Exercícios
Sobre região geral
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Uma região $R$ é mostrada na figura. Decida se você deve usar coordenadas polares ou retangulares e escreva $\iint \limits_{R}f(x,y)\,dA$ como uma integral iterada, onde $f$ é uma função qualquer contínua em $R.$
$\displaystyle \int_{-1}^{1} \int_{0}^{\frac{(x + 1)}{2}} f(x,y) dy dx .$
Esboce a região de integração e mude a ordem de integração. $\displaystyle\int_{1}^{2}\!\!\int_{0}^{\ln(x)} \! f(x,y)\,dy dx$.
Note que a região de integração é do tipo I, é dada por
$$\{(x,y) \in \mathbb{R}^2: 1 \leq x \leq 2 \mbox{ e } 0 \leq y \leq \ln(x)\}$$
e pode ser vista geometricamente como a região esboçada na figura abaixo.
Além disso, ela pode ser descrita como uma região do tipo II da seguinte forma:
$$\{(x,y) \in \mathbb{R}^2: e^y \leq x \leq 2 \mbox{ e } 0 \leq y \leq \ln{2}\}.$$
Portanto, a integral pode ser reescrita como
$\displaystyle\int_{0}^{\ln{2}}\!\!\int_{e^y}^{2} \! f(x,y)\,dx dy$.
Calcule a integral dupla.
$\displaystyle\iint\limits_{ D}x^{3}y^{2}\,dA, \quad D=\{(x,y) \in \mathbb{R}^2|\;0\leq x\leq 2,\;-x\leq y\leq x\}.$
$\displaystyle\iint\limits_{D}x\,dA, \quad D=\{(x,y) \in \mathbb{R}^2|\;0\leq x\leq \pi,\;0\leq y\leq \sin{x}\}.$
$\displaystyle\iint\limits_{D}x^{3}\,dA, \quad D=\{(x,y) \in \mathbb{R}^2|\;1\leq x\leq e,\;0\leq y\leq \ln(x)\}.$
$\displaystyle\iint\limits_{D}y^{2}e^{xy}\,dA, \quad D=\{(x,y) \in \mathbb{R}^2|\;0\leq y\leq 4,\;0\leq x\leq y\}.$
$\displaystyle\iint\limits_{D}y^{3}\,dA, \quad D$ região com vértices $(0,2)$, $(1,1)$ e $(3,2).$
$\dfrac{256}{21}.$
$\pi.$
$\dfrac{3e^{4} + 1}{16}.$
$\dfrac{e^{16} - 17}{2}.$
$\dfrac{147}{20}.$
Uma região $R$ é mostrada na figura abaixo. Decida se você deve usar coordenadas polares ou retangulares e escreva $\iint\limits_{R}f(x,y)\,dA$ como uma integral iterada, onde $f$ é uma função qualquer contínua em $R.$
$\displaystyle \int_{-1}^{1} \int_{0}^{1 - x^2} f(x,y) dy dx .$
Esboce a região de integração para a integral iterada $\displaystyle\int_{-1}^{2}\!\int_{-\sqrt{4-x^{2}}}^{4-x^{2}}f(x,y)\,dy dx$.

Considere a integral $$\int_{0}^{1}\int_{3y}^{3}e^{x^{2}}\,dx dy.$$
Esboce a região de integração.
Calcule a integral usando a ordem de integração apropriada.
(...)
$\dfrac{e^9 - 1}{6}.$
Esboce a região de integração e calcule a integral $\displaystyle\int_{1}^{\ln 8}\!\!\!\int_{0}^{\ln y}e^{x+y}\,dx dy$.
$8 \ln(8) - 16 + e.$
Inverta a ordem de integração, integrando primeiro em $y$ e depois em $x$ para calcular a integral:
$\displaystyle\int_{0}^{1}\!\!\int_{\sqrt{y}}^{1}\sqrt{x^{3}+1}\,dx dy$
$\displaystyle\int_{0}^{1}\!\!\int_{\sqrt{y}}\sin{x^{3}}\,dx dy$
$\dfrac{2(2\sqrt{2} - 1)}{9}.$
$\dfrac{2}{3} \sin^{2}\left(\dfrac{1}{2} \right).$
No cálculo de uma integral dupla sobre uma região $D$, obtivemos uma soma de integrais iteradas como a que segue:
$$\int\!\!\!\!\int\limits_{\!\!\!\!\!\! D} \! f(x,y)\,dA=\int_{0}^{1}\!\!\int_{0}^{2y} \! f(x,y)\,dx dy+\int_{1}^{3}\!\!\int_{0}^{3-y} \! f(x,y)\,dx dy.$$
Esboce a região $D$ e expresse a integral dupla como uma integral iterada com ordem de integração contrária.
