Exercícios
MA141 - Geometria Analítica
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Os extremos de uma corda elástica com um nó em $K(x,y)$ são presos a um ponto fixo $A(a,b)$ e um ponto $P$ sobre a borda de um pneu de raio $r$ centrado em $(0,0)$. Conforme o pneu gira, $K$ traça uma curva $C$. Encontre a equação desta curva. Assuma que a corda permanece presa e estica uniformemente (ou seja, a razão $\alpha:=|KP|/|AP|$ é constante).
Sejam $u$ e $v$ dois vetores de comprimentos iguais. Mostre que para quaisquer números $a$ e $b$, os vetores $au+bv$ e $av+bu$ têm o mesmo comprimento. Interprete o resultado.
Resolver o sistema linear:
\[ \left\{\begin{array}{rrrrl}x&+5y&+4z&-13z&=3\\3x&-y&+2z&+5t &=2\\2x&+2y&+3z&-4t&=1\end{array}\right. .\]
Esse sistema linear não possui solução.
Reduza a equação $3x^2 + 2y^2 + 3z^2 - 2xz - 4y = 6$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
A equação da quádrica $3x^2 + 2y^2 + 3z^2 - 2xz - 4y = 6$ pode ser escrita em forma matricial:
$$X^tAX+KX-6=0,$$
onde:
$$X=\begin{pmatrix}x \\ y \\ z\end{pmatrix}, \ K=\begin{pmatrix}0 & -4 & 0\end{pmatrix}, \ A=\begin{pmatrix}3 & 0 & -1 \\0 & 2 & 0 \\-1 & 0 & 3\end{pmatrix}. $$
Seja:
$$P(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix}3-\lambda & 0 & -1 \\0 & 2-\lambda & 0 \\-1 & 0 & 3-\lambda\end{pmatrix}=-\lambda^3+8\lambda^2-20\lambda+16.$$
As raízes de $P(\lambda)$ são $2$ e $4$, sendo $2$ uma raiz dupla. Considere o sistema linear referente à raiz $2$: $(A-2I) X = 0$. Duas soluções de norma unitária desse sistema são $U_1=(1/\sqrt{2},0,1/\sqrt{2})$ e $U_2=(0,1,0)$. Sejam $U_3=U_1 \times U_2 = (-1/\sqrt{2},0,1/\sqrt{2})$, $Q=(U_1,U_2,U_3)$ e $X'=\begin{pmatrix}x' \\ y' \\ z'\end{pmatrix}.$ Dessa forma, com a mudança de coordenadas dada por $X=QX'$, a equação $3x^2 + 2y^2 + 3z^2 - 2xz - 4y = 6$ se transforma em:
$$\dfrac{(x')^2}{4}+\dfrac{(y'-1)^2}{4}+\dfrac{(z')^2}{2}=1,$$
que é a equação de um elipsóide.
Reduza a equação $7x^2 + 7y^2 + 10z^2 - 2xy - 4xz + 4yz - 12x + 12y + 60z = 24$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Sejam $\vec{u}=(2,1,3)$, $\vec{v}=(0,1,-1)$ e $\vec{w}=(4,5,3)$ vetores do espaço.
Calcule $\vec{u}+\vec{v} $ e $\vec{u}-2\vec{v}+3\vec{w}$.
Determine $a$ e $b$ tais que $\vec{w}=a\vec{u}+b\vec{v}$.
- $\vec{u}+\vec{v}=(2,1,2) $ e $\vec{u}-2\vec{v}+3\vec{w}=(14,14,14)$.
- $a=2$ e $b=3$.
Examine o sistema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[\left\{\begin{array}{ccccccr}2x_1&+&5x_2&+&12x_3&=& 6 \\3x_1&+&x_2&+&5x_3&=& 12 \\5x_1&+&8x_2&+&21x_3&=& 17\\\end{array}\right. .\]
Esse sistema linear não possui solução.
Construa a curva cujas equações paramétricas são dadas por: $x=t+2$, $y=2t-4$ e $z=1-t$.
Na equação $4x^2-20xy+25y^2-15x-6y=0$, elimine, por meio de uma rotação, o termo $xy$. Identifique o conjunto solução e nos casos em que for uma cônica encontre as coordenadas, no sistema inicial, do(s) foco(s) e esboce o gráfico.
Identifique a seguinte cônica, determinando sua excentricidade, sua equação cartesiana, a equação cartesiana da diretriz e as coordenadas cartesianas do(s) foco(s) e do(s) vértice(s): $r=\frac{6}{3+sen\theta}$.
Mostre que o segmento de reta que liga um vértice de um paralelogramo ao ponto médio de um dos lados opostos trissecta a diagonal (isto é, intercepta a diagonal em um ponto que a divide em dois segmentos, um tendo um terço do comprimento da diagonal e o outro tendo dois terços do comprimento da diagonal).
Encontre a distância entre o plano $\pi: 2x+2y-z=6$ e o ponto $P=(2,2,-4)$.
Vamos utilizar o conceito de distância dado na referência R. J. Santos-Matrizes, Vetores e Geometria Analítica. Neste caso, precisamos tomar um ponto (arbitrário) sobre o plano. Vamos tomar $P_1=(3,0,0)$ em $\pi$. Assim, sendo $N=(2,2,-1)$ a normal ao plano, $$ d(P,\pi)=\|\mathrm{proj}_N\vec{P_1P}\|=2.$$
Considere as retas $r$ e $r^{\prime}$ dadas por:
$r$: $x=0$, $y=2+t$ e $z=1+t$ $r^{\prime}$: $ x-2=z+1$ e $y=3$.
- Mostre que $r$ e $r^{\prime}$ são reversas.
- Encontre dois planos paralelos $\pi$ e $\alpha$ tais que $r\subset \pi$ e $r^{\prime}\subset \alpha$. Pergunta: Podem existir outros planos com as propriedades de $\pi$ e $\alpha$?
- Encontre a distância entre os planos $\pi$ e $\alpha$ do item anterior.
- Encontre $P$ em $r$ e $Q$ em $r^{\prime}$ tais que a reta que passa por $P$ e $Q$ seja perpendicular a $r$ e $r^{\prime}$.
Determinar a equação reduzida da hipérbole com assíntotas $3y=\pm 2x $ e vértices $(\pm 10,0).$
Dados os dois pontos $A=(x_1,y_1,z_1)$ e $B=(x_2,y_2,z_2)$, mostre que o lugar geométrico dos pontos do espaço que equidistam de $A$ e $B$ é um plano que passa pelo ponto médio do segmento $AB$ e é perpendicular à reta que contém $A$ e $B$.
Um próton é lançado ao longo da reta $y = \frac{1}{2} x$ em direção ao núcleo de um átomo localizado na origem. Se o próton é defletido em direção à linha $y = -\frac{1}{2} x$, ao longo de um trecho de hipérbole, dê a equação para a trajetória do próton.
Identifique a quádrica definida pela equação reduzida $3x^2+y^2-2z^2=1$ e esboce seu gráfico.
Sejam $F_{1}$ e $F_{2}$ dois pontos fixos do plano que distam $8$ unidades um do outro. Ou seja, $\text{dist}(F_{1},F_{2}) = 8$.
Encontre a equação do lugar geométrico dos pontos $P$ desse plano que satisfazem a condição:
\[ \text{dist}(P,F_{1}) + \text{dist}(P,F_{2}) = 10,\]
em cada um dos seguintes casos:
$F_{1} = (-c,0)$ e $F_{2} = (c,0)$, onde as coordenadas foram tomadas em relação ao sistema $xy$ da Figura 1 acima, e cada ponto $P$ tem coordenadas $(x,y)$ tomadas em relação a $\textbf{o}$.
$F_{1} = (-5,2)$ e $F_{2} = (3,2)$, onde as coordenadas foram tomadas em relação ao sistema $XY$ da Figura 2 acima, e cada ponto $P$ tem coordenadas $(X,Y)$ tomadas em relação a $\textbf{O}$.
$F_{1}$ e $F_{2}$ estão sobre o eixo $X$ do sistema $XY$ da Figura 2 acima, são simétricos em relação ao eixo $Y$, e cada ponto $P$ tem coordenadas $(x,y)$ tomadas em relação a $\textbf{o}$.
Usando a propriedade de que podemos trocar os sinais $\times$ e $\cdot$ em um produto misto, mais a fórmula do produto vetorial triplo: $$A\times(B\times C) = (A\cdot C)B - (A\cdot B)C,$$ mostre que $$(A\times B)\cdot (C\times D) = \det\left(\begin{array}{cc}A\cdot C & A\cdot D \\B\cdot C & B\cdot D \\\end{array}\right).$$
Determine, se existir, os valores de $x$ para que o vetor $\textbf{v}=x\vec{i}+6\vec{k}$ seja paralelo ao produto vetorial de $\textbf{w}=\vec{i}+x\vec{j}+2\vec{k}$ por $\textbf{u}=2\vec{i}+\vec{j}+2\vec{k}$.
Na equação $9x^2-4xy+6y^2=30$, elimine, por meio de uma rotação, o termo $xy$. Identifique o conjunto solução e nos casos em que for uma cônica encontre as coordenadas, no sistema inicial, do(s) foco(s) e esboce o gráfico.
Ache os dois vetores no plano $xy$ perpendiculares a $4\vec{i}-3\vec{j}$ e de tamanho $10$.
$\pm (6\vec{i}+8\vec{j})$.
Um navio ao mar está no ponto $A$ que está localizado a $60^\circ$ de longitude oeste e $40^\circ$ de latitude norte. O navio viaja ao ponto $B$ que está a $40^\circ$ de longitude oeste e $20^\circ$ de latitude norte. Supondo que a Terra seja uma esfera com raio de $6370$ Km, determine a menor distância que o navio pode pode viajar indo de $A$ para $B$, dado que a menor distância entre os dois pontos sobre uma esfera está ao longo do arco do círculo máximo que une os pontos. [Sugestão: usando o sistema de coordenadas esféricas, considere o ângulo entre os vetores do centro da Terra aos pontos $A$ e $B$. Se o termo "círculo máximo" lhe for estranho, consulte um dicionário.]
Considere a curva no espaço descrita pela espiral $S(t) = \left( \frac{\cos(t)}{\sqrt{1 + t^2}}, \frac{\sin(t)}{\sqrt{1 + t^2}}, \frac{t}{\sqrt{1 + t^2}} \right)$. Qual a relação entre esta curva e a hélice cilíndrica $H(t) = (\cos(t), \sin(t), t)$? Esboce a imagem de $S$. Compare o movimento de uma partícula $p$ ao longo de $S$ com o movimento de uma outra partícula ao longo de $H$.
Quais são os cossenos diretores da reta no plano $xy$ que faz $45^\circ$ com a origem?
$1/\sqrt{2},1/\sqrt{2},0$.
Resolva a equação $f(x)=0$, onde $f(x)=\det(A-xI)$ e
$
A = \begin{pmatrix}
-2&2&-2\\2&1&-4\\ -2&-4&1
\end{pmatrix}.
$
$x_1=-3$, $x_2=-3$, $x_3=6$.
Determine o plano que passa pelos pontos $P=(1,1,-1)$ e $Q=(2,1,1)$ e que dista $1$ da reta $r=\{ (1,0,2)+t(1,0,2),t\in\mathbb{R}\}$.
A hipérbole $\ell$ tem focos $F_1$ e $F_2$ e vértices $A_1$ e $A_2$. Encontrar equações paramétricas de $\ell$ se
$F_1=(2,0)$, $F_2=(8,0)$, $A_1=(3,0)$, $A_2=(7,0)$;
$F_1=(0,0)$, $F_2=(4,8)$, $A_1=(1,2)$, $A_2=(3,6)$.
Considere os planos $\alpha : x - y + z - 3=0$ e $\beta: 2m^{2}x - (m+1)y + 2z=0$.
- Determine $m$ para que os planos $\alpha$ e $\beta$ possam ser paralelos, concorrentes, e concorrentes ortogonais (Um $m$ para cada caso, se for possível).
- Para $m=-1$ encontre a equação da reta interseção entre $\alpha$ e $\beta$.
Resolva a equação $f(x)=0$, onde $f(x)=\det(A-xI)$ e
$
A = \begin{pmatrix}
2&-2&0\\ -2&3&-2\\
0&-2&4
\end{pmatrix}.
$
\(x=0\), \(x=3\) e \(x=6\)
Sejam $u=(-1,1,1)$ e $v=(2,0,1)$ dois vetores. Encontre os vetores $w$ que são paralelos ao plano determinado por $O$, $u$ e $v$, perpendiculares a $v$ e tais que $u\cdot w=7$.
Os vetores $\vec{w}$ são da forma:
$\vec{w}=\left(-\frac{7}{3},\frac{14}{3},0\right)^T+\lambda\left(1/3,-2/3,1\right)^T$, $\lambda\in\mathbb{R}$
Resolva a equação $f(x)=0$, onde $f(x)=\det(A-xI)$ e
$
A = \begin{pmatrix}
0&0&1\\ 0&1&0\\ 1&0&0
\end{pmatrix}.
$
$x_1=-1$, $x_2=1$, $x_3=1$.
Sejam a reta $r: \ x-1=y=z$ e os pontos $A(1,1,1)$ e $B(0,0,1)$. Encontre o ponto de $r$ que é equidistante de $A$ e $B$.
Use o processo de inversão (Gauss-Jordan) para obter a inversa da matriz $A$ e verifique que a matriz obtida é de fato a inversa de $A$, onde: $$ A = \begin{bmatrix} 6 & 4 & 3 & 0 \\ 1 & 1 & 0 & 0 \\ -3 & -2 & -1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$
Sejam $a_{1},\, a_{2},\,a_{3},\,b_{1},\, b_{2},\,b_{3}$ seis números reais quaisquer. Demonstre a desigualdade de Cauchy-Schwarz: \[ (a_{1}b_{1} + a_{2}b_{2} + a_{3}b_{3})^{2} \le (a_{1}^{2}+a_{2}^{2}+a_{3}^{2}) (b_{1}^{2}+b_{2}^{2}+b_{3}^{2}). \]
Considere a reta $r=\{(x,y):2x-3y=1\}\subset\mathbb{R}^2$. Seja $B$ a base formada pelos vetores $(3,2)$ e $(1,0)$ e $x^{\prime}$ e $y^{\prime}$ coordenadas definidas em $\mathbb{R}^2$ pela origem usual e pela base $B$. Ache a equação de $r$ nas coordenadas $x^{\prime}$ e $y^{\prime}$.
