LISTA DE DISCIPLINAS

Exercícios

Área de superfície

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


3108   

Encontre a área da superfície descrita como sendo a parte do cone \(z^2=4x^2+4y^2\) que está acima da região do primeiro quadrante limitada pela reta \(y=x\) e a parábola \(y=x^2\).


\( \dfrac{\sqrt{5}}{6}\)


3107   

Encontre a área da superfície descrita como sendo a parte do plano \(2x+2y+z=8\) no primeiro octante.


3156   

Seja $S$ uma superfície plana paralela ao plano $xy$. Mostre que a fórmula para o cálculo de áreas de superfícies nesse caso reduz à fórmula de integrais duplas para o cálculo de área de regiões planas.


3111   

As equações paramétricas \[\begin{array}{lll} x=u, & y=u\cos v, & z=u\sin v \end{array}\] representam o cone que resulta quando a reta \(y=x\) do plano \(xy\) é girada em torno do eixo \(x\). Determine a área de superfície da parte do cone para a qual \(0\leq u\leq 2\) e \(0\leq v\leq 2\pi\).



Sendo \(\displaystyle\{\mathbf{i},\mathbf{j},\mathbf{k}\}\) a base canônica do espaço, a superfície pode ser representada vetorialmente como \[ \mathbf{r}=u\mathbf{i}+u\cos v\mathbf{j}+u\sin v\mathbf{k} \ \  \left(0\leq u\leq 2,\ 0\leq v\leq 2\pi\right). \] Assim, teremos  \begin{align*} \dfrac{\partial\mathbf{r}}{\partial u} & = \mathbf{i} + \cos v\mathbf{j} + \sin v\mathbf{k} \\ \dfrac{\partial\mathbf{r}}{\partial v} & = - u\sin v\mathbf{j} + u\cos v\mathbf{k} \\ \dfrac{\partial\mathbf{r}}{\partial u}\times\dfrac{\partial\mathbf{r}} {\partial v} & = \left|\begin{array}{ccc} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & \cos v & \sin v \\ 0 & -u\sin v & u\cos v \end{array} \right| = u\mathbf{i} -u\cos v\mathbf{j} - u\sin v\mathbf{k} \\ \|\dfrac{\partial\mathbf{r}}{\partial u}\times \dfrac{\partial\mathbf{r}}{\partial v}\| & = \sqrt{u^2+(-u\cos v)^2+(-u\sin v)^2} = |u|\sqrt{2} = u\sqrt{2}. \end{align*} Segue, portanto, que \[ S = \iint\limits_R\|\dfrac{\partial\mathbf{r}}{\partial u}\times \dfrac{\partial\mathbf{r}}{\partial v}\|\,dA = \int_0^{2\pi}\int_0^2\sqrt{2}u\,dudv = 2\sqrt{2}\int_0^{2\pi}\,dv = 4\pi\sqrt{2}. \]


3106   

Encontre a área da superfície descrita como sendo a parte do cilindro \(y^2+z^2=9\) que está acima do retângulo \(\displaystyle R=\{(x,y)\in\mathbb{R}^2;\ 0\leq x\leq 2,\ -3\leq y\leq 3\}\).


\( 6\,\pi\)


3112   

Encontre a área da parte da superfície \(z=\sqrt{4-x^2}\) que fica acima do retângulo \(R\) do plano \(xy\) cujas coordenadas satisfazem \(0\leq x\leq 1\) e \(0\leq y\leq 4\).



A superfície é uma parte do cilindro \(x^2+z^2=4\) localizada no primeiro octante. Neste caso, como \(z=f(x,y)\), podemos tomar \(x=u\) e \(y=v\) como parâmetros. Assim, teremos que \(\displaystyle \mathbf{r}=u\mathbf{i}+v\mathbf{j}+f(u,v)\mathbf{k} \) e \[ \|\dfrac{\partial\mathbf{r}}{\partial u}\times \dfrac{\partial \mathbf{r}}{\partial v}\| = \sqrt{\left(\dfrac{\partial z}{\partial x}\right)^2+\left(\dfrac{\partial z}{\partial y}\right)^2+1}.\] Segue para a área que \begin{align*} S & = \iint\limits_R\sqrt{\left(\dfrac{\partial z}{\partial x}\right)^2+\left(\dfrac{\partial z}{\partial y}\right)^2+1}\,dA \\  & = \iint\limits_R\sqrt{\left(-\dfrac{x}{\sqrt{4-x^2}}\right)^2+ 0 + 1}\,dA = \int_0^4\int_0^1\dfrac{2}{\sqrt{4-x^2}}\,dxdy \\   & = 2\int_0^4\left[\arcsin\left(\dfrac{1}{2}x\right)\right]_{x=0}^1\,dy = 2\int_0^4\dfrac{\pi}{6}\,dy = \dfrac{4}{3}\pi. \end{align*}


3110   

A parte da superfície \[ z= \dfrac{h}{a}\sqrt{x^2+y^2}\quad\left(a,\ h>0\right) \] entre o plano \(xy\) e o plano \(z=h\) é um cone circular reto de altura \(h\) e raio \(a\). Use uma integral dupla para mostrar que a área da superfície lateral desse cone é dada por \(\displaystyle S=\pi a\sqrt{a^2+h^2}\).


3109   

Encontre a área da região descrita como sendo a parte do cone \(z=\sqrt{x^2+y^2}\) dentro do cilindro \(x^2+y^2=2x\).