$\displaystyle \int_{0}^{2}\!\!\int_{\frac{x}{2}}^{3-x} \! f(x,y)\,dx dy.$
Esboce a região de integração e mude a ordem de integração. $\displaystyle\int_{0}^{1}\!\!\int_{\arctan{x}}^{\pi/4}\!f(x,y)\,dy dx$.

Calcule $\displaystyle\iint\limits_{B}f(x,y)\,dx dy$ sendo dados:
$f(x,y)=1$ e $B$ a região compreendida entre os gráficos de $y=\sin{x}$ e $y=1-\cos{x}$, com $0\leq x\leq \dfrac{\pi}{2}.$
$f(x,y)=\sqrt{1+y^{3}}$ e $B=\{(x,y)\in \mathbb{R}^{2}|\;\sqrt{x}\leq y\leq 1 \}.$
$f(x,y)=x$ e $B$ é o conjunto de todos $(x,y)$ tais que $y\geq x^{2}$ e $x\leq y\leq x+2.$
$f(x,y)=\dfrac{y}{x+y^{2}}$ e $B$ o conjunto de todos $(x,y)$ tais que $1\leq x\leq 4$ e $0\leq y\leq \sqrt{x}.$
$2 - \dfrac{\pi}{2}.$
$\dfrac{2(2\sqrt{2} - 1)}{9}.$
$\dfrac{13}{6}.$
$\dfrac{3 \ln(2)}{2}.$
Considere a integral
$$\int_{0}^{2}\int_{\frac{y}{2}}^{1}ye^{x^{3}}\,dx dy.$$
Faça um esboço da região de integração.
Calcule a integral sendo explícito se vai precisar mudar a ordem de integração.
...
$\dfrac{2(e - 1)}{3}.$
Calcule $\displaystyle\iint\limits_{B}f(x,y)\,dx dy$ sendo dados:
$f(x,y)=x\cos{y}$ e $B=\{(x,y)\in \mathbb{R}^{2}|\;x\geq 0,\;x^{2}\leq y\leq \pi\}.$
$f(x,y)=xy$ e $B=\{(x,y)\in \mathbb{R}^{2}|\;x^{2}+y^{2}\leq 2,\;y\leq x\;e\;x\geq 0\}.$
$f(x,y)=x$ e $B$ o triângulo de vértices $(0,0)$, $(1,1)$ e $(2,0).$
$f(x,y)=xy\sqrt{x^{2}+y^{2}}$ e $B$ o retângulo $0\leq x\leq 1$, $0\leq y\leq 1.$
$f(x,y)=x+y$ e $B$ o paralelogramo de vértices $(0,0)$, $(1,1)$, $(3,1)$ e $(2,0).$
$-1.$
$-\dfrac{1}{4}$.
$1.$
$\dfrac{2(2\sqrt{2} - 1)}{15}.$
$4.$
Calcule a integral trocando a ordem de integração. $\displaystyle\int_{0}^{1}\!\!\int_{x}^{1}e^{x/y}\,dy dx$.
A região de integração é do tipo I, é dada por
$$\{(x,y) \in \mathbb{R}^2: 0 \leq x \leq 1 \mbox{ e } x \leq y \leq 1\}$$
e pode ser vista geometricamente como a região esboçada na figura abaixo.
Essa região pode ser descrita como uma região do tipo II da seguinte forma:
$$\{(x,y) \in \mathbb{R}^2: 0 \leq x \leq y \mbox{ e } 0 \leq y \leq 1\}.$$
Assim,
\begin{array}{rcl}\displaystyle\int_{0}^{1}\!\!\int_{x}^{1}e^{x/y}\,dy dx & = & \displaystyle\int_{0}^{1}\!\!\int_{0}^{y} \! e^{x/y}\,dx dy \\ & = & \displaystyle\int_{0}^{1} \! \left. ye^{x/y} \right|_{x=0}^{x=y}\,dx \\ & = & \displaystyle\int_{0}^{1} \! \left. y(e-1) \right|_{x=0}^{x=y}\,dx \\ & = & \left.(e-1) \frac{y^2}{2}\right|_{0}^{1} = \frac{e-1}{2}.\end{array}
Mostre (verifique) que as integrais abaixo podem ser calculadas como:
\[ \int_1^5\int_2^{y/2}6x^2y\,dxdy = \int_1^5\left(\dfrac{1}{4}y^4-16y\right)\,dy \]
\[ \int_1^5\int_2^{x/2}6x^2y\,dydx = \int_1^5\left(\dfrac{3}{4}x^4-12x^2\right)\,dx \]
Calcule a integral trocando a ordem de integração.