Reduza a equação $2x^2+y^2+2z^2+2xy-2yz=1 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Mostre que o segmento que une os pontos médios de 2 lados de um triângulo é paralelo ao terceiro lado e é igual a sua metade.
$\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CN}=\frac{1}{2}\overrightarrow{AC}+\frac{1}{2}\overrightarrow{CB}=\frac{1}{2}\left(
\overrightarrow{AC}+\overrightarrow{CB}\right) =\frac{1}{2}\overrightarrow{AB}.$
Logo, $MN//AB$ e $\left\Vert \overrightarrow{MN}\right\Vert =\left\Vert\overrightarrow{AB}\right\Vert /2.$
Determine a reta $t$, contida no plano $\pi : x-y+z=0$, e que é concorrente com as retas
$$\begin{cases} x+2y+2z=2\\ x=y \end{cases}\ \ \ {\rm e}\ \ \ \begin{cases} z=x+2\\ y=0 \end{cases}$$
Usando escalonamento, podemos ver que a primeira reta irá intersectar o plano $\pi$ no ponto $A=(2/3,2/3,0)$. Da mesma forma, a segunda reta irá intersectar $\pi$ no ponto $B=(-1,0,1)$. Assim, $t$ será a reta contida em $\pi$ e que passa por $A$ e $B$. Ou seja, tomando $B-A=(-5/3,-2/3,1)$ como vetor diretor, então podemos escrever $t$ na forma vetorial como $$ t: (2/3,2/3,0)+s(-5/3,-2/3,1),\quad s\in\mathbb{R}, $$ ou ainda, em termos de componentes, $$\begin{cases} x=\frac{2}{3}-s\frac{5}{3}, \\ y=\frac{2}{3}-s\frac{2}{3},\\ s,\quad s\in\mathbb{R}.\end{cases}$$
Estude o ângulo entre os vetores $\vec{i}$ e $\vec{j}$ no plano. Faça o mesmo no $\mathbb{R}^{3}$ em relação a $\vec{i}$, $\vec{j}$ e $\vec{k}$.
Escrevendo os vetores $u = x\vec{i} + y\vec{j}$ e $v = a\vec{i} + b\vec{j}$, verifique que $\langle u,v\rangle = xa\langle\vec{i},\vec{i}\rangle + yb\langle\vec{j},\vec{j}\rangle$. Faça um estudo semelhante no espaço $\mathbb{R}^{3}$.
Qual a distância de um ponto $(x,y)$ ao ponto $(c,0)$?
Qual a distância de um ponto $(x,y)$ ao ponto $(-c,0)$?
Use sua resposta anterior para obter a equação de uma elipse com focos $(c,0)$ e $(-c,0)$.
Simplifique sua equação o máximo possível. Isso exigirá certa manipulação algébrica mas, ao final, podemos obter uma forma simplificada para elipses deste tipo.
Quais são as intersecções desta elipse com os eixos $x$ e $y$?
Como muda a sua equação se os focos forem $(0,c)$ e $(0,-c)$?
Determine a extremidade ou a origem do segmento orientado quando o mesmo: representa o vetor $v=(-1,0,1)$ e sua origem é o ponto médio entre os pontos $P_1=(1,1,3)$ e $P_2=(-1,1,1)$.
$(-1,1,3)$
Reduza a equação $x^2 - y^2 + z^2 + 2xz - 2y + 1 = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
A equação da quádrica $x^2 - y^2 + z^2 + 2xz - 2y + 1 = 0$ pode ser escrita em forma matricial:
$$X^tAX+KX-6=0,$$
onde:
$$X=\begin{pmatrix}x \\ y \\ z\end{pmatrix}, \ K=\begin{pmatrix}0 & -2 & 0\end{pmatrix}, \ A=\begin{pmatrix}1 & 0 & 1 \\0 & -1 & 0 \\1 & 0 & 1\end{pmatrix}. $$
Seja:
$$P(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix}1-\lambda & 0 & 1 \\0 & -1-\lambda & 0 \\1 & 0 & 1-\lambda\end{pmatrix}=-\lambda^3+\lambda^2+2\lambda.$$
As raízes de $P(\lambda)$ são $0$, $2$ e $-1$. Considere os sistemas lineares referentes às raízes $0$ e $2$: $A X = 0$ e $(A-2I)=0$. Uma solução de norma unitária desses sistemas são $U_1=(1/\sqrt{2},0,-1/\sqrt{2})$ e $U_2=(1/\sqrt{2},0,-1/\sqrt{2})$, respectivamente. Sejam $U_3=U_1 \times U_2 = (0,-1,0)$, $Q=(U_1,U_2,U_3)$ e $X'=\begin{pmatrix}x' \\ y' \\ z'\end{pmatrix}.$ Dessa forma, com a mudança de coordenadas dada por $X=QX'$, a equação $x^2 - y^2 + z^2 + 2xz - 2y + 1 = 0$ se transforma em:
$$\dfrac{(z'-1)^2}{2}-(y')2=1,$$
que é a equação de um cilindro hiperbólico.
Encontre uma equação em coordenadas cartesianas para a superfície cuja equação em coordenadas esféricas é dada por $r=9\sec\phi$.
Usando a definição, a equação dada fica: $\displaystyle x^2+y^2+z^2=\frac{81}{x^2}(x^2+y^2).$
Examine o sitema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[ \left\{\begin{array}{rrrrl}x&+5y&+4z&-13z&=3\\3x&-y&+2z&+5t &=2\\2x&+2y&+3z&-4t&=1\end{array}\right. .\]
Esse sistema linear não possui solução.
Reduza a equação $45x^2 + 54y^2 + 63z^2 - 36xy + 36yz - 24x - 24y + 6z + 1 = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
A equação da quádrica $45x^2 + 54y^2 + 63z^2 - 36xy + 36yz - 24x - 24y + 6z + 1 = 0$ pode ser escrita em forma matricial:
$$X^tAX+KX+1=0,$$
onde:
$$X=\begin{pmatrix}x \\ y \\ z\end{pmatrix}, \ K=\begin{pmatrix}-24 & -24 & 6\end{pmatrix}, \ A=\begin{pmatrix}45 & -18 & 0 \\-18 & 54 & 18 \\0 & 18 & 63\end{pmatrix}. $$
Seja:
$$P(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix}45-\lambda & -18 & 0 \\-18 & 54-\lambda & 18 \\0 & 18 & 63-\lambda\end{pmatrix}=-\lambda^3+162\lambda^2+-8019\lambda +118098.$$
As raízes de $P(\lambda)$ são $27$, $54$ e $81$. Considere os sistemas lineares referentes às raízes $27$ e $54$: $(A-27I) X = 0$ e $(A-54I)=0$. Uma solução de norma unitária desses sistemas são $U_1=(-2/3,-2/3,1/3)$ e $U_2=(-2/3,1/3,-2/3)$, respectivamente. Sejam $U_3=U_1 \times U_2 = (1/3,-2/3,-2/3)$, $Q=(U_1,U_2,U_3)$ e $X'=\begin{pmatrix}x' \\ y' \\ z'\end{pmatrix}.$ Dessa forma, com a mudança de coordenadas dada por $X=QX'$, a equação $45x^2 + 54y^2 + 63z^2 - 36xy + 36yz - 24x - 24y + 6z + 1 = 0$ se transforma em:
$$\dfrac{(x'+17/27)^2}{796/2187}+\dfrac{(y'+1/27)^2}{796/4374}+\dfrac{(z'+2/81)^2}{796/6561}=1,$$
que é a equação de um elipsóide.
Verifique se as matrizes abaixo estão na forma escalonada. Usando operações de linha equivalência escalone as (encontre a forma escalonada das) que não estiverem na forma escalonada.
- $ \begin{pmatrix}1&-2&-1&0\\1&\phantom{-}0&-1&1\\0&\phantom{-}1&\phantom{-}0&2\end{pmatrix}, $
- $ \begin{pmatrix}1&0&0&5&0\\0&1&0&2&0\\0&0&1&1&0\\0&0&0&0&1\end{pmatrix}. $
Resolver o sistema linear:
\[\left\{\begin{array}{rrrrl}4x&+3y&-z&+t&=4\\x&-y&+2z&-t&=0\\5x&+2y&+z&&=4\end{array}\right. . \]
$z = 4 - 5 x - 2 y, t = 8 - 9 x - 5 y, \forall x, y \in \mathbb{R}$.
Qual é o vetor unitário na direção de $\vec{r}=x\vec{i}+y\vec{j}+z\vec{k}$?
$\dfrac{x\vec{i}+y\vec{j}+z\vec{k}}{\sqrt{x^2+y^2+z^2}}$.
Se de um ponto qualquer $R$ dentro de um paralelogramo $ABCD$ são traçados segmentos de reta paralelos aos lados, são formados quatro novos paralelogramos (isto é, o paralelogramo original é a união destes quatro paralelogramos menores). Mostre que as diagonais de quaisquer dois destes paralelogramos (que não sejam as diagonais que se interceptam no ponto $R$) se interceptam na reta suporte de uma das diagonais do paralelogramo original.
Encontre uma equação em coordenadas cilíndricas para a superfície cuja equação em coordenadas cartesianas é dada por $x^2+y^2+z^2=9z$.
Mostre que um sistema linear homogêneo de $m$ equações e $n$ incógnitas sempre tem soluções não triviais se $m < n$.
Decida se a cônica $C$ determinada pela equação $\displaystyle 4x^2-4x+9y^2-18y=26$ é degenerada ou não. Se não for degenerada, encontre os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.
Suponha que uma partícula $p$ tenha trajetória descrita pela curva $C(t) = (\cos(t), \sin(t), 0).$ Ou seja, $p$ se move ao longo de um círculo no plano $xy$. Seja $\epsilon >0$ um número real (pequeno). Podemos perturbar o movimento de $p$, no instante $t$, empurrando-a um pouco em alguma outra direção. Dada a curva $D(t) = \left(\cos\left(\frac{3}{2}t\right)\cos\left(t\right), \cos\left(\frac{3}{2}t\right)\sin\left(t\right), \sin\left(\frac{3}{2}t\right)\right)$, considere a nova trajetória "perturbada" $E(t) = C(t) + \epsilon D(t)$. Esboce $E(t)$ com $\epsilon = 1/4$ e com $t$ em radianos. Como muda a imagem (traço) da curva se trocarmos o fator $\frac{3}{2}$ por outro número, digamos, $\frac{5}{3}$ ou $\frac{8}{5}$? E se o coeficiente for irracional?
- Mostre que, em um sistema de coordenadas polares, a distância $d$ entre os pontos $(r_1,\theta_1)$ e $(r_2,\theta_2)$ é dada por
$$ d=\sqrt{r_1^2+r_2^2-2r_1r_2\cos(\theta_1-\theta_2)}. $$ - Mostre que, se $0\leq \theta_1 < \theta_2 \leq \pi$ e se $r_1$ e $r_2$ forem positivos, então a área $A$ do triângulo com vértices $(0,0)$, $(r_1,\theta_1)$ e $(r_2,\theta_2)$ é dada por
$$ A= \dfrac{1}{2}r_1r_2\sin(\theta_2-\theta_1). $$ - Encontre a distância entre os focos cujas coordenadas polares são $(3,\pi/6)$ e $(2,\pi/3)$.
- Encontre a área do triângulo cujos vértices em coordenadas polares são $(0,0)$, $(1,5\pi/6)$ e $(2,\pi/3)$.
Encontre a equação do plano $\pi$ que passa pelos pontos $A=(0,0,2)$, $B=(2,4,1)$ e $C=(-2,3,3)$
$\pi:7x+14z=28$
Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+2y^2-4xy+y-1=0$.
Ache o ângulo entre duas retas no espaço que passam pela origem, no primeiro octante, sendo uma delas com ângulos diretores tais que $\cos\alpha_1=1/2$, $\cos\beta_1=\sqrt{3}/2$; e a outra com ângulos diretores tais que $\cos \alpha_2=\dfrac{\sqrt{3}+1}{2\sqrt{2}}$ e $\cos\beta_2=\dfrac{\sqrt{3}-1}{2\sqrt{2}}$ (Sugestão: cada par de retas forma um plano que contém um dos eixos coordenados -- por quê?).
$45^\circ$.
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}1 & 0 & 0 \\ 0 & 5 & 0 \\0 & 0 & 6\end{pmatrix}.\]
\[\begin{pmatrix}1 & 0 & 0 \\ 0 & 1/5 & 0 \\0 & 0 & 1/6\end{pmatrix}.\]
Mostre que o plano tangente à esfera $x^2+y^2+z^2=r^2$ no ponto $(a,b,c)$ tem equação $ax+by+cz=r^2$.
Identifique a seguinte cônica, determinando sua excentricidade, sua equação cartesiana, a equação cartesiana da diretriz e as coordenadas cartesianas do(s) foco(s) e do(s) vértice(s): $r=\frac{4}{2-3cos\theta}$.
Resolva a equação $f(x)=0$, onde $f(x)=\det(A-xI)$ e
$
A = \begin{pmatrix}
0&1&0\\ 1&0&0\\ 0&0&1
\end{pmatrix}.
$
As raízes são: \(x=-1\) (simples) e \(x=1\) (dupla).
Determinar as equações paramétricas e representar graficamente a reta que passa por $A(2,2,4)$ e é perpendicular ao plano $xOz$.
$r:(x,y,z)=(2,2+t,4);$
Determine a extremidade ou a origem do segmento orientado quando o mesmo: representa o vetor $v=(1,1,1)$ e sua extremidade é o ponto $P=(1,1,1)$.
$(0,0,0)$.
Se $(4,5)$ divide internamente um segmento de reta na razão $3:2$ e uma extremidade é $(-1,2)$, ache a outra extremidade.
$(22/3,7)$, $(23/2,19/2)$ (duas respostas internas).
Um construtor tem contratos para construir 3 estilos de casa: moderno, mediterrâneo e colonial. A quantidade de material empregada em cada tipo de casa é dada pela tabela:
\[
\begin{array}{lccccc}
& \text{Ferro} & \text{Madeira} & \text{Vidro} &
\text{Tinta} & \text{Tijolo}\\
\text{Moderno} & 5 & 20 & 16 & 7 & 17\\
\text{Mediterrâneo} & 7 & 18 & 12 & 9 & 21\\
\text{Colonial} & 6 & 25 & 8 & 5 & 13
\end{array}
\]
Se ele pretende construir 5, 7 e 12 casas dos tipos moderno, mediterrâneo e colonial, respectivamente, quantas unidades de cada material serão empregadas?
