z \leq 1.$


  1.  $\dfrac{11}{3}.$

  2. $\dfrac{25}{84}.$

  3. $8\pi.$

  4.  $\dfrac{\pi}{4}.$


2534   

Determine a massa e o centro de massa do cubo dado por $0\leq x\leq a$, $0\leq y\leq a$, $0\leq z\leq a$ e com função densidade:

  1.  $\rho(x,y,z)=x^{2}+y^{2}+z^{2}.$

  2.  $\rho(x,y,z)=x+y+z.$


  1.  Massa: $a^5;$ centro de massa: $\displaystyle \left(\frac{7a}{12},\frac{7a}{12},\frac{7a}{12} \right).$

  2.  Massa: $\dfrac{3a^4}{2};$ centro de massa: $\displaystyle \left(\frac{5a}{9},\frac{5a}{9},\frac{5a}{9} \right).$


2484   

Use a integral tripla para determinar o volume do sólido dado.

  1.  $x^{2}\leq z \leq 1-y$ e $y\geq 0.$

  2.  $x^{2}+2y^{2}\leq z\leq 2a^{2}-x^{2}$ $(a>0).$

  3.  $x^{2}+y^{2}+(z-1)^{2}\leq 1$ e $z\geq x^{2}+y^{2}.$

  4.  $4x^{2}+9y^{2}+z^{2}\leq 4$ e $4x^{2}+9y^{2}\leq 1.$


  1.  $\dfrac{4}{15}.$

  2.  $\pi a^4.$

  3.  $\dfrac{71\pi}{54}.$

  4.  $\dfrac{7\pi}{12}.$


3119   

Use coordenadas esféricas para encontrar o volume do sólido: contido no interior do cone \(\phi=\pi/4\), entre as esferas \(\rho=1\) e \(\rho=2\).


2588   

Seja $C$ o cilindro de base circular e eixo $(Oz)$, com raio $2$ e altura $3$, com base na origem e densidade inversamente proporcional $\grave{a}$ distância ao eixo.

  1. Determine o momento de inércia de $C$ com relação ao eixo $(Oz)$.

  2. Se $C$ gira em torno do eixo $(Oz)$ com energia cinética $K$, qual a velocidade instantânea nos pontos de sua superfície lateral? (Fórmulas: $\bullet$ Momento de inércia: $I=\iiint\limits_{C}\rho\cdot l^{2}\,dV$, onde $\rho$ é a densidade e $l$  é a distância ao eixo; $\bullet$ Energia cinética de rotação: $K=\dfrac{1}{2}I\omega^{2}.$)


  1.  $6\pi.$

  2.  $\displaystyle \sqrt{\frac{K}{3\pi}}.$


2538   

Determine o sólido $E$ para o qual a integral $$ \iiint\limits_{  E}(1-x^{2}-2y^{2}-3z^{2})\,dV$$ é máxima.


$E = \left\{ (x,y,z);  x^2 + 2y^2 + 3z^2 \leq 1 \right\}.$


2933   

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{3\pi/2}\int_{0}^{\pi}\int_{0}^{1}5\rho^{3}\sin^{3}{\phi}\,d\rho d\phi d\theta$.


$\dfrac{5\pi}{2}.$


2930   

Calcule a integral em coordenadas esféricas. $\displaystyle\int_{0}^{\pi}\int_{0}^{\pi}\int_{0}^{2\,\sin{\phi}}\rho^{2}\sin{\phi}\,d\rho d\phi d\theta$.


$\pi^2.$


2594   

Mude as coordenadas de $(1,-1,4)$ de retangulares para cilíndricas.


 $\displaystyle (\sqrt{2}, \dfrac{7\pi}{4}, 4).$


2600   

Calcule as seguintes integrais triplas.

  1.  $\displaystyle\iiint\limits_{  E}  x^2 \, dV$, em que $E$ é o sólido que está dentro do cilindro $x^2 + y^2 = 1$, acima do plano $z = 0$ e abaixo do cone $z^2 = 4x^2 + 4y^2$.

  2.  $\displaystyle\iiint\limits_{  E}   xyz \, dV,$ em que $E$ é o sólido limitado pelos paraboloides $z = x^2 + y^2$, $z = 8 - x^2 - y^2$.

  3.  $\displaystyle\int_{-2}^2\int_{-\sqrt{4 - y^2}}^{\sqrt{4 - y^2}}\int_{\sqrt{x^2 + y^2}}^2 xz \, dz dx dy$


  1.  $\dfrac{2\pi}{5}$.