$\displaystyle\int_{0}^{4}\!\!\int_{\sqrt{x}}^{2}\dfrac{1}{y^{3}+1}\,dy dx$
$\displaystyle\int_{0}^{\pi}\!\!\int_{x}^{\pi}\dfrac{\sin{y}}{y}\,dy dx$
$\displaystyle\int_{0}^{2}\!\!\int_{x}^{2}2y^{2}\sin(xy)\,dy dx.$
$\dfrac{\ln(9)}{3}.$
$2.$
$4 - \sin(4).$
Calcule $\displaystyle\iint\limits_{B} y\,dx dy$, onde $B$ é o conjunto dado.
$B$ é o triângulo de vértices $(0,0)$, $(1,0)$ e $(1,1)$.
$B=\{(x,y)\in \mathbb{R}^{2}|\;-1\leq x\leq 1,\;0\leq y\leq x+2\}.$
$B$ é o conjunto de todos $(x,y)$ tais que $x^{2}+4y^{2}\leq 1.$
$B$ é o triângulo de vértices $(0,0)$, $(1,0)$ e $(2,1).$
$\dfrac{1}{6}$.
$\dfrac{13}{3}$.
$0$.
$\dfrac{1}{6}$.
Esboce a região de integração e calcule a integral $\displaystyle\int_{0}^{\pi}\!\!\int_{0}^{x}x\sin{y}\,dy dx$.
$\dfrac{\pi^{2}}{2} + 2.$
Esboce a região de integração para a integral iterada $\displaystyle\int_{\pi}^{2\pi}\!\!\int_{\sin{y}}^{\ln(y)}f(x,y)\,dx dy$.

Considere a integral
$$\int_{0}^{1}\!\!\int_{x^{2}}^{1}x^{3}\sin{y^{3}}\,dy dx.$$
Desenhe a região de integração.
Calcule o valor da integral.
$\dfrac{1 - \cos(1)}{12}$.
Calcule as integrais iteradas.
$\displaystyle\int_{0}^{1}\int_{0}^{x^{2}}(x+2y)\,dy dx$
$\displaystyle\int_{0}^{1}\int_{x^{2}}^{x}(1+2y)\,dy dx$
$\dfrac{9}{20}.$
$\dfrac{3}{10}.$
Calcule as integrais iteradas.
$\displaystyle\int_{0}^{\pi/2}\int_{0}^{\cos{\theta}}e^{\sin{\theta}}\,dr d\theta$
$\displaystyle\int_{0}^{1}\int_{0}^{v}\sqrt{1-v^{2}}\,du dv$
$e - 1.$
$\dfrac{1}{3}.$
Uma região $R$ é mostrada na figura abaixo. Decida se você deve usar coordenadas polares ou retangulares e escreva $\iint \limits_{ R}f(x,y)\,dA$ como uma integral iterada, onde $f$ é uma função qualquer contínua em $R.$
$\displaystyle \int_{0}^{\frac{3\pi}{2}} \int_{0}^{4} f(r\cos(\theta),r\sin(\theta)) r d r d \theta.$
Use uma integral dupla para calcular a área da região \(R\) entre a parábola \(y=\dfrac{1}{2}x^2\) e a reta \(y = 2x\).
