Exercícios
Área de superfície
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Encontre a área da superfície descrita como sendo a parte do cone \(z^2=4x^2+4y^2\) que está acima da região do primeiro quadrante limitada pela reta \(y=x\) e a parábola \(y=x^2\).
\( \dfrac{\sqrt{5}}{6}\)
Encontre a área da superfície descrita como sendo a parte do plano \(2x+2y+z=8\) no primeiro octante.
Seja $S$ uma superfície plana paralela ao plano $xy$. Mostre que a fórmula para o cálculo de áreas de superfícies nesse caso reduz à fórmula de integrais duplas para o cálculo de área de regiões planas.
As equações paramétricas \[\begin{array}{lll} x=u, & y=u\cos v, & z=u\sin v \end{array}\] representam o cone que resulta quando a reta \(y=x\) do plano \(xy\) é girada em torno do eixo \(x\). Determine a área de superfície da parte do cone para a qual \(0\leq u\leq 2\) e \(0\leq v\leq 2\pi\).
Sendo \(\displaystyle\{\mathbf{i},\mathbf{j},\mathbf{k}\}\) a base canônica do espaço, a superfície pode ser representada vetorialmente como \[ \mathbf{r}=u\mathbf{i}+u\cos v\mathbf{j}+u\sin v\mathbf{k} \ \ \left(0\leq u\leq 2,\ 0\leq v\leq 2\pi\right). \] Assim, teremos \begin{align*} \dfrac{\partial\mathbf{r}}{\partial u} & = \mathbf{i} + \cos v\mathbf{j} + \sin v\mathbf{k} \\ \dfrac{\partial\mathbf{r}}{\partial v} & = - u\sin v\mathbf{j} + u\cos v\mathbf{k} \\ \dfrac{\partial\mathbf{r}}{\partial u}\times\dfrac{\partial\mathbf{r}} {\partial v} & = \left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & \cos v & \sin v \\ 0 & -u\sin v & u\cos v \end{array} \right| = u\mathbf{i} -u\cos v\mathbf{j} - u\sin v\mathbf{k} \\ \|\dfrac{\partial\mathbf{r}}{\partial u}\times \dfrac{\partial\mathbf{r}}{\partial v}\| & = \sqrt{u^2+(-u\cos v)^2+(-u\sin v)^2} = |u|\sqrt{2} = u\sqrt{2}. \end{align*} Segue, portanto, que \[ S = \iint\limits_R\|\dfrac{\partial\mathbf{r}}{\partial u}\times \dfrac{\partial\mathbf{r}}{\partial v}\|\,dA = \int_0^{2\pi}\int_0^2\sqrt{2}u\,dudv = 2\sqrt{2}\int_0^{2\pi}\,dv = 4\pi\sqrt{2}. \]
Encontre a área da superfície descrita como sendo a parte do cilindro \(y^2+z^2=9\) que está acima do retângulo \(\displaystyle R=\{(x,y)\in\mathbb{R}^2;\ 0\leq x\leq 2,\ -3\leq y\leq 3\}\).
\( 6\,\pi\)
Encontre a área da parte da superfície \(z=\sqrt{4-x^2}\) que fica acima do retângulo \(R\) do plano \(xy\) cujas coordenadas satisfazem \(0\leq x\leq 1\) e \(0\leq y\leq 4\).
A superfície é uma parte do cilindro \(x^2+z^2=4\) localizada no primeiro octante. Neste caso, como \(z=f(x,y)\), podemos tomar \(x=u\) e \(y=v\) como parâmetros. Assim, teremos que \(\displaystyle \mathbf{r}=u\mathbf{i}+v\mathbf{j}+f(u,v)\mathbf{k} \) e \[ \|\dfrac{\partial\mathbf{r}}{\partial u}\times \dfrac{\partial \mathbf{r}}{\partial v}\| = \sqrt{\left(\dfrac{\partial z}{\partial x}\right)^2+\left(\dfrac{\partial z}{\partial y}\right)^2+1}.\] Segue para a área que \begin{align*} S & = \iint\limits_R\sqrt{\left(\dfrac{\partial z}{\partial x}\right)^2+\left(\dfrac{\partial z}{\partial y}\right)^2+1}\,dA \\ & = \iint\limits_R\sqrt{\left(-\dfrac{x}{\sqrt{4-x^2}}\right)^2+ 0 + 1}\,dA = \int_0^4\int_0^1\dfrac{2}{\sqrt{4-x^2}}\,dxdy \\ & = 2\int_0^4\left[\arcsin\left(\dfrac{1}{2}x\right)\right]_{x=0}^1\,dy = 2\int_0^4\dfrac{\pi}{6}\,dy = \dfrac{4}{3}\pi. \end{align*}
A parte da superfície \[ z= \dfrac{h}{a}\sqrt{x^2+y^2}\quad\left(a,\ h>0\right) \] entre o plano \(xy\) e o plano \(z=h\) é um cone circular reto de altura \(h\) e raio \(a\). Use uma integral dupla para mostrar que a área da superfície lateral desse cone é dada por \(\displaystyle S=\pi a\sqrt{a^2+h^2}\).
Encontre a área da região descrita como sendo a parte do cone \(z=\sqrt{x^2+y^2}\) dentro do cilindro \(x^2+y^2=2x\).