  2.  $0.$

  3.  $0.$


2485   

Use a integral tripla para determinar o volume do sólido dado.

  1.  O tetraedro limitado pelos planos coordenados e o plano $2x+y+z=4.$

  2.  O sólido limitado pelo paraboloide $x=y^{2}+z^{2}$ e pelo plano $x=16.$

  3.  O sólido delimitado pelo cilindro $x=y^{2}$ e pelos planos $z=0$ e $x+z=1$.


  1.  $\dfrac{16}{3}.$

  2.  $128\pi.$

  3.  $\dfrac{8}{15}.$


2604   

Vamos demonstrar a expressão geral para o volume de um cone circular de altura $h$ e raio da base $R$.

  1.  Representando o cone com vértice na origem e base no plano $z = h$, expresse $V$ por meio de uma integral dupla.

  2.  Calculando a integral, verifique que $V = \dfrac{\pi R^2 h}{3}$.


  1.  $V = 2 \displaystyle \int_{0}^{h} \int_{-\frac{R}{h}z}^{\frac{R}{h}z} \sqrt{\dfrac{R^{2}}{h^{2}} z^{2} - x^{2}} dx dz.$

  2.  Note que $\displaystyle \int_{0}^{h} \int_{-\frac{R}{h}z}^{\frac{R}{h}z} \sqrt{\dfrac{R^{2}}{h^{2}} z^{2} - x^{2}} dx dz = \dfrac{\pi R^{2}h}{6}$ é o volume da parte superior (ou inferior) do cone.


2420   

Use a integral tripla para determinar o volume do sólido dado por $x^{2}+y^{2}\leq z\leq \sqrt{4-3x^{2}-3y^{2}}.$



Primeiramente, vamos determinar a projeção no plano $xy$ da interseção de \begin{eqnarray*} z&=&\sqrt{4-3x^{2}-3y^{2}}\\ z&=&x^{2}+y^{2}. \end{eqnarray*} Da primeira equação temos que \begin{eqnarray*} \label{1}z=\sqrt{4-3x^{2}-3y^{2}}\Leftrightarrow z^{2}=4-3x^{2}-3y^{2}\Leftrightarrow z^{2}=4-3(x^{2}+y^{2}). \end{eqnarray*} Substituindo a segunda equação  na primeira, obtemos que $$z^{2}=4-z\Leftrightarrow z^{2}+3z-4=0\Leftrightarrow (z-1)(z-4)=0.$$ Logo, $z=-4$ e $z=1.$ Notemos que $z=-4$ não satisfaz as duas primeiras equações acima, então a projeção $D$ no plano $xy$ é o círculo de raio 1, isto é, $D=\{(x,y)\in \mathbb{R};\;\, x^{2}+y^{2}\leq 1\}.$ Assim, o volume, $V$, do sólido é: $$V=\iint\limits_{D}\bigg[\int_{x^{2}+y^{2}}^{\sqrt{4-3x^{2}-3y^{2}}}1\, dz\bigg]\,dA = \iint\limits_{ D}\sqrt{4-3x^{2}-3y^{2}}-(x^{2}+y^{2})\,dA.$$ Passando para coordenadas polares temos que \begin{eqnarray*}  x=r\cos \theta\\ y=r\sin \theta\\ dA=r\,dr\,d\theta\\ 0\leq r\leq 1\\ 0\leq \theta \leq 2\pi.\\ \end{eqnarray*} Então, $$V=\int_{0}^{2\pi}\int_{0}^{1}(\sqrt{4-3r^{2}}-r^{2})r\,dr\,d \theta=\int_{0}^{2\pi}\int_{0}^{1}(r\sqrt{4-3r^{2}}-r^{3})\,dr\,d\theta$$ $$=\int_{0}^{2\pi}\,d\theta\cdot \bigg[\bigg(\underbrace{\int_{0}^{1}r\sqrt{4-3r^{2}}\,dr}_{\substack{ u=4-3r^{2}\\ du=-6r\,dr}}\bigg)-\bigg(\int_{0}^{1}r^{3}\,dr\bigg)\bigg]$$ $$=\theta\bigg|_{0}^{2\pi}\cdot \bigg[\bigg(\int_{4}^{1}r\cdot u^{1/2}\frac{du}{-6r}\bigg)-\bigg(\frac{r^{4}}{4}\bigg|_{0}^{1}\bigg)\bigg]$$ $$=2\pi\cdot \bigg[\bigg(-\frac{1}{6}\int_{4}^{1}u^{1/2}\,du\bigg)-\frac{1}{4}\bigg]=2\pi \cdot \bigg[\bigg(-\frac{1}{6}\cdot \frac{2}{3}u^{3/2}\bigg|_{4}^{1}\bigg)-\frac{1}{4}\bigg]$$ $$=2\pi \cdot \bigg[-\frac{1}{9}+\frac{1}{9}\cdot 8-\frac{1}{4}\bigg]=2\pi \cdot \frac{19}{36}=\frac{19\pi}{18}.$$


2434   

Calcule a integral tripla.