Suponha que os preços por unidade de ferro, madeira, vidro, tinta e tijolo sejam, respectivamente, 15, 8, 5, 1 e 10. Qual é o preço unitário de cada tipo de casa?
Qual e o custo total do material empregado?
- As quantidades de ferro, madeira, vidro, tinta e tijolo serão 146, 526, 260,158 e 388, respectivamente.
- O preço unitário dos tipos moderno, mediterrâneo e colonial serão 492, 528 e 465, respectivamente.
- O custo total do material empregado para construir 5 casas do estilo moderno, 7 casas do estilo mediterrâneo e 12 casas do estilo colonial é 11736.
Reduza a equação $x^2+y^2+4z^2-2xy-4xz+6x+12y+18z=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Reduza a equação $3x^2-3y^2-5z^2-2xy-6xz-6yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Para o par de retas $r$ e $r^{\prime}$ abaixo encontre o ponto de interseção, $r\cap r^{\prime}$, se existir. E nos casos em que a interseção é vazia decida se elas são paralelas ou reversas.
$r:$ $(x,y,z) = (-1,-4,2) + t(2,-5,3)$ e
$r^{\prime}:$ $\frac{x-3}{2}=\frac{y+14}{5}=\frac{z-8}{-3} .$
Usando escalonamento, podemos verificar que a intersecção ocorre em $t=2$ e, logo, corresponde ao ponto $r\cap r'=(3,-14,8)$.
Obtenha a equação do lugar geométrico dos pontos que equidistam do plano $\pi: x=2$ e do ponto $P=(-2,0,0)$. Que conjunto é este?
Decida se a cônica $C$ determinada pela equação $x^2+3xy+y^2=2$ é degenerada ou não. Se não for degenerada, encontre os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.
Classifique a superfície $\displaystyle \dfrac{x^2}{36}+\dfrac{y^2}{25}+z^2=1$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Sejam
\[A=\left(\begin{array}[c]{rrr}1 & 2 & 3\\2 & 1 & -1
\end{array}\right) \text{, }B=\left(\begin{array}[c]{rrr}-2 & 0 & 1\\3 & 0 & 1
\end{array}\right) \text{, }C=\left(\begin{array}[c]{r}-1\\2\\4\end{array}\right) \text{ e }D=\left(\begin{array}[c]{cc}2 & -1\end{array}\right) .\]
Encontre:
- $A+B$;
- $AC$;
- $BC$;
- $CD$;
- $DA$;
- $DB$;
- $-A$;
- $-D$.
\[A+B=\left(\begin{array}{ccc} -1 & 2 & 4 \\ 5 & 1 & 0 \end{array}\right);\]
\[AC=\left(\begin{array}{c} 15 \\ -4 \end{array}\right);\]
\[ BC=\left(\begin{array}{c} 6 \\ 1 \end{array}\right);\]
\[CD = \left(\begin{array}{cc} -2 & 1 \\ 4 & -2 \\ 8 & -4 \end{array}\right);\]
\[DA = \left(\begin{array}{ccc} 0 & 3 & 7 \end{array}\right);\]
\[ DB =\left(\begin{array}{ccc} -7 & 0 & 1 \end{array}\right);\]
\[ -A = \left(\begin{array}{ccc} -1 & -2 & -3 \\ -2 & -1 & 1 \end{array}\right);\]
\[ -D = \left(\begin{array}{cc} -2 & 1 \end{array}\right).\]
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$.
\[\left\{\begin{array}{ccccccccccr}&&x_1&+&x_2&-&x_3&+&2x_4&=&6 \\&-&x_1&+&x_2&+&4x_3&-&3x_4&=&-2 \\&&&&x_2&+&3x_3&+&x_4&=& 5 \\&&&&x_1&+&5x_2&+&5x_3& =&14 \\\end{array}\right. . \]
$Y=(0,0,0,0)^T$.
$X_o=(4,1,1,1)^T$.
$X_o+Y=(4,1,1,1)^T$.
Decida se a cônica $C$ determinada pela equação $4x^2-8x-9y^2+6y-68=0$ é degenerada ou não. Se não for degenerada, encontre os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.
Identifique a quádrica definida pela equação reduzida $-x^2+ y^2+z^2=0$ e esboce seu gráfico.
Resolver o sistema linear:
\[\left\{\begin{array}{rrrrl}4x&+3y&-z&+t&=4\\x&-y&+2z&-t&=0\\5x&+2y&+z&&=4\end{array}\right. . \]
$z = 4 - 5 x - 2 y, t = 8 - 9 x - 5 y, \forall x, y \in \mathbb{R}$.
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}1 & 3 & -7 \\ 0 & 1 & -2 \\0 & 0 & 1\end{pmatrix}.\]
\[\begin{pmatrix}1 & -3 & -1 \\ 0 & 1 & -2 \\0 & 0 & 1\end{pmatrix}.\]
Considere os pontos $A = (4,3,-2)$, $B = (5,5,-1)$, $C = (6,4,-3)$ e $D = (7,6,0)$. Pede-se:
A equação do plano $\pi$ que passa por $A$, $B$ e $C$. Mostre também que $D$ não está em $\pi$.
As equações paramétricas da reta $r$ que passa por $D$ e é perpendicular ao plano $\pi$ (do item 1).
O ponto de interseção entre a reta $r$ (do item 2) e o plano $\pi$ (do item 1).
A distância do ponto $D$ ao plano $\pi$ (do item 1).
A área do triângulo de vértices $A$, $B$ e $C$ (área do triângulo $=1/2$ área do paralelogramo).
O volume do tetraedro de vértices $A$, $B$, $C$ e $D$. (Volume do tetraedro $= 1/6$ volume do paralelepípedo).
A altura do tetraedro $ABCD$.
Dica: Os itens 5 e 6 requerem produto vetorial. A solução baseada na geometria plana não é o propósito da geometria analítica.
Seja $M= \left( \begin{array}{cc}0 & 1 \\-1 & 0\end{array}\right)$.
- Mostre que: Se $A$ é uma matriz $2\times 2$ qualquer, então $AM=MA$, se e somente se, $A= \left( \begin{array}{cc}
a & b \\
-b & a
\end{array}\right)$. - Mostre que se $A$ e $B$ são matrizes $2\times 2$ que comutam com $M$, então $A$ e $B$ comutam entre si, isto é, $AB=BA$.
- Seja $A= \left( \begin{array}{cc}a & b \\c & d\end{array}\right)$, tal que $AM=MA$.
Deseja-se que $AM=\left( \begin{array}{cc}-b & a \\-d & c\end{array}\right)=MA= \left( \begin{array}{cc}c & b \\-a & -b\end{array}\right)$.
Logo, é necessário que $c=-b$ e $d=a$, de onde $A= \left( \begin{array}{cc}a & b \\-b & a\end{array}\right)$. - Se $A$ e $B$ são matrizes $2\times 2$ que comutam com $M$, de acordo com o item anterior, $A= \left( \begin{array}{cc}a & b \\-b & a\end{array}\right)$ e $B= \left( \begin{array}{cc}c & d \\-d & c\end{array}\right)$.
Calculando $AB$ e $BA$, obtém-se $AB= \left( \begin{array}{cc}ac-bd & ad+bc \\-bc-ad & -bd+ac\end{array}\right)=BA$ .
No triângulo $ABC$, tem-se $\vec{AP}=\frac{1}{3}\vec{AC}$ e $\vec{AQ}=\frac{1}{2}\vec{AC}.$ Expressar os vetores $\vec{BP}$ e $\vec{BQ}$ em funçãao de $\vec{BA}$ e $\vec{BC}.$
Para cada um dos pontos abaixo faça a mudança de coordenadas de cartesianas para polares:
- $(7,7)$,
- $(1,-\sqrt{3})$,
- $(-3,-3\sqrt{3})$,
- $(0,7)$,
- $(0,-2)$.
Obtenha a equação do lugar geométrico dos pontos que equidistam das retas $r: y=z=0$ e $l: x=y-1=0$. Que conjunto é este?
Mostre que
$$ u\cdot(v\times w)=\|u\|\;\|v\|\;\|w\|\;\sqrt{ \det\left(\begin{array}{ccc} 1 & \cos(u,v) & \cos(u,w) \\ \cos(u,v) & 1 & \cos(v,w) \\ \cos(u,w) & \cos(v,w) & 1 \\\end{array}\right)}, $$
onde, por exemplo, $\displaystyle \cos(u,v)=\frac{u\cdot v}{\|u \|\|v\|}$.
(Dica: Verifique primeiro que, para um tetraedro cujos vértices têm coordenadas
$$ (x_1,y_1,z_1),\; (x_2,y_2,z_2),\; (x_3,y_3,z_3),\; (x_4,y_4,z_4), $$
o seu volume é dado por
$$ Vol=\frac{1}{6}\det\left(\begin{array}{cccc} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \\\end{array}\right).$$
Dados os planos $\pi_1:x-y=0$, $\pi_2:x+y-z+1=0$ e $\pi_3:x+y+2z-2=0$, determine o plano que contém $\pi_1\cap\pi_2$ e é perpendicular a $\pi_3$.
Identifique o círculo $x^2+y^2-2x-4y+5=0$, dando o seu centro e raio.
Ao completarmos quadrados, ficamos com $(x-1)^2+(y-2)^2=0$. Trata-se de um único ponto (círculo degenerado), a saber, o ponto $(1,2)$.
Mostre que se
$$u= u_a a + u_b b + u_c c,$$
$$v = v_a a + v_b b + v_c c,$$
$$w= w_a a + w_b b + w_c c,$$
então
$$u\cdot(v\times w)=\det\left(\begin{array}{ccc} u_a & u_b & u_c \\ v_a & v_b & v_c \\ w_a & w_b & w_c \\\end{array}\right)[a\cdot(b\times c)].$$
Se $a=i$, $b=j$ e $c=k$, como fica esta fórmula?
Reduza a equação $3x^2+3y^2+z^2-2xy-4x+2y+6z+5=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Sendo $A=(-2,3)\;\mbox{e}\; B=(6,-3)$ extremidades de um segmento, determinar:
Os pontos $C,\;D\;\mbox{e}\; E$ que dividem o segmento $AB$ em quatro partes de mesmo comprimento.
Os pontos $F\;\mbox{e}\; G$ que dividem o segmento $AB$ em três partes de mesmo comprimento.
Encontre uma equação em coordenadas cartesianas para a superfície cuja equação em coordenadas cilíndricas é dada por $z^2\sin\theta=r^3$.
Se uma esfera $\displaystyle \dfrac{x^2}{a^2}+\dfrac{y^2}{a^2}+\dfrac{z^2}{a^2}=1$ de raio $a$ for comprimida na direção $z$, então a superfície resultante, chamada de esferóide oblato, tem uma equação da forma $\displaystyle \dfrac{x^2}{a^2}+\dfrac{y^2}{a^2}+\dfrac{z^2}{c^2}=1$, onde $c<a$. A rotação da Terra causa um achatamento nos pólos, portanto sua forma é freqüentemente modelada como um esferóide oblato em vez de uma esfera. Um dos modelos usados pelos satélites de posicionamento global é o Sistema Geodésico Mundial de 1984 (WGS-84), que trata a Terra como uma esfera oblata, cujo raio equatorial é $6378,1370$ km e cujo raio polar (a distância do centro da Terra aos pólos) é $6356,5231$ km. Use o modelo WGS-84 para encontrar uma equação para a superfície da Terra em relação ao sistema de coordenadas com origem no centro de massa da Terra, eixo $z$ apontando para o pólo norte e plano $xy$ contendo o equador.
Suponha que o sistema de coordenadas $x'y'$ tenha sido obtido pela rotação de um sistema de coordenadas $xy$ por um ângulo $\theta$. Explique como podemos encontrar as coordenadas $xy$ de um ponto cujas coordenadas $x'y'$ sejam conhecidas.
Reduza a equação $4x^2+4y^2+9z^2+8xy+12xz+10x+y+4z+1=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Calcule o determinante da matriz:
$
\begin{pmatrix}
1&1&-6&-2 \\ 4&7&4&4 \\ -2&-2&1&-2 \\ -4&-7&0&-1
\end{pmatrix}.
$
\(-27\)
Mostre que os vetores $a, b, c$, que satisfazem a relação $$a\times b \;+\; b\times c \;+\; c\times a\; = \;0$$ são coplanares.
Considere os pontos $A=(1,1,0)$, $B=(3,2,-1)$, $C=(0,1,-2)$ e $D=(1,3,-1)$.
- Encontre as retas: $r_1$ contendo o segmento $AB$ e $r_2$ contendo o segmento $CD$. Determine a posição relativa desta retas.
- Use o produto misto para encontrar a equação do plano $\pi$ contendo o segmento $AB$ e que seja paralelo a $r_2$.
- Calcule as distâncias $d(\pi, r_2)$ e $d(r_1, r_2)$.
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$.
\[\left\{\begin{array}{ccccccccr}3x& + &3y& - &2z& - &t&=& 2\\5x& + &2y& + &z& - &2t&=& 1\\2x& - &y& + &3z& - &t&=& -1\end{array}\right. .\]
Sejam $A=(-1,2,3)$, $M=(-1,3,2)$ e $N=(1,1,3)$. O triângulo $ABC$ tem ângulos $A=90^\circ$ e $B=30^\circ$ e os vértices $B$ e $C$ pertencem à reta $MN$. Encontre os vértices $B$ e $C$.
Dado $v_1=(1,-2,1)$, determine vetores $v_2$ e $v_3$ de modo que os três sejam mutuamente ortogonais.
$v_2=(1,1,1)$ e $v_3=(1,0,-1).$
Sendo $A=(2,-5,3)$ e $B=(7,3,-1)$ vértices consecutivos de um paralelogramo $ABCD$ e $M=(4,-3,3)$ o ponto de interseção das diagonais, determine os vértices $C$ e $D$.
$C=(6,-1,3)$ e $D=(1,-9,7)$
Achar o ponto $N$, projeção ortogonal do ponto $P(3,-1,-4)$ no plano determinado pelos pontos $A(2,-2,3)$, $B(4,-3,-2)$ e $C(0,-4,5)$. Qual é o ponto simétrico de $P$ em relação a este plano?