Denotando por \(A(R)\) a área de \(R\), teremos que \begin{align*} A(R) & = \iint_R\,dA = \int_0^4\int_{x^2/2}^{2x}\,dydx = \int_0^4\left[y\right]_{y=x^2/2}^{2x}\,dx \\ & = \int_0^4\left(2x-\dfrac{1}{2}x^2\right)\,dx = \left[x^2-\dfrac{x^3}{6}\right]_0^4= \dfrac{16}{3}. \end{align*} De outra forma, fixando primeiro a variável \(y\), teríamos \begin{align*} A(R) & = \iint_R\,dA = \int_0^8\int_{y/2}^{\sqrt{2y}}\,dxdy = \int_0^8\left[x\right]_{x=y/2}^{\sqrt{2y}}\,dy \\ & = \int_0^8\left(2y-\dfrac{1}{2}y\right)\,dy = \left[\dfrac{2\sqrt{2}}{3}y^{3/2}-\dfrac{y^2}{4}\right]_0^8= \dfrac{16}{3}. \end{align*}
Ao calcular, por integração dupla, o volume $V$ do sólido situado abaixo do parabolóide $z=x^{2}+y^{2}$ e limitado inferiormente por uma certa região $D$ no plano $xy$, chegou-se à seguinte expressão: $$V=\int_{0}^{1}\!\!\int_{0}^{y}(x^{2}+y^{2})\,dx dy+\int_{1}^{2}\int_{0}^{2-y}(x^{2}+y^{2})\,dx dy.$$
Esboce a região $D.$
Expresse $V$ numa única integral dupla iterada.
Efetue a integração para calcular $V.$
...
$\displaystyle \int_{0}^{1} \int_{x}^{2 - x} x^{2} + y^{2}\;dy\; dx$
$\dfrac{4}{3}.$
Esboce a região de integração e calcule a integral $\displaystyle\int_{0}^{3}\!\!\int_{-2}^{0}(x^{2}y-2xy)\,dy dx$.
$0.$
Esboce a região de integração e mude a ordem de integração. $\displaystyle\int_{0}^{3}\!\!\int_{-\sqrt{9-y^{2}}}^{\sqrt{9-y^{2}}}f(x,y)\,dx dy$.

Calcule $\displaystyle\iint\limits_{B}f(x,y)\,dx dy$ sendo dados:
$f(x,y)=y^{3}e^{xy^{2}}$ e $B$ o retângulo $0\leq x\leq 1$, $1\leq y\leq 2.$
$f(x,y)=x^{5}\cos{y^{3}}$ e $B=\{(x,y)\in \mathbb{R}^{2}|\;y\geq x^{2},\;x^{2}+y^{2}\leq 2\}.$
$f(x,y)= x^{2}$ e $B$ o conjunto de todos $(x,y)$ tais que $x\leq y\leq -x^{2}+2x+2.$
$f(x,y)=x$ e $B$ a região compreendida entre os gráficos de $y=\cos{x}$ e $y=1-\cos{x}$, com $0\leq x\leq \dfrac{\pi}{2}.$
$\dfrac{e^{4} - e - 3}{2}.$
$0.$
$\dfrac{63}{20}.$
$\left(\dfrac{5}{72} -\dfrac{ \sqrt{3}}{18}\right)\pi^{2} + \left( \dfrac{4\sqrt{3}}{3} - 1 \right) \pi.$
Calcule $\displaystyle\iint\limits_{B}f(x,y)\,dx dy$ sendo dados:
$f(x,y)=\dfrac{1}{\ln(y)}$ e $B=\bigg\{(x,y)\in \mathbb{R}^{2}|\;2\leq y\leq 3,\;0\leq x\leq \dfrac{1}{y}\bigg\}.$
$f(x,y) = xy\cos{x^{2}}$ e $B=\{(x,y) \in \mathbb{R}^{2}| \; 0 \leq x \leq 1, \; x^{2} \leq y \leq 1\}$.
$f(x,y) = \cos(2y)\sqrt{4-\sin^{2}{x}}$ e $B$ é o triângulo de vértices $(0,0)$, $\bigg(0,\dfrac{\pi}{2}\bigg)$ e $\bigg(\dfrac{\pi}{2},\dfrac{\pi}{2}\bigg).$
$f(x,y)=x+y$ e $B$ a região compreendida entre os gráficos das funções $y=x$ e $y=e^{x}$, com $0\leq x\leq 1.$
$\ln(\ln(3)) - \ln(\ln(2)).$
$\dfrac{\sin(1) - \cos(1)}{2}$.
$\dfrac{8}{3} - \sqrt{3}.$
$\dfrac{1 + e^{2}}{4}.$
Esboce a região de integração e calcule a integral $\displaystyle\int_{1}^{2}\!\!\int_{y}^{y^{2}} \,dx dy$.
$\frac{5}{6}.$
Esboce a região de integração e calcule a integral $\displaystyle\int_{0}^{3}\!\!\int_{0}^{2}(4-y^{2})\,dy dx$.