  1.  $\displaystyle\iiint\limits_{  E}e^{x^{2}}\;dx dy dz$, onde $E$ é o conjunto $0\leq x \leq 1$, $0\leq y \leq x$ e $0\leq z \leq 1.$

  2.  $\displaystyle\iiint\limits_{  E}x\;dx dy dz$, onde $E$ é o conjunto $x^{2}\leq y\leq x$, $0\leq z\leq x+y.$


  1.  $\dfrac{e - 1}{2}.$

  2.  $\dfrac{11}{120}.$


2496   

Para qual valor de $c$ o volume do elipsóide $x^{2}+(y/2)^{2}+(z/c)^{2}=1$ é igual a $8\pi$?


$3.$


2422   

Calcule a integral iterada.

  1.  $\displaystyle\int_{0}^{1}\!\!\int_{0}^{z}\!\!\int_{0}^{x+z}6xz\;dy dx dz$

  2.  $\displaystyle\int_{0}^{3}\!\!\int_{0}^{1}\!\!\int_{0}^{\sqrt{1-z^{2}}}ze^{y}\;dx dz dy$

  3.  $\displaystyle\int_{0}^{\pi/2}\int_{0}^{y}\int_{0}^{x}\cos(x+y+z)\;dz dx dy$


  1.  $1.$

  2.  $\displaystyle \frac{e^3 - 1}{3}.$

  3.  $-\dfrac{1}{3}.$


2539   

Encontre o centróide e os momentos de inércia $I_{x}$, $I_{y}$ e $I_{z}$ do tetraedro cujos vértices são os pontos $(0,0,0)$, $(1,0,0)$, $(0,1,0)$ e $(0,0,1).$


Centróide: $\displaystyle \left(\frac{1}{4},\frac{1}{4},\frac{1}{4} \right),$ $I_{x} = I_{y} = I_{z} = \dfrac{1}{30}.$


2965   

Dentre as coordenadas cilíndricas ou esféricas, utilize a que lhe parecer mais apropriada para determinaretermine o volume da menor cunha esférica cortada de uma esfera de raio $a$ por dois planos que se interceptam ao longo de um diâmetro com um ângulo de $\pi/6.$


$\dfrac{\pi a^3}{9}.$


2955   

Usando coordenadas esféricas, determine o volume da porção da esfera sólida $\rho \leq a$ que está entre os cones $\phi=\pi/3$ e $\phi=2\pi/3.$


$\dfrac{2\pi a^{3}}{3}.$


2952   

Seja $E$ o sólido limitado pelos dois planos $z=1$ e $z=2$ e lateralmente pelo cone $z=\sqrt{x^{2}+y^{2}}$. Expresse o volume de $E$ como integral tripla em coordenadas esféricas (não é necessário calcular a integral).


$\displaystyle \int_{0}^{2\pi} \int_{0}^{\pi/4} \int_{\sec(\phi)}^{2\sec(\phi)} \rho^{2}\sin(\phi)\;d\rho d\phi d\theta.$


3117   

Seja \(G\) a região sólida dentro da esfera de raio \(2\) centrada na origem e acima do plano \(z=1\). Mostre (ou verifique) os seguintes resultados:

  1.  O volume de \(G\) é dado por \[\iiint\limits_G\,dV = \int_0^{2\pi}\int_0^{\dfrac{\pi}{3}}\int_{\sec\phi}^{2}\rho^2\sin\phi\,d\rho d\phi d\theta \]

  2.  \[\iiint\limits_G\dfrac{z}{x^2+y^2+z^2}\,dV = \int_0^{2\pi}\int_0^{\pi/3}\int_{\sec\phi}^{2}\rho\cos\phi\sin\phi\,d\rho d\phi d\theta \]


2927   

Escreva a equação $z^{2}=x^{2}+y^{2}$ em coordenadas esféricas.


$\cos^2 \phi = \sin^2 \phi.$


2960   

Usando coordenadas esféricas, determine o volume e o centroide do sólido que está acima do cone $\phi=\pi/3$ e abaixo da esfera $\rho=4\cos{\phi}.$


Volume: $10\pi;$ centróide: $(0,0,2,1).$