$N=\left(\frac{18}{7},-\frac{17}{14},\frac{47}{14}\right),\;
P'=\left(\frac{15}{7},\frac{10}{7},-\frac{9}{14}\right)$
Sabendo que o ponto $P=(-3,m,n)$ pertence à reta que passa pelos pontos $A=(1,-2,4)$ e $B=(-1,-3,1)$, determine $m$ e $n$.
\(m=-4\) e \(n=-2\)
Sejam $\mathcal{C}$ a circunferência de equação $x^2+y^2=r^2$. Se $r=1$ e $l$ é a reta de equação $3x+4y=5$ então mostre que $l$ é tangente a $\mathcal{C}$. Encontre o ponto de tangência.
Basta dividir ambos os lados da equação equação da reta dada e
confrontar com a afirmação vista no exercício anterior. Ou seja, a reta
$l$ tem equação $\dfrac{3}{5}x+\dfrac{4}{5}y=1$. Assim, pelo visto no
exercício anterior, vemos que $l$ é a reta tangente a $\mathcal{C}$ pelo
ponto $(3/5,4/5)$.
Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+3y^2+4xy+4y-4=0$.
Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+5x+y-9=0$.
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$.
\[\left\{\begin{array}{rrrrl}4x&+3y&-z&+t&=4\\x&-y&+2z&-t&=0\\5x&+2y&+z&&=4\end{array}\right. . \]
Encontre a equação da reta $r$ que passa por $A=(2,1,-1)$ e é perpendicular à reta $s: (2,0,0) + t(3,1,-1)$.
Inicialmente, vamos determinar o ponto $P_0$ sobre $s$ tal que $(P_0-A)\cdot(3,1,-1)=0$. Para isso, temos que $(P_0-A)=(2+3t,t,-t)-(2,1,-1)=(3t,t-1,1-t)$. Segue que $$(P_0-A)\cdot(3,1,-1)=0\Longleftrightarrow 9t+(t-1)-(1-t)=0 \Longleftrightarrow 11t=2\Longleftrightarrow t=11/2.$$ Logo, $$ P_0-A=(\frac{6}{11},-\frac{9}{11},\frac{9}{11})=\frac{3}{11}(2,-3,3), $$ e podemos tomar o vetor $(2,-3,3)$ como diretor. Assim, a reta procurada pode ser descrita parametricamente por $$ r: (2,1,-1) + t(2,-3,3),\quad t\in\mathbb{R}.$$
Considere a quádrica $x^2 +(m+1)y^2 +mz^2-2yz+2xy+2x+2z+4 = 0$, calcule $m$ para que a quádrica seja um parabolóide hiperbólico e obtenha sua equação reduzida.
Dados: a esfera $\mathcal{S}$ de centro $C=(h,k,p)$ e raio $r$ e $P=(x_1,y_1,z_1)$ um ponto da esfera, mostre que: $\pi\cap \mathcal{S}=\{P\}$, onde $\pi$ é o plano que é normal ao vetor $\vec{CP}$ e passa por $P$. Tal plano é chamado de plano tangente à esfera por $P$.
Calcule o determinante da matriz:
$\begin{pmatrix}
a+b&a+c \\ d+b&d+c
\end{pmatrix}. $
$\det\left(\begin{pmatrix}a+b&a+c \\ d+b&d+c\end{pmatrix}\right)=(c-b)(a-d). $
Encontre condições sobre o vetor $v=(a,b,c)$ para que exista uma reta na direção de $v$ que intercepte simultaneamente as retas $r$ e $s$:
$$r:\begin{cases} x= 1 + t\\y = -2 - t\\z = 3 + t \end{cases}\ \ \ {\rm e}\ \ \ s:\begin{cases} x= 1 + 2t\\y = -2\\z = 3 + t \end{cases}$$
Um construtor tem contratos para construir 3 estilos de casa: moderno, mediterrâneo e colonial. A quantidade de material empregada em cada tipo de casa é dada pela tabela:
\[
\begin{array}{lccccc}
& \text{Ferro} & \text{Madeira} & \text{Vidro} &
\text{Tinta} & \text{Tijolo}\\
\text{Moderno} & 5 & 20 & 16 & 7 & 17\\
\text{Mediterrâneo} & 7 & 18 & 12 & 9 & 21\\
\text{Colonial} & 6 & 25 & 8 & 5 & 13
\end{array}
\]
Se ele pretende construir 5, 7 e 12 casas dos tipos moderno, mediterrâneo e colonial, respectivamente, quantas unidades de cada material serão empregadas?
Suponha que os preços por unidade de ferro, madeira, vidro, tinta e tijolo sejam, respectivamente, 15, 8, 5, 1 e 10. Qual é o preço unitário de cada tipo de casa?
Qual é o custo total do material empregado?
- As quantidades de ferro, madeira, vidro, tinta e tijolo serão 146, 526, 260,158 e 388, respectivamente.
- O preço unitário dos tipos moderno, mediterrâneo e colonial serão 492, 528 e 465, respectivamente.
- O custo total do material empregado para construir 5 casas do estilo moderno, 7 casas do estilo mediterrâneo e 12 casas do estilo colonial é 11736.
Ache a equação do círculo com centro $(5,2)$ e passando pelo ponto $(2,3)$.
A equação do círculo é dada por $(x-5)^2+(y-2)^2=d^2$, onde $d$ é o seu raio. Como é dado um ponto sobre o mesmo, obtemos então que $d=\sqrt{(2-5)^2+(3-2)^2}=\sqrt{10}$.
Dado o ponto $P(5,2,3)$ e o plano $\pi:\;2x+y+z=0$, determinar:
- equações paramétricas da reta que passa por $P$ e é perpendicular a $\pi$;
- a projeção ortogonal de $P$ sobre o plano $\pi$;
- o ponto $P'$ simétrico de $P$ em relação a $\pi$;
- a distância de $P$ a o plano $\pi$.
- $r:(x,y,z)=(5+2t,2+t,3+t)$.
- $P_{\bot}=(0,-\frac{1}{2},\frac{1}{2})$.
- $P'=(-5,-3,-2)$.
- $5\dfrac{\sqrt{6}}{2}$.
Identifique a quádrica definida pela equação reduzida $6x^2+3y^2-z^2=-2$ e esboce seu gráfico.
Classifique a superfície $\displaystyle \dfrac{x^2}{36}-\dfrac{y^2}{25}+z=0$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
No processo de escalonamento de um sistema linear, se uma linha se anular, mostre que ela era uma combinação linear das outras.
A resultante de $n$ forças $\vec{F_1}, \vec{F_2}, \ldots, \vec{F_n}$ (que podem ser representadas por vetores) é dada pela soma $\vec{F_1}+\vec{F_2}+\ldots,\vec{F_n}$. A magnitude de uma força $\vec{F}$ é dada pela norma $\|\vec{F}\|$. Dadas as forças na figura abaixo, determine a magnitude da força resultante e o ângulo que ela faz com o eixo $x$ positivo (sugestão: use a Lei dos Cossenos e a Lei dos Senos).
Examine o sistema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[\left\{\begin{array}{rrrcr}2x_1+&3x_2-&5x_3&=& 2 \\2x_1+&3x_2-&x_3&=& 8 \\6x_1+ &9x_2-&7x_3&=& 18 \\\end{array}\right. . \]
Esse sistema possui infinitas soluções.
Que condições devem satisfazer os vetores $a$ e $b$ para que o vetor $a+b$ divida o ângulo formado por eles em dois ângulos iguais?
Considere um paralelogamo de lados $a$ e $b.$ O vetor soma $a+b$ representa a diagonal do paralelogramo formado pelos vetores $a$ e $b$. Caso os vetores $a$ e $b$ tenham módulos iguais, isto é, mesmo tamanho, o paralelogramo formado por esses vetores será um losango (todos os lados do paralelogramo terão a mesma medida), e a diagonal dividirá o ângulo entre os vetores $a$ e $b$ ao meio. Assim, teremos a igualdade entre dois ângulos $\alpha =\beta $ quando $\left\Vert a\right\Vert=\left\Vert b\right\Vert .$ Então, para que o vetor soma divida ao meio o ângulo entre os vetores $a$ e $b$, basta que $\left\Vert a\right\Vert =\left\Vert b\right\Vert .$
Considere a cônica definida pela equação $x^2+xy-1=0.$
Determinar seu centro.
Classificar a cônica.
Esboçar seu gráfico.
Os seguintes pares de retas $r_1$ e $r_2$ são paralelas ou concorrentes. Encontre uma equação geral do plano que as contém.
$$r_1:\;\begin{cases}y=2x-3\\z=-x+2\end{cases}\ \ \ {\rm e}\ \
\ r_2: \begin{cases}\text{ $\frac{x-1}{3}=\frac{z-1}{-1}$}\\
y=-1.\end{cases}$$
Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+2x+y^2+2y+2=0$.
Sejam $A,B$ e $C$ matrizes reais tais que $AB=AC$. Se existir uma matriz $Y$ tal que $YA=I$, onde $I$ é a matriz identidade, então podemos concluir que $B=C$?
Sim, pois se \(Y\) é uma inversa à esquerda de \(A\), então podemos multiplicar ambos os lados, à esquerda, da equação \(AB=BC\) e então teremos que
\[ B=IB=(YA)B=Y(AB)=Y(AC)=(YA)C=IC=C.\]
Mostre que todo sistema linear homogêneo (isto é, cujos termos independentes são todos iguais a zero) de três equações com quatro incógnitas possui uma infinidade de soluções.
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}a & b \\ -b & a\end{pmatrix}.\]
A inversa existirá desde que $a\neq 0$ ou $b\neq 0$, nesse caso será dada por \[\begin{pmatrix}\dfrac{a}{a^2+b^2} & \dfrac{-b}{a^2+b^2} \\ \dfrac{b}{a^2+b^2} & \dfrac{a}{a^2+b^2}\end{pmatrix}.\]
Quais são os cossenos diretores de cada eixo coordenado?
$1,0,0$; $0,1,0$; $0,0,1$.
Encontre uma equação em coordenadas cilíndricas para a superfície cuja equação em coordenadas cartesianas é dada por $x^2-y^2=3z^2$.
Usando a definição de coordenadas cilíndricas, a equação dada fica: $\displaystyle r^2\cos(2\theta)=3z^2$.
Suponha que $u_1,\ldots, u_n$ gerem $\mathbb{R}^n$. Mostre que dados vetores quaisquer em $\mathbb{R}^n$, $u_{n+1}, \ldots, u_m$, então $u_1, \ldots, u_n, u_{n+1}, \ldots, u_m$ geram $\mathbb{R}^n$.
Identifique a quádrica definida pela equação reduzida $\dfrac{x^2}{10}+\dfrac{y^2}{9}+\dfrac{z^2}{5}=1$ e esboce seu gráfico.
Resolver o sistema linear: \[\left\{\begin{array}{ccccccr}2x_1&+&5x_2&+&12x_3&=& 6 \\3x_1&+&x_2&+&5x_3&=& 12 \\5x_1&+&8x_2&+&21x_3&=& 17\\\end{array}\right. .\]
Esse sistema linear não possui solução.
Dados três pontos $A = (2,1,3)$, $B = (5,-1,2)$ e $C = (1,2,-3)$, encontre um quarto ponto $D$ de forma que os pontos $A$, $B$, $C$ e $D$ sejam os vértices de um paralelogramo (Dica: Queremos $D$ de forma que $\overrightarrow{CD}$ seja paralelo a $\overrightarrow{AB}$ e tenha mesmo comprimento.).
$D=(4,4,-2)$
Reduza a equação $-2x^2+4y^2+6z^2+2xy+6xz+6yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Resolver o sistema linear:
\[\left \{\begin{array}{rrrrl}x&-y&+2z&-t&=0\\3x&+y&+3z&+t&=0\\x&-y&-z&-5t&=0\end{array}\right..\]
$y = \dfrac{-6 x}{5}, z = \dfrac{-4 x}{5}, t = \dfrac{3 x}{5}, \forall x \in \mathbb{R}$.
Resolver o sistema linear em função do parâmetro $\lambda$:
\[\left\{\begin{array}{cccl}2x_1+&3x_2+&x_3&=1 \\x_1+&6x_2+&x_3&=3 \\2x_1-&3x_2+&2x_3&=\lambda\\x_1+&3x_2+&2x_3&=1 \\\end{array}\right.. \]
$x_1 =\dfrac{-1}{4}, x_2 =\dfrac{7}{12}, x_3 =\dfrac{-1}{4}, \lambda = \dfrac{-11}{4}.$
Reduza a equação $x^2+4y^2+9z^2-4xy+6xz-12yz+4x-8y+12z+4=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Seja $\ell$ a curva com equações paramétricas: $x=\dfrac{a(1+t^2)}{(1-t^2)}$ e $y=\dfrac{2bt}{(1-t^2)}$. Determine $\ell$.
Para o par de vetores $u=(2,0,0)$ e $v=(3,5,4)$, encontrar a projeção ortogonal de $v$ sobre $u$ e decompor $v$ como soma de $v_{1}$ com $v_{2}$, sendo $v_{1} \parallel u$ e $v_{2}\perp u$.
$\textrm{proj}_{u}{v}=(3,0,0)$.
$v_1=(3,0,0)$ e $v_2=(0,5,4)$.
Identifique a cônica descrita pela equação $x^2-6xy-7y^2+10x-30y+23=0$.
Considere o plano com o sistema cartesiano canônico $xy$ e faça uma rotação de um ângulo $\theta$, com $0\leq \theta \leq\pi/2$ obtendo o novo sistema $\overline{x}$ $\overline{y}$. Seja $(*)$ a equação:
$$(*) \ \ \ Ax^2+Bxy+Cy^2+Dx+Ey+F=0$$,
com $A$, $B$, $C$, $D$, $E$, $F$ números reais. Ao transformar $(*)$ para o sistema $\overline{x}$ $\overline{y}$ obtemos:
$$(**) \ \ \ \overline{A} \overline{x}^2+\overline{B}\overline{x} \overline{y}+ \overline{C}\overline{y}^2+ \overline{D}\overline{x}+ \overline{E}\overline{y}+\overline{F}=0$$.