$16.$
Esboce a região de integração para a integral iterada $\displaystyle\int_{0}^{1}\!\!\int_{\sqrt{y}}^{3\sqrt{y}}f(x,y)\,dx dy$.

Esboce o sólido cujo volume é dado pela integral iterada
$$\int_{0}^{1}\!\!\int_{0}^{1-x}(1-x-y)\,dy dx.$$

Esboce a região de integração e calcule a integral $\displaystyle\int_{\pi}^{2\pi}\!\!\int_{0}^{\pi}(\sin{x}+\cos{y})\,dx dy$.
$2\pi.$
Calcule $\displaystyle\iint\limits_{B} y\,dx dy$, onde $B$ é o conjunto dado.
$B$ é a região compreendida entre os gráficos de $y=x$ e $y=x^{2}$, com $0\leq x\leq 2.$
$B$ é o paralelogramo de vértices $(-1,0)$, $(0,0)$, $(1,1)$ e $(0,1).$
$B$ é o semicírculo $x^{2}+y^{2}\leq 4$, $y\geq 0.$
$B=\{(x,y)\in \mathbb{R}^{2}|\;x\geq 0,\;x^{5}-x\leq y \leq 0\}.$
$2$.
$\dfrac{1}{2}$.
$\dfrac{16}{3}$.
$-\dfrac{16}{231}$.
A reta \(y=2-x\) intersecta a parábola \(y=x^2\) nos pontos \((-2,4)\) e \((1,1)\). Mostre que, se \(R\) denotar a região englobada por \(y=2-x\) e \(y=x^2\), então \[ \iint_R\left(1+2y\right)\,dA = \int_{-2}^1\int_{x^2}^{2-x}\left(1+2y\right)\,dydx = 18,9 \]
Uma região $R$ é mostrada na figura abaixo. Decida se você deve usar coordenadas polares ou retangulares e escreva $\iint \limits_{R}f(x,y)\,dA$ como uma integral iterada, onde $f$ é uma função qualquer contínua em $R.$
$\displaystyle \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \int_{3}^{6} f(r\cos(\theta),r\sin(\theta)) r d r d \theta.$
Calcule a integral dupla.
$\displaystyle\iint\limits_{D}(2x-y)\,dA, \quad D$ limitada pelo círculo de centro na origem e raio 2.
$\displaystyle\iint\limits_{D}\dfrac{x}{y}\,dA, \quad D$ região no primeiro quadrante limitada pelas retas $y=x$, $y=2x$, $x=1$ e $x=2.$
$\displaystyle\iint\limits_{D}\dfrac{1}{xy}\,dA, \quad D$ o quadrado $1\leq x\leq 2$, \;$1\leq y\leq 2.$
$\displaystyle\iint\limits_{D}(x-\sqrt{y})\,dA, \quad D$ região triangular cortado do primeiro quadrante do plano $xy$ pela reta $x+y=1.$
$0.$
$\dfrac{3\ln(2)}{2}.$
$(\ln(2))^{2}.$
$-\dfrac{1}{10}.$
Escreva a integral dupla $$\iint\limits_{R}x\cos{y}\;dA,$$ onde $R$ é limitada pelas retas $y=0$, $x=\pi/4$ e $y=x$, das duas formas possíveis (mudando a ordem de integração). Escolha uma dessas formas e calcule o valor dessa integral.
$\displaystyle \int_{0}^{\pi/4} \int_{0}^{x} x \cos(y)\;dy\;dx = \int_{0}^{\pi/4} \int_{y}^{\pi / 4} x \cos(y)\;dx\;dy = -\frac{\pi - 4}{4\sqrt{2}}.$
Calcule $\int_{0}^{1}\!\int_{x}^{1}3y^{4}\cos(xy^{2})\,dy dx$. Esboce a região de integração.
$1 - \cos(1).$
Seja \(R\) a região triangular de vértices \((0,0)\), \((3,3)\) e \((0,4)\) do plano \(xy\). Expressa como uma integral dupla, qual é área de \(R\)?
\(\displaystyle A(R)=\int_0^3\int_x^{-\frac{1}{3}x+4}\,dydx \)
Esboce a região de integração e mude a ordem de integração. $\displaystyle\int_{0}^{4}\!\!\int_{0}^{\sqrt{x}} \! f(x,y)\,dy dx$.