Mostre que:
\begin{align*} \overline{A} & = A\cos^2\theta+B\sin\theta\cos\theta+C\sin^2\theta, \\ \overline{B} & =-2A\sin\theta\cos\theta+B(\cos^2\theta-\sin^2\theta)+2C\sin\theta\cos\theta,\\ \overline{C} & = A\sin^2\theta-B\sin\theta\cos\theta+C\cos^2\theta, \\ \overline{D} & = D\cos\theta+E\sin\theta, \\ \overline{E} & = E\cos\theta-D\sin\theta\;\;\;\;\; \text{e} \\ \overline{F} & = F. \end{align*}
Supondo $A>0$ e $F<0$, conclua, a partir de 1, que a equação $(*)$ representa uma circunferência de centro $(0,0)$ e raio $r=\sqrt{\frac{-F}{A}}$ se, e somente se, para todo $\theta$, tivermos que $A=\overline{A}$, $B=\overline{B}$, $C=\overline{C}$,
$D=\overline{D}$, $E=\overline{E}$ e $F=\overline{F}$.
Sejam
$M= \left( \begin{array}{cc}A & \frac{B}{2}\\\frac{B}{2}& C \\\end{array}\right)$, $\overline{M}= \left( \begin{array}{cc}\overline{A} & \frac{\overline{B}}{2}\\\frac{\overline{B}}{2}&\overline{C}\end{array}\right)$ e $R_{\theta}=\left(\begin{array}{cc}\cos\theta&-\sin\theta\\\sin\theta&\cos\theta\end{array}\right)$.
Mostre, a partir de 1, que $\overline{M}=R_{\theta}^{t}\cdot M\cdot R_{\theta}$ e, calculando o determinante dos dois lados da igualdade, conclua que $\Delta=B^2-4AC=\overline{B}^{2}-4\overline{A}\overline{C}$, qualquer que seja o ângulo $\theta$ (OBS: $\Delta$ é conhecido pelo nome de discriminante da equação $(*)$ e o item 3 está dizendo que ele é invariante por rotação).
Dado um plano qualquer com um sistema de coordenadas $xy$, encontre os vértices (ou vértice), os focos (ou foco) e a excentricidade da cônica descrita por $4x^2+9y=144$. Esboce o gráfico.
Mostre que quaisquer que sejam $u$, $v$ e $w$ em $\mathbb{R}^2$, eles são linearmente dependentes.
Reduza a equação $z^2 + 4xy + 1 = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
A equação da quádrica $z^2 + 4xy + 1 = 0$ pode ser escrita em forma matricial:
$$X^tAX+1=0,$$
onde:
$$X=\begin{pmatrix}x \\ y \\ z\end{pmatrix}, \ A=\begin{pmatrix}0 & 2 & 0 \\2 & 0 & 0 \\0 & 0 & 1\end{pmatrix}. $$
Seja:
$$P(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix}-\lambda & 2 & 0 \\2 & -\lambda & 0 \\0 & 0 & 1-\lambda\end{pmatrix}=-\lambda^3+\lambda^2+4\lambda-4.$$
As raízes de $P(\lambda)$ são $1$, $2$ e $-2$. Considere os sistemas lineares referentes às raízes $1$ e $2$, $(A-I) X = 0$ e $(A-2I) X = 0$. Uma solução de norma unitária desses sistemas consiste em $U_1=(0,0,1)$ e $U_2=(1/\sqrt{2},1/\sqrt{2},0)$, respectivamente. Sejam $U_3=U_1 \times U_2 = (-1/\sqrt{2},1/\sqrt{2},0)$, $Q=(U_1,U_2,U_3)$ e $X'=\begin{pmatrix}x' \\ y' \\ z'\end{pmatrix}.$ Dessa forma, com a mudança de coordenadas dada por $X=QX'$, a equação $z^2 + 4xy + 1 = 0$ se transforma em:
$$-(x')^2-\dfrac{(y')^2}{1/2}+\dfrac{(z')^2}{1/2}=1,$$
que é a equação de um hipérbolóide de duas folhas.
Considere o polinômio $p(\lambda)=\det(A-\lambda I_3)$, em que$$ A= \left[\begin{array}{ccc} a & d/2 & e/2 \\ d/2 & b & f/2 \\ e/2 & f/2 & c \end{array}\right]. $$
Sejam $\alpha$ e $\beta$ raízes reais (pois $A$ é simétrica) distintas de $p(\lambda)$. Mostre que se $X_1$ é solução de $(A-\alpha I_2)X=\vec{0}$ e $X_2$ é solução de $(A-\beta I_2)X=\vec{0}$, então $X_1$ e $X_2$ são ortogonais. (Sugestão: Mostre que $\alpha X_1\cdot X_2=\beta X_1\cdot X_2$)
Mostre que se $p(\lambda)$ tem raízes reais distintas, então sempre existe uma matriz $Q$ tal que $$ Q^tAQ = \left[\begin{array}{ccc} a' & 0 & 0 \\ 0 & b' & 0 \\ 0 & 0 & c' \end{array}\right]. $$ Conseqüentemente, a mudança de coordenadas dada por $X=QX'$ transforma a equação $$ ax^2+by^2 + cz^2 + dxy+exz+fyz+gx+hy+iz+j=0 $$ na equação $$a'x'^2+b'y'^2+c'z'^2+g'x'+h'y'+i'z + j=0, $$ onde os termos "cruzados" $xy$, $xz$ e $yz$ são eliminados.
Reduza a equação $x^2+y^2+z^2-4xy-4xz-4yz=7 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Mostre que a equação $17x^2+2y^2+z^2-8xy-6xz-2=0$ representa uma superfície cilíndrica e determine a equação da curva diretriz e um vetor paralelo às retas geratrizes.
Mostre que os ramos direito e esquerdo da hipérbole $\displaystyle \dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ podem ser representados parametricamente por
$$ x= a\sec t, \quad y=b\tan t, \quad(-\pi/2 < t < \pi/2) $$
$$ x= -a\sec t, \quad y=b\tan t, \quad(-\pi/2 < t < \pi/2). $$
Use um recurso gráfico para gerar ambos os ramos da hipérbole $x^2-y^2=1$ em um mesmo gráfico.
Dadas a equação da curva diretriz $x^2-y^2=1$, $z=0$ e um vetor $V=(0,2,-1)$ paralelo às retas geratrizes, determine a equação da superfície cilíndrica.
Determine um vetor $\vec{a}=(x,y,z)$ que satisfaça as seguintes equações:
$$\vec{a} \times \vec{j}=\vec{k}$$
$$\vec{a} {\cdot}(\vec{i}+2\vec{j})=0,$$
onde $\vec{i}$, $\vec{j}$ e $\vec{k}$ são os vetores da base canônica de $\mathbb{R}^3$.
Resolver o sistema linear:
\[\left\{\begin{array}{cccccr}&x_1&-&7x_2&=&-11 \\-&x_1&+&11x_2&=&31 \\&2x_1&-&12x_2&=&-26 \\&3x_1&-&17x_2&=&-15 \\\end{array}\right. . \]
O sistema não possui solução.
Encontrar as equações paramétricas da reta que passa por $A$ e é simultaneamente ortogornal às retas $r_1$ e $r_2$:
$$A(3,2,-1),\;\;
r_1: \begin{cases} x=3\\ y=-1. \end{cases}\ \ \ {\rm e}\ \ \
r_2: \begin{cases} y=x-3\\ z=-2x+3. \end{cases}$$
$r:(x,y,z)=(3-t',2+t',-1).$
Três tipos de suplementos alimentares estão sendo desenvolvidos. Para cada grama de ração, tem-se que:
i) O suplemento 1 tem $1$ unidade de vitamina A, $3$ unidades de vitamina B e $4$ unidades de vitamina C;
ii) O suplemento 2 tem $2$, $3$, e $5$ unidades das vitaminas A, B, e C, respectivamente;
iii) O suplemento 3 tem $3$ unidades das vitaminas A e C, e não contém vitamina B.
Se são necessárias $11$ unidades de vitamina A, $9$ de vitamina B, e $20$ de vitamina C,
Encontre todas as possíveis quantidades dos suplementos 1, 2, e 3, que fornecem a quantidade de vitaminas desejada.
Qual o sistema homogêneo associado?
O sistema homogêneo associado aceita solução não nula?
Qual a relação entre a resposta dos itens anteriores?
Se o suplemento 1 custa $6$ reais por grama e os outros dois custam $1$, existe uma solução custando exatamente $10$ reais?
Calcule o determinante da matriz:
$
\begin{pmatrix}
0&a&0\\ b&c&d\\ 0&e&0
\end{pmatrix}.
$
\(0\)
Identifique a seguinte cônica, determinando sua excentricidade, sua equação cartesiana, a equação cartesiana da diretriz e as coordenadas cartesianas do(s) foco(s) e do(s) vértice(s): $r=\frac{5}{2-2cos\theta}$.
Para o par de retas $r$ e $r^{\prime}$ abaixo encontre o ponto de interseção, $r\cap r^{\prime}$, se existir. E nos casos em que a interseção é vazia decida se elas são paralelas ou reversas.
$r:$ $(x,y,z) = (2,-3,-2) + t(4,-1,3) \;\;\;$ e $r^{\prime}:$ $\left\{ \begin{array}{c} 3x+2y+z=-2 \\ x-y+2z=1\end{array} \right. .$
Usando escalonamento, podemos obter que a intersecção ocorre para $t=0$. Assim, o ponto de intersecção consiste em $(2,-3,-2)$.
Encontrar as equações paramétricas da reta que passa por $A$ e é simultaneamente ortogornal às retas $r_1$ e $r_2$:
$$A(0,0,0),\;\;r_1:\;\frac{x}{2}=y=\frac{z-3}{2}\ \ \ {\rm e}\ \ \ r_2:\;\begin{cases} x=3t\\ y=-t+1\\ z=2. \end{cases}$$
$r:(x,y,z)=(2t,6t,-5t).$
Reduza a equação $x^2+y+z^2=0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
$y=-(x^2+z^2)$: parabolóide elíptico.
Classifique a superfície $\displaystyle \dfrac{x^2}{36}+\dfrac{y^2}{25}-z^2=0$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Reduza a equação $2x^2+3y+4z+4=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Sejam
$A= \left( \begin{array}{ccc}1 & -2 & -1\\1 & 0 & -1\\4 & -1 & 0\end{array}\right)$ e $X= \left( \begin{array}{c}x\\y\\z\\\end{array}\right)$.
Verifique que: $xA_1+yA_2+zA_3=AX$, sendo $A_j$ a $j$-ésima coluna de $A$ para $j=1$, 2, 3.
Usando 1. verifique que: a segunda coluna de $C=A^2$ é $C_2=-2A_1 - A_3$.
Tente generalizar o que foi feito em e para a seguinte situação: Sejam $A$ uma matriz $m\times n$, $B$ uma matriz $n\times k$ e $C=AB$. Se $C_j$ é a $j$-ésima coluna de $C$, encontre $C_j$ em termos das $n$ colunas de $A$ e da $j$-ésima coluna de $B$.
Determinar as equações paramétricas e representar graficamente a reta que passa por $A(3,-2,4)$ e é paralela ao eixo dos $x$.
$r:(x,y,z)=(3+t,-2,4);$
Seja $r$ a reta que passa pelo ponto $A(3,-2,4).$ Como a reta $r$ deve ser pararela aos eixos $x$, considere o vetor canônico $\left( 1,0,0\right)$, que por sinal será o vetor direção do eixo dos $x$ e consequentemente o vetor direção da reta $r$, pois é paralela ao eixo dos x e dado por $\ v=\overrightarrow{i}$. Nesse sentido, como temos um vetor direção e o ponto $A(3,-2,4)$, concluímos que as equações paramétricas são dadas por $$\begin{cases} x=3+t\\ y=-2\\ z=4. \end{cases}$$
Considere o plano com o sistema cartesiano canônico $xy$ e faça uma rotação de um ângulo $\theta$ obtendo um novo sistema $\overline{x}$ $\overline{y}$. Seja $P$ um ponto do plano.
Se $P=(2,2)$ no sistema $xy$ e $\theta=\pi/3$, encontre as coordenadas de $P$ no sistema $\overline{x}$ $\overline{y}$.
Se $P=(2,2)$ no sistema $\overline{x}$ $\overline{y}$ e $\theta=\pi/3$, encontre as coordenadas de $P$ no sistema $xy$.
Transforme a equação $x^2+y^2=4$ para o sistema $\overline{x}$ $\overline{y}$.
Suponha que $0<\theta <\pi/2$ e que $a=\tan\theta$ ($a$=tangente de $\theta$). Transforme a equação $y=ax$ para o sistema $\overline{x}$ $\overline{y}$.
Determine a curva definida pela intersecção das superfícies cilíndricas $x^2+z^2=1$ e $y^2=4x$.
Suponha que os eixos coordenados estejam fixos, mas a posição $P(x,y)$ de um inseto é movida para uma nova posição $P'(x',y')$ através de uma rotação do ponto por um ângulo $\alpha$ em torno da origem. Naturalmente, nesta rotação o ponto $P$ estará sempre sobre um círculo fixo com centro na origem. Mostre que a nova posição do inseto será \begin{align*} x' & = x\cos\alpha - y\sin\alpha \\ y' & = x \sin\alpha + y\cos\alpha \end{align*}.
Determine o conjunto de todos os vetores do espaço que são paralelos ao vetor $(1,1,1)$.
Descreva o conjunto de todos os vetores do espaço que são ortogonais ao vetor $(1,0,-1)$.
Qual o significado geométrico dos conjuntos encontrados nos itens (a) e (b)?
Resolva o sistema $A\,X=B$ usando o método de Gauss-Jordan, onde: $$A=\begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ e } B=\begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}.$$
Destaque as operações elementares usadas.
Vamos aplicar escalonamento sobre a matriz aumentada do sistema:
\begin{gather*}
\begin{pmatrix} 1 & 0 &-1&\vdots & 1 \\ 2 & 1 & 0& \vdots & 1 \\ 0 & 1 & 1 & \vdots & 1 \end{pmatrix} \begin{array}{c} L_2-2L_1\rightarrow L_2\\ \sim \end{array}
\begin{pmatrix} 1 & 0 & -1 & \vdots & 01 \\ 0 & 1 & 2 & \vdots & -1 \\ 0 & 1 & 1 & \vdots & 01 \end{pmatrix}
\begin{array}{c} L_3-L_2\rightarrow L_3 \\\sim \end{array}
\begin{pmatrix} 1 & 0 & -1 & \vdots & 1 \\ 0 & 1 & 2 & \vdots & -1 \\ 0&0&-1&\vdots&2 \end{pmatrix} \\ \begin{array}{c} \\-L_3\leftrightarrow L_3 \\ \sim \\ L_3+L_1\rightarrow L_1 \end{array} \begin{pmatrix} 1& 0& 0&\vdots & -1\\ 0& 1& 2&\vdots & -1\\ 0& 0& 1&\vdots &-2 \end{pmatrix}
\begin{array}{c} L_2-2 L_3\rightarrow L_2 \\ \sim \end{array}
\begin{pmatrix} 1& 0& 0&\vdots &-1 \\ 0 & 1& 0& \vdots& 3\\ 0& 0 & 1 &\vdots & -2 \end{pmatrix}. \end{gather*} Logo, a solução é dada por \(\displaystyle (-1,3,-2)^T\).
Reduza a equação $5x^2+5y^2+3z^2-2xy+2xz+2yz+2x-y=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Verdadeiro ou Falso? Justifique.
- Se $A=\left(\begin{array}[c]{rr}-2 & 1\\3 & 2\end{array}\right) $, então $A^{2}=\left(\begin{array}[c]{rr} 4 & 1\\9 & 4\end{array}\right) $.
- $(A+B)^{t}=B^{t}+A^{t}.$
- Se $AB=0$, então $A=0$ ou $B=0$.
- Se $AB=0$, então $BA=0$.
- Se podemos efetuar o produto $AA$, então $A$ é uma matriz quadrada.
- $(-A)(-B)=-(AB).$
- Sejam $A$ e $B$ duas matrizes. Se $A=0$, então $BA$ sempre existe.
Falso, pois efetuando a multiplicação temos que
\[A^2=7I_2.\]
Verdadeiro. Não confundir com a transposta do produto.
Falso! Como contra-exemplos, podemos tomar:
\[A=\left(\begin{array}{cc} 1 & 1 \\ 0 & 0 \end{array}\right) \quad\text{e}\quad B=\left(\begin{array}{cc} 1 & 0 \\ -1 & 0 \end{array}\right).\] Note que \(AB=\mathbf{0}\), não sendo nenhuma delas nula.
Falso também. Ainda pegando os dois exemplos anteriores, note que
\[BA=\left(\begin{array}{cc} 1&0\\-1&0\end{array}\right)\left(\begin{array}{cc} 1&1\\0&0\end{array}\right) = \left(\begin{array}{cc} 1 & 1\\ -1 & -1 \end{array}\right).\]
Verdadeiro. Supondo que \(A\) fosse \(m\times n\), como o produto \(A\cdot A\) existe, isso implica que devemos ter \(m=n\).
- Falso, pois
\[(-A)(-B)=[(-1)A][(-1B)]=(-1)[A(-B)]=(-1)[A(-1)B]=(-1)(-1)[AB]=AB.\] - Falso. Note que, para que exista \(BA\), o número de colunas de \(B\) dever ser igual ao número de linhas de \(A\) que, por sua vez, não tem nada a ver com ser nula. Por exemplo, considerando \(A\) como sendo uma matriz \(2\times 3\) nula e \(B\) uma matriz \(2\times 3\) qualquer, temos que o produto \(BA\) não fica definido.
A fim de esboçarmos uma hipérbole, precisamos indicar: centro, focos, vértices e assíntotas. Os pontos sobre a curva mais próximos do centro (sobre o eixo maior) são os vértices. Os vértices distam $a$ do centro e as assíntotas são da forma $y=\pm(\frac{a}{b}) x$ (se os focos estiverem sobre o eixo $y$) ou $y=\pm(\frac{b}{a}) x$ (se estiverem sobre o eixo $x$), onde $a^2+b^2=c^2$. A excentricidade de uma hipérbole é definida como $\frac{c}{a}$.
Esboce o gráfico de $25x^2-16y^2=400$.
Dê a equação da hipérbole com vértices $(0,\pm3)$ e excentricidade $e=5/3$.
Esboce o gráfico da curva $9x^2-y^2=-36$.
Encontre $\lambda \in \mathbb{R}$ para que $v_1=(2 \lambda,1)$, $v_2=(\lambda + 1, \lambda + 1)$:
- Sejam paralelos;
- Não sejam paralelos;
- $v_1$ e $v_2$ formem uma base para $\mathbb{R}^2$.
- $\lambda=-1$ ou $\lambda=1/2$.
- $\lambda\neq -1$ ou $\lambda\neq 1/2$.
- $\lambda\neq -1$ ou $\lambda\neq 1/2$.
Examine o sistema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[\left\{\begin{array}{rrrrrcr}1x_1+&3x_2-&7x_3+&5x_4+&2x_5&=&0 \\2x_1+&3x_2-&20x_3+&7x_4+&8x_5&=&0 \\10x_1+&22x_2-&46x_3+&34x_4+&12x_5&=&0 \\\end{array}\right. . \]
Esse sistema possui infinitas soluções.
Considere o círculo $C$ de raio $1$ e centrado na origem do sistema usual de coordenadas do $\mathbb{R}^2$. Lembre-se que a equação de $C$ é $x^2+y^2=1$. Considere o sistema $\{ Q,i,j\}$, onde $Q=(-3,2)$. Ache a equação de $C$ no novo sistema de coordenadas.
Dados os vetores $a = (2,-3,6)$ e $b = (-1,2,-2)$, calcule as coordenadas do vetor $c$, bissetriz do ângulo formado pelos vetores $a$ e $b$, sabendo-se que $\|c \|= 3\sqrt{42}$.
Resolver o sistema linear em função do parâmetro $\lambda$:
\[\left\{\begin{array}{cccl}2x_1+&3x_2+&x_3&=1 \\x_1+&6x_2+&x_3&=3 \\2x_1-&3x_2+&2x_3&=\lambda\\x_1+&3x_2+&2x_3&=1 \\\end{array}\right.. \]
$x_1 =\dfrac{-1}{4}, x_2 =\dfrac{7}{12}, x_3 =\dfrac{-1}{4}, \lambda = \dfrac{-11}{4}.$
Mostre que se $X\;\mbox{e}\; Y$ são dois vetores tais que $X+Y$ é ortogonal a $X-Y$, então $\left\|X\right\|\;=\;\left\|Y\right\|$.
$X+Y$ ortogonal a $X-Y$ $\Rightarrow$ $(X+Y)\cdot(X-Y)=0$.
$(X+Y)\cdot(X-Y)=0$ $\Rightarrow$ $X\cdot X-X\cdot Y+Y\cdot X - Y\cdot Y=0\Rightarrow X\cdot X- Y\cdot Y=0 \Rightarrow X\cdot X= Y\cdot Y\Rightarrow ||X||^2=||Y||^2$ e, pela não negatividade da norma, $||X||=||Y||$.
Dadas a equação da curva diretriz $x^2+z^2=1$, $y=0$ e um vetor $V=(4,1,0)$ paralelo às retas geratrizes, determine a equação da superfície cilíndrica.
Seja $ABCD$ um tetraedro e $P$ um ponto qualquer dentro dele. Ligue os vértices $A, B,C,D$ até o ponto $P$ e prolongue as linhas até que elas interceptem as faces opostas nos pontos $A',B',C',D'$, respectivamente. Mostre que vale a seguinte relação: $$\frac{PA'}{AA'}+\frac{PB'}{BB'}+\frac{PC'}{CC'}+\frac{PD'}{DD'}=1.$$
A elipse $\ell$ tem focos $F_1=(1,2)$, $F_2=(2,4)$ e vértices $A_1=(0,0)$, $A_2=(3,6)$. Dê as equações paramétricas de $\ell$.
Mostre que a equação $y^6-x^2-z^2=0$ representa uma superfície de revolução e determine o seu eixo de revolução e a equação da curva geratriz.
Sejam
$A= \left( \begin{array}{ccc}1 & -2 & -1\\1 & 0 & -1\\4 & -1 & 0\end{array}\right)$ e $X= \left( \begin{array}{c}x\\y\\z\\\end{array}\right)$.
Verifique que: $xA_1+yA_2+zA_3=AX$, sendo $A_j$ a $j$-ésima coluna de $A$, para $j=1$, 2, 3.
Verifique que a segunda coluna de $C=A^2$ é $C_2=-2A_1 - A_3$.
Tente generalizar o que foi feito em a) e b) para a seguinte situação: Sejam $A$ uma matriz $m\times n$, $B$ uma matriz $n\times k$ e $C=AB$. Se $C_j$ é a $j$-ésima coluna de $C$, encontre $C_j$ em termos das $n$ colunas de $A$ e da $j$-ésima coluna de $B$.
Esboce o gráfico da equação paramétrica dada por $(x,y)=(t^2-1,t^2+1)$.
Dados o plano $x-y+z=1$ e o ponto $P=(1,0,1)$, encontre o ponto $Q$ que é simétrico a $P$ em relação ao plano dado.
Em cálculo de uma variável vemos que se $x_0$ é um extremo local (máximo ou mínimo) de uma função $f(x)$, então a reta tangente ao gráfico de $f$ em $x_0$ é horizontal, ou seja, $f'(x_0)=0$.
Encontre uma relação similar entre um extremo local de uma função de duas variáveis e o plano tangente ao seu gráfico.
Use esta relação para encontrar os extremos locais da função $f(x,y)=x^2+y^2-2x-6y+14$.
Verifique se sua resposta no item anterior está correta completando os quadrados em $f(x,y)$ e identificando a quádrica.
Reduza a equação $4x^2-8x-9y^2+6y-36z+3=0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
$9z-2=(x-1)^2-\dfrac{(3y-3)^2}{4}$: parabolóide hiperbólico.
Construa a curva cujas equações paramétricas são dadas por: $x=t$, $y=2t^2$ e $z=3t^3$.
Calcule o determinante da matriz:
$
\begin{pmatrix}
1+x_1y_1&1+x_1y_2 \\ 1+x_2y_1&1+x_2y_2
\end{pmatrix}.
$
$(x_1-x_2)(y_1-y_2)$.
Considere a matriz $ A = \left[ \begin{array}{ccc} 1 & 2 & 3\\ 1 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$.
- Calcule o $det(A^n)$, para todo número natural $n$.
- Usando escalonamento encontre a matriz inversa $A^{-1}$.
- Como $\det(A)=-1$ e $\det(A^n)=\det(A)^n$, $\det(A)^n=(-1)^n$.
- $ A^{-1} = \left[ \begin{array}{ccc} 0 & 1 & -1\\ 2 & -2 & -1 \\ -1 & 1 & 1\end{array}\right]$.
Encontre a equação da reta $r$ que passa por $(1,-2,3)$, é concorrente com a reta $\left\{\begin{array}{ccr}x &=& 2 + 3t\\ y &=& 1 + 2t\\z &=& -1\end{array}\right.$ e tem vetor diretor ortogonal ao vetor $(1,-3,1)$.
Reduza a equação $2xy + 2xz + 2yz - 6x - 6y - 4z = 9$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Identificar a cônica $x^2+4y^2+4xy-2x-4y-1=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).
Determine, caso exista, uma reta que passa por $P$ e intercepta $r$ e $s$ nos pontos $A$ e $B$ de modo que os segmentos $AP$ e $BP$ sejam congruentes, nos seguintes casos:
- $P=(1,1,9)$, $r=\{ (0,-4,1)+t(2,1,0),t\in\mathbb{R}\}$ e $s=\{(0,-3,-3+t(1,0,2),t\in\mathbb{R}\}$
- $P=(1,2,3)$, $r=\{ t(1,0,1),t\in\mathbb{R}\}$ e $s=\{(1,1,1)+t(2,1,1),t\in\mathbb{R}\}$
Interprete geometricamente.
Reduza a equação $2x^2+y^2-4xy-4yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
$$ \left\{ \begin{array}{ccccccccc}a_{11} x_1 &+& a_{12} x_2 &+& \ldots &+& a_{1n} x_n &=& b_1 \\a_{21} x_1 &+& a_{22} x_2 &+& \ldots &+& a_{2n} x_n &=& b_2 \\\vdots && \vdots && && \vdots && \vdots \\a_{n1} x_1 &+& a_{n2} x_2 &+& \ldots &+&a_{nn} x_n &= &b_n \\ \end{array} \right.$$
pode ser escrito em forma matricial $Ax=b$, onde:
$$A=\begin{pmatrix} a_{11} & a_{12} & \ldots & a_{1n} \\ a_{21} & a_{22} & \ldots & a_{2n} \\ \vdots & \vdots && \vdots \\ a_{n1} & a_{n2} & \ldots & a_{nn} \end{pmatrix}, x = \begin{pmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \\ \vdots \\ b_n\end{pmatrix}.$$
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}2 & 2 & -1 \\ 2 & -1 & 2 \\-1 & 2 & 2\end{pmatrix}.\]
\[\begin{pmatrix}2/9 & 2/9 & -1/9 \\ 2/9 & -1/9 & 2/9 \\-1/9 & 2/9 & 2/9\end{pmatrix}.\]
Determinar os ângulos internos de um triângulo $ABC$, sendo$A=(3,-3,3)$, $B=(2,-1,2)$ e $C=(1,0,2)$.
Encontre a inclinação da reta tangente à curva paramétrica $(x(t),y(t))=(3\cos t,4\sin t)$, em $t=\pi/4$ e $7\pi/4$, sem eliminar o parâmetro.
Verifique suas respostas do item anterior eliminando o parâmetro e diferenciando uma função apropriada de $x$.
Encontre uma equação em coordenadas cilíndricas para a superfície cuja equação em coordenadas cartesianas é dada por $x^2+y^2+4z^2=16$.
Usando a definição, a equação dada fica: $\displaystyle r^2+4z^2=16$.
Determinar as equações paramétricas e representar graficamente a reta que passa por $A(4,-3,-2)$ e $B(3,3,4)$.
$r:(x,y,z)=(3-t,3+6t,4+6t).$
As equações dos lados de um triângulo são $9x+2y+13=0$, $3x+8y-47=0$ e $x-y-1=0$. Encontrar a equação da circunferência circunscrita a esse triângulo.
Mostre que as três bissetrizes de um triângulo se interceptam em um único poto.
Considere o triângulo $ABC$ e bissetriz $B$ e $C$. Então eles cruzam no interior do triângulo que denotaremos por $O.$ Como $O$ está sobre a bissetriz de $B$, ele é equidistante de $AB$ e $BC.$ Mas também está na bissetriz de $C$ de forma que $O$ é equidistante de $AC$ e $BC.$ Assim, $O$ é equidistante aos três lados. Agora considere $\ AO.$ Como $AO$ divide o ângulo $\ BAC$ e passa no ponto (fora do vértice) equidistante de $AB$ e $AC$, será bissetriz de $BAC.$
Sejam $x$, $y$ os eixos cartesianos usuais do plano. Faça a mudança de variáveis $X = x - 2$ e $Y = y + 3$, que corresponde a mudarmos a origem para o ponto $\textbf{O} = (2,-3)$.
Dado o ponto $P=(1,4)$ no sistema $xy$, encontre as coordenadas de $P$ no sistema $XY$.
Dado o ponto $A=(2,1)$ no sistema $XY$, encontre as coordenadas de $A$ no sistema $xy$.
Decida se a cônica $C$ determinada pela equação $5x^2+6xy+5y^2-8 = 0$ é degenerada ou não. Se não for degenerada, encontre os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.
Considere a reta $r$ de equação \[
\frac{x-1}{2}\ =\ y-2\ =\ \frac{z-2}{3}
\] e considere o plano $\pi $ de equação $2x+y+z=-2$. Determine a equação do plano $\alpha $ que contém a reta $r$ e é perpendicular ao plano $\pi $.
$-x+2y=3.$
Encontre a equação do plano $\pi$ que é perpendicular ao plano $x+3y-z=7$ e contém os pontos $A=(2,0,5)$ e $B=(0,2,-1)$.
Consideremos os vetores $v_1=(1,3,-1)$ (normal ao plano
perpendicular) e $v_2=B-A=(-2,2,-6)$. Note que estes vetores estão
contidos no plano procurado e não são paralelos, com $v_1\times
v_2=(-16,8,8)$. Logo, o plano procurado pode ser descrito por $$\pi:
-16x+8y+8z=(-16,8,8)\cdot A=8\Longleftrightarrow -2x+y+z=1. $$
Demonstre que se $\alpha$ e $\beta$ são números reais tais que $\alpha(2,3) + \beta(3,2) = \vec{0}$, então $\alpha = 0$ e $\beta = 0$.
Qual a conclusão geométrica que podemos tirar do item acima?
- $\alpha(2,3) + \beta(3,2) = \vec{0}$ resulta no sistema cujas equações são: $2\alpha+3\beta=0$ e $3\alpha+2\beta=0$.
Resolvendo o sistema, obtemos $\alpha=\dfrac{-3}{2}\beta=\dfrac{-2}{3}\beta$ que só pode ser satisfeita se $\beta=0$. E, portanto, $\alpha=0$. - Podemos concluir que esses dois vetores são linearmente independentes, isso significa que eles tem direções distintas.
Suponha que o sistema de coordenadas $x'y'$ tenha sido obtido pela rotação de um sistema de coordenadas $xy$ por um
ângulo de $30^\circ$. Use a rotação \begin{align*}x & = x'\cos\theta - y'\sin\theta, \\y & = x'\sin\theta + y'\cos\theta, \end{align*}
para encontrar as coordenadas $x'y'$ da curva $y=x^2$.
O trabalho $W$ realizado por uma força $\vec{F}$ sobre um objeto, agindo por uma distância $\vec{PQ}$, é dado por $W=\vec{F}\cdot\vec{PQ}$. Uma caixa é puxada horizontalmente por meio de uma força constante de $10N$ na direção do cabo e a um ângulo de $60^\circ$ com a horizontal. Qual é o trabalho realizado para mover a caixa ao longo de $2m$?
$$\vec{F} = (10\cos 60^\circ, 10 \sin 60^\circ) = (5,5\sqrt{3}).$$
Dessa forma o trabalho realizado é dado por:
$$W = \vec{F}\cdot\vec{PQ} = (5,5\sqrt{3}) \cdot(2,0) = 10 N \ m.$$
Determine a equação do lugar geométrico dos pontos $P=(x,y,z)$ tais que a soma das distâncias de $P$ aos dois pontos $(2,0,0)$ e $(-2,0,0)$ é igual a $6$. Que lugar geométrico é este?
Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2-2y^2+4xy-6=0$.
Resolva a equação $f(x)=0$, onde $f(x)=\det(A-xI)$ e
$
A = \begin{pmatrix}
5&2&-3\\ 4&5&-4\\ 6&4&-4
\end{pmatrix}.
$
As raízes são: \(x=1\), \(x=2\) e \(x=3\).
Encontre a equação do plano $\pi$, sabendo que $C=(-5,1,2)\in \pi$ e $\pi$ é perpendicular à reta que passa pelos pontos $A=(2,2,-4)$ e $B=(7,-1,3)$.
Podemos tomar $B-A=(5,-3,7)$ como vetor normal ao plano e, sendo $(B-A)\cdot C=-25-3+14=-14$, segue que $$\pi:5x-3y+7z=-14.$$
Considere o ponto $A=(3,4,-2)$ e a reta $ r:\left\{
\begin{array}{ccc}
x & \;=\; & 1+t \\
y & \;=\; & 2-t \\
z & \;=\; & 4+2t
\end{array}
\right. $, onde $t\in \mathbb{R}.$
- Escreva a equação do plano $\pi $ perpendicular a $r$ que passa por $A$.
- Determine a reta que passa por $A$ e é perpendicular a $r$.
- $x-y+2z=-5.$
- $\left\{
\begin{array}{l}
x=3-4t \\
y=4 \\
z=-2+2t
\end{array}
\right. .$
Sabendo-se que para toda matriz $A\in \mathbb{R}^{n\times n}$ com $\det(A)\neq 0$ existe uma matriz $\overline{A}$, também $n\times n$, tal que $\overline{A}A=I_n$, mostre que:
- se $B$ e $C$ são matrizes $n\times n$ tais que $BC=I_n$, então $CB=I_n$.
- se $\det(B)\neq 0$ ($B$ matriz $n\times n$), então existe uma única $B^{-1}$ tal que $BB^{-1}=B^{-1}B=I_n$.
Ache a equação do círculo que passa pelos pontos $(a,0)$, $(b,0)$ e $(0,c)$. Ache também seu centro, raio, e faça um esboço de seu gráfico.
Sendo $A=(3,1)$ e $B=(3,-5),$ determinar os pontos $F$ e $G$ que dividem $AB$ em três segmentos de igual comprimento.
Calcular o comprimento de $\vec{AB}.$
$F=(3,-1)$ e $G=(3,-3)$
$|\vec{AB}|=6$
Sejam $A=(1,2,-1)$, $B=(5,0,1)$, $=C(2,-1,1)$ e $D=(6,1,-3)$ os vértices de um tetraedro. Calcule:
o volume deste tetraedro;
a sua altura relativa ao vértice $D$.
1. Os três vetores que determinam este tetraedro poderiam ser $
\overrightarrow{AB}$, $\overrightarrow{AC}$ e $\overrightarrow{AD}$. Como $ \overrightarrow{AB}$ $=\left( 4,-2,2\right) $, $\overrightarrow{AC}$ $ =\left( 1,-3,2\right) $ e $\overrightarrow{AD}$ $=\left( 5,-1,1\right) $ e $V_{T}=\frac{\left\vert \left[ \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}\right] \right\vert }{6}$, então
$\left[ \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}\right]
=\left\vert
\begin{array}{ccc}
4 & -2 & 2 \\
1 & -3 & 2 \\
5 & -1 & 1
\end{array}
\right\vert =36$.
Assim, concluímos que o volume do tetradro é $V_{T}=\frac{\left\vert 36\right\vert }{6}=6$.
2 . Os vetores que determinam o tetraedro são $\overrightarrow{AB},$ $
\overrightarrow{AC}$ e $\overrightarrow{AD}.$ Sabemos que o volume do
tetraedro é dado por $V_{T}=\frac{A_{b}h}{6}$, onde $A_{b}$ é a área da base e $h$ é a altura. Como a área da base é um triângulo determinado pelos vetores $\overrightarrow{AB}$ e $\overrightarrow{AC}, $ $A_{b}=\frac{\left\vert \overrightarrow{AB}\times \overrightarrow{AC}\right\vert }{2}$.
Por outro lado, do cálculo vetorial temo que $V_{T}=\frac{\left\vert
\left[ \overrightarrow{AB},\overrightarrow{AC},\overrightarrow{AD}\right]
\right\vert }{6}.$ Então, temos $\left\vert \left[ \overrightarrow{AB},
\overrightarrow{AC},\overrightarrow{AD}\right] \right\vert =\left\vert
\overrightarrow{AB}\times \overrightarrow{AC}\right\vert h$ $\Longrightarrow h=\frac{\left\vert \left[ \overrightarrow{AB},\overrightarrow{AC}, \overrightarrow{AD}\right] \right\vert }{\left\vert \overrightarrow{AB}\times \overrightarrow{AC}\right\vert }.$
Como $\overrightarrow{AB}$ $=\left( 4,-2,2\right) $, $\overrightarrow{AC}$ $
=\left( 1,-3,2\right) $e $\overrightarrow{AD}$ $=\left( 5,-1,1\right) $, temos $\left[ \overrightarrow{AB},\overrightarrow{AC}, \overrightarrow{AD} \right] =36$ e
$\overrightarrow{AB}\times \overrightarrow{AC}=\left\vert
\begin{array}{ccc}
\overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\
4 & -2 & 2 \\
1 & -3 & 2
\end{array}
\right\vert =2\overrightarrow{i}-6\overrightarrow{j}-10\overrightarrow{k}.$
Logo, $\left\vert \overrightarrow{AB}\times \overrightarrow{AC}\right\vert =2 \sqrt{35}$. Portanto, concluímos que $h=\frac{18\sqrt{35}}{35}$.
Para cada um dos pontos abaixo faça a mudança de coordenadas de polares para cartesianas:
- $ (3,\frac{\pi}{4})$,
- $ (6,\frac{2\pi}{3})$,
- $ (-2,\frac{\pi}{6})$,
- $ (4,-36^{o})$,
- $ (-3,150^{o})$,
- $ (1,\frac{187\pi}{6})$,
- $ (-2,-\frac{16\pi}{3})$.
Determine uma equação da superfície consistindo em todos os pontos $P(x,y,z)$ que estão duas vezes mais afastados do plano $z=-1$ que do ponto $(0,0,1)$. Identifique a superfície.
Decida se a cônica $C$ determinada pela equação $\displaystyle 9x^2-18x+9y^2-6y=10$ é degenerada ou não. Se não for degenerada, encontre os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.
$r:\dfrac{x+6}{2}=y+3=z+1$ e $S:x^2+y^2+z^2-4x+2y-4z+4=0$.
Ache a equação da reta tangente a $x^2+y^2=25$ no ponto $(-3,4)$.
Mostre que por cada ponto do parabolóide hiperbólico $z=x^2-y^2$ passam duas retas inteiramente contidas nele.
Encontre o ponto $Q$ do espaço tal que o vetor com origem no ponto $P=(1,0,1)$ e com extremidade em $Q$ tenha norma, direção e sentido iguais ao vetor $(1,-2,1)$.
$Q=(2,-2,2)$.
Um ponto $(x,y,z)$ se move tal que sua distância ao ponto $(3,2,4)$ é sempre $5$. Qual figura $(x,y,z)$ traça? Faça um esboço de uma parte dessa figura (um octante). Escreva uma equação simplificada que os pontos $(x,y,z)$ devem satisfazer.
Uma esfera com centro $(3,2,4)$, raio $5$, com equação $x^2+y^2+z^2-6x-4y-8z+4=0$.
Encontre as equações vetoriais e paramétricas para a reta $r$ que é perpendicular ao plano $2x-y+2z=4$ e passa pelo ponto de interseção das retas $r_1$ e $r_2$ dadas por: $$
r_1: \left\{\begin{array}{ccr}
x&=&t \\ y&=&2+t \\ z&=&1+t
\end{array}\right.,\,\,\, t\in \mathbb{R} \;\;\;\;\;\; \mbox{e} \;\;\;\;\;\;
r_2:\left\{\begin{array}{ccr}
x&=&-1+2s \\ y&=&1+s \\ z&=&0
\end{array}
\right.,\;\;s\in \mathbb{R}.$$
Usando escalonamento, obtemos que o ponto de intersecção ocorre para os valores $s=0$ e $t=-1$ dos respectivos parâmetros. Ou seja, as retas $r_1$ e $r_2$ se intersectam no ponto $(-1,1,0)$. Como $r$ é perpendicular ao plano, então podemos tomar a normal $(2,-1,2)$ como um vetor diretor. Portanto, a reta procurada pode ser descrita vetorialmente como $$\vec{r}=(-1,1,0)+t(2,-1,2),\quad t\in\mathbb{R},$$ ou ainda, parametricamente, como sendo $$\begin{cases} x=-1+2t,\\y=1-t,\\z=2t,\quad t\in\mathbb{R}. \end{cases}$$
Em um sistema de coordenadas ortogonal, um detonador de bomba está localizado no ponto $P=(2,1,2)$. Para ativá-lo, é preciso acender a extremidade $A=(2,1,1)$ de uma haste de combustível paralela ao vetor $\vec{u}=(1,0,2)$, cuja extremidade $B$ toca o ponto inicial de um caminho de pólvora que segue em linha reta até o detonador. O fogo se propaga com velocidade unitária na haste e no caminho de pólvora e este está contido no plano $\pi : x+2y-z-2=0$. Mostre que a explosão ocorre entre $3$ e $4$ segundos após o início do processo.
Sejam os vetores $\vec{u}=(2,1,3)$, $\vec{v}=(0,1,-1)$, $\vec{w}=(4,5,3)$. Mostre que $\vec{u}, \vec{v}$ e $\vec{w}$ são coplanares.
De fato, basta verificar que $\vec{u}\cdot(\vec{v}\times\vec{w})=0$.
Determine a equação do plano $\pi_1$ que passa por $A = (10/3, 1,-1), B = (1, 9/2,-1) \text{ e } C = (1,-1, 5/6)$.
Determine a equação do plano $\pi_2$ que passa por $D = (-1, 4,-1), E = (3/2,-1, 10)$ e é paralelo ao eixo $z$.
Escreva as equações paramétricas para a reta $r$, interseção dos planos $\pi_1$ e $\pi_2$.
Qual o ângulo entre os planos $\pi_1$ e $\pi_2$?
Qual o ponto $P$ de $\pi_1$ que está mais próximo da origem? (Sugestão: este ponto é tal que $ \overrightarrow{OP}$ é ortogonal ao plano $\pi_1$.)
Encontre a distância perpendicular entre os planos (paralelos): $$ 4x-8y-z=9 \;\;\; \mbox{e}\;\;\;2x-4y-\frac{z}{2}=5.$$
O primeiro plano ($\pi_1$) tem normal, digamos, $n_1=(4,-8,-1)$ e
$p_1=(0,0,-9)$ é um ponto sobre o mesmo. Note também que $p_2=(0,0,-10)$
é um ponto sobre o outro plano ($\pi_2$). Assim, segue que $$
d(\pi_1,\pi_2)=d(\pi_1,p_2)=\|\mathrm{proj\,}_{n_1}(\vec{p_1p_2})\|=\frac{1}{9}.$$
Demonstre que se $\alpha$ e $\beta$ são números reais tais que $\alpha(2,3) + \beta(3,2) = \vec{0}$, então $\alpha = 0$ e $\beta = 0$.
Qual a conclusão geométrica que podemos tirar do item acima?
- $\alpha(2,3) + \beta(3,2) = \vec{0}$ resulta no sistema cujas equações são: $2\alpha+3\beta=0$ e $3\alpha+2\beta=0$.
Resolvendo o sistema, obtemos $\alpha=\dfrac{-3}{2}\beta=\dfrac{-2}{3}\beta$ que só pode ser satisfeita se $\beta=0$. E, portanto, $\alpha=0$. - Podemos concluir que esses dois vetores são linearmente independentes, isso significa que eles tem direções distintas.
No tetraedro $ABCD$, seja $X$ um ponto tal que $\vec{AX}$ = $m\vec{XD}$. Determine os valores de $m$ para os quais os vetores $\vec{AX}+\vec{AC}$, $\vec{BX}+\vec{BC}$ e $(1-m)\vec{BC}+\vec{AB}$ sejam linearmente independentes.
Verifique a posição relativa do seguinte par de retas (isto é, verifique se são paralelas, concorrentes ou reversas):
\[
\left\{\begin{array}{ccr}x &=& 1+2t\\y &=& -3-t\\ z &=& t\end{array}\right., \ \
\left\{\begin{array}{ccr}x &=& 1/2+3/2s\\y &=& -1+s\\ z &=& 1/3s \end{array} \right. .
\]
São reversas.
Determine a área do quadrado de lados paralelos aos eixos coordenados e inscrito na elipse com vértices $A_1=(10,0)$, $A_2=(-10,0)$, $B_1=(0,6)$, $B_2=(0, -6)$.
Construa a curva cujas equações paramétricas são dadas por: $x=-2t-3$, $y=t+5$ e $z=4t-7$.
Determinar $u\cdot v$, sabendo que $\|u\times v\|=12$, $\|u\|=13$ e $v$ é unitário.
Usando que $\| u\times v\|=|u||v|\sin\theta$, obtemos que
$\sin\theta=\dfrac{12}{13}$, onde $\theta$ é o ângulo entre os vetores
$u,v\in\mathbb{R}^3$. Por conseguinte, temos que
$\cos\theta=\sqrt{1-\sin^2\theta}=\sqrt{1-(\dfrac{12}{13})^2}=\dfrac{5}{13}$.
Logo, $u\cdot v=|u||v|\cos\theta=13\cdot 1\dfrac{5}{13}=5$.
- Determine a equação do plano $\pi_1$ que passa por $A = (3, 1,-1), B = (1, 2,-1) \text{ e } C = (1,-1, 0)$.
- Determine a equação do plano $\pi_2$ que passa por $D = (-1, 4,-1), E = (2,-1,0)$ e é paralelo ao eixo $y$.
- Escreva as equações paramétricas para a reta $r$, interseção dos planos $\pi_1$ e $\pi_2$.
- Qual o ângulo entre os planos $\pi_1$ e $\pi_2$?
- Qual o ponto $P$ de $\pi_1$ que está mais próximo da origem? (Sugestão: este ponto é tal que $\overrightarrow{OP}$ é ortogonal ao plano $\pi_1$.)
Resolver o sistema linear: \[\left\{\begin{array}{ccccccccccr}x_1&-&2x_2&+&3x_3&+&2x_4&+&x_5&=&10 \\2x_1&-&4x_2&+&8x_3&+&3x_4&+&10x_5&=& 7 \\3x_1&-&6x_2&+&10x_3&+&6x_4&+&5x_5&=&27\\\end{array}\right..\]
$x_3 = \dfrac{-19+2 x1- 4 x2}{3}, x_4 = \dfrac{ 41 - 4 x_1 + 8 x_2}{3}, x_5 = \dfrac{5- x_1+2 x_2}{3}, \forall x_1, x_2\in \mathbb{R}$.
Às vezes o gráfico de uma equação quadrática é uma reta, um par de retas ou até mesmo um único ponto. Nos referimos a tais gráficos como cônicas degeneradas. É também possível que a equação não seja satisfeita para nenhum valor real das variáveis, caso este no qual não existe um gráfico e dizemos tratar-se de uma cônica imaginária. Nos itens abaixo, identifique a cônica com a equação dada, dizendo se é degenerada ou imaginária. Quando possível, esboce também o gráfico.
$\displaystyle x^2-y^2=0$;
$\displaystyle x^2+2y^2+2=0$;
$\displaystyle 3x^2+y^2=0$.
Sejam $P=(a,b, c)$ um ponto no espa\c co e $r$ a reta $\left\{ \begin{array}{c} x+y+2z=4 \\ x-2y+z=5\end{array} \right.$. Para cada par não nulo de n\'umeros reais, $m,\,n$, considere o plano:
$$\pi_{(m,n)}: (m+n)x+(m-2n)y+(2m+n)z=4m+5n.$$
Mostre que: $P\in r$ se e somente se $P\in \pi_{(m,n)}$, para todo par não nulo $(m,n)$.
Verifique se os pontos $A=(1,2,4), B=(-1,0,2), C=(0,2,2) \;\mbox{e}\; D=(-2,1,3)$ estão no mesmo plano ou não.
Não estão pois $\displaystyle \vec{AB}\cdot(\vec{BC}\times\vec{AD})=-8$.
Use o método de inversão por escalonamento para obter, se possível, a inversa das seguintes matrizes:
- $A= \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\ 2 & 3 & 5 \end{bmatrix} $;
- $B=\begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} $.
O momento escalar ou torque sobre o ponto $P$ de uma força $\vec{F}$ aplicada a um ponto $Q$ é dado por $\|\vec{PQ} \times \vec{F}\|$. Uma força $\vec{F}$ com magnitude de $10 N$ é aplicada na direção $y$ positiva sobre o ponto $Q=(1,1,1)$ em um cubo com lados de tamanho $1m$. Determine o momento escalar de $\vec{F}$ sobre o ponto $P = (0,0,0)$. Faça um esboço do gráfico, indicando a força e o momento escalar.
Considere os seguintes vetores de $\mathbb{R}^{3}$: $U=(1,0,-1)$ e $V=(0,1,0)$.
- Determine a forma geral de um vetor perpendicular a $U$. Explique porque sua resposta contém duas variáveis livres.
- Determine (caso existam) as equações das retas que passam pelo ponto $(1,2,3)$, são perpendiculares ao vetor $U$ e fazem ângulo de $\dfrac{\pi}{3}$ com o vetor $V$.
- $(a,b,a)$.
- $\left\{
\begin{array}{l}
x=1+\sqrt{3} \\
y=2+\sqrt{2}t \\
z=3+\sqrt{3}t
\end{array}
\right. $ e $\left\{
\begin{array}{l}
x=1+\sqrt{3}t \\
y=2-\sqrt{2}t \\
z=3+\sqrt{3}t
\end{array}
\right. .$
Os seguintes pares de retas $r_1$ e $r_2$ são paralelas ou concorrentes. Encontre uma equação geral do plano que as contém.
$$r_1:\;\begin{cases}x=1+2t\\
y=-2+3t\\ z=3-t\end{cases}\ \ \ {\rm e}\ \ \ r_2: \begin{cases}x=1+2t\\
y=-2-t\\ z=3+2t.\end{cases}$$
As retas são concorrentes em $P(1,-2,3)$; $\pi: 5x-6y-8z+7=0$.
Esboce o gráfico da equação paramétrica dada por $(x,y)=(cos(t),tan(t))$.
Seja $C$ o lugar geométrico dos pontos $P = (x,y)$ de um plano cujas coordenadas $x$ e $y$ satisfazem a equação $3x^2+2xy+3y^2-6x-6y+1=0$.
Qual a natureza da cônica $C$?
Escrever a forma canônica da equação de $C$.
Caso $C$ seja uma elipse ou uma hipérbole, encontre os focos e a excentricidade. Caso seja uma hipérbole, encontre também as equações das retas assíntotas no sistema $xy$ original.
Calcule o determinante da matriz:
$
\begin{pmatrix}
\sin\alpha&\cos\alpha&1\\ \sin\beta&\cos\beta&1\\ \sin\gamma&\cos\gamma&1
\end{pmatrix}.
$
$\sin(\alpha - \beta) - \sin(\alpha - \gamma) + \sin(\beta - \gamma)$
O momento escalar ou torque sobre o ponto $P$ de uma força $\vec{F}$ aplicada a um ponto $Q$ é dado por $\|\vec{PQ} \times \vec{F}\|$. Uma força $\vec{F}$ com magnitude de $10 N$ é aplicada na direção $y$ positiva sobre o ponto $Q=(1,1,1)$ em um cubo com lados de tamanho $1m$. Determine o momento escalar de $\vec{F}$ sobre o ponto $P = (1,0,0)$. Faça um esboço do gráfico, indicando a força e o momento escalar.
Uma indústria produz três produtos $p_1,p_2,p_3$, com duas matérias prima distintas, $m_1$ e $m_2$. Para a fabricação de cada unidade de $p_1$ são utilizados $1$ unidade de $m_1$ e $2$ unidades de $m_2$; para cada unidade de $p_2$, $1$ unidade de $m_1$ e $1$ unidade de $m_2$; e para cada unidade de $p_3$, $1$ unidade de $m_1$ e $4$ unidades de $m_2$. Utilizando matrizes, determine quantas unidades de $m_1$ e $m_2$ são necessárias na produção de $x$ unidades de $p_1$, $y$ unidades de $p_2$ e $z$ unidades de $p_3$.
Seja $A$ a matriz $2 \times 3$ tal que sua primeira linha contenha informações sobre $m_1$ e a segunda linha informações sobre $m_2$, e a primeira, segunda e terceira colunas informações sobre $p_1$, $p_2$ e $p_3$, respectivamente:
$$A=\begin{pmatrix}1 & 1 & 1 \\ 2& 1& 4 \end{pmatrix} \text{ e } X=\begin{pmatrix}x\\y\\z\end{pmatrix},$$
então a multiplicação $AX$ nos dá o vetor tal que a sua primeira linha seja a quantidade de $m_1$ necessária e sua segunda linha a quantidade de $m_2$:
$$AX=\begin{pmatrix} x+y+z \\ 2x+y+4z \end{pmatrix}.$$
A resultante de $n$ forças $\vec{F_1}, \vec{F_2}, \ldots, \vec{F_n}$ (que podem ser representadas por vetores) é dada pela soma $\vec{F_1}+\vec{F_2}+\ldots,\vec{F_n}$. A magnitude de uma força $\vec{F}$ é dada pela norma $\|\vec{F}\|$. Dadas as forças na figura abaixo, determine a magnitude da força resultante e o ângulo que ela faz com o eixo $x$ positivo (sugestão: use a Lei dos Cossenos e a Lei dos Senos).
Ache a esfera que tem centro na reta $r: \left\{ \begin{array}{c} x=2z-3 \\ y = z-1 \end{array} \right.$ e passa pelos pontos $(6,-1,3)$ e $(0,7,5)$.
Seja $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ uma função definida por $f(x,y) = (2x+y,x-y)$. Ache o(s) valor(es) de $\lambda$ para que a equação $f(x,y) = \lambda(x,y)$ possua solução $(x,y) \neq 0$.
$\lambda=\dfrac{1 + \sqrt{13}}{2}$ ou $\lambda=\dfrac{1 - \sqrt{13}}{2}$.
Dê equações paramétricas para o círculo centrado na origem de raio 1, indicando os domínios onde o parâmetro $t$ assume valores. Esboce suas parametrizações.
A resultante de $n$ forças $\vec{F_1}, \vec{F_2}, \ldots, \vec{F_n}$ (que podem ser representadas por vetores) é dada pela soma $\vec{F_1}+\vec{F_2}+\ldots,\vec{F_n}$. A magnitude de uma força $\vec{F}$ é dada pela norma $\|\vec{F}\|$. Dadas as forças na figura abaixo, determine a magnitude da força resultante e o ângulo que ela faz com o eixo $x$ positivo (sugestão: use a Lei dos Cossenos e a Lei dos Senos).
Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2-y^2-4x+2y+2=0$.
Quais dos seguintes objetos não podem ser associados a elipsóides, pelo aspecto da sua superfície externa?
Um ovo.
Um bola de rugby.
Uma câmara de ar.
Uma bola de futebol.
Um charuto.
O aspecto de uma bola de rugby lembra bastante o de um elipsóide, o que não ocorre com as demais opções.
Dê uma representação paramétrica para as seguintes superfícies:
parabolóide elíptico $x=5y^2+2z^2-10$;
parte do parabolóide elíptico $x=5y^2+2z^2-10$ que está em frente ao plano $yz$.
a). Como a superfície está na forma $x=f(y,z)$, podemos tomar $y$ e $z$ como parâmetros, obtendo assim o seguinte conjunto de equações paramétricas $$x=5u^2+2v^2-10, \quad y = u \ \textrm{e}\ z=v.$$ Ou seja, temos a representação paramétrica $$ \sigma(u,v)= (5u^2+2v^2-10,u,v), \quad u,v\in\mathbb{R}. $$ b). Trata-se de uma restrição da representação paramétrica anterior. Entretanto, como queremos apenas a parte da superfície em frente ao plano $yz$, consideramos $x\geq 0$. Ou seja, devemos considerar $5u^2+2v^2-10 \geq 0$ ou $5u^2+2v^2 \geq 10$.
Resolva a equação $f(x)=0$, onde $f(x)=\det(A-xI)$ e
$
A = \begin{pmatrix}
4&-2&2\\ -5&7&-5\\ -6&6&-4
\end{pmatrix}.
$
As raízes são: \(x=3\) e \(x=2\), esta última com multiplicidade dupla.
Seja $T$ a temperatura em um ponto $(x,y,z)$ sobre a reta dada por $$x=t, y=1+t, z=3-2t.$$ A temperatura varia com o espaço de tal forma que $T=25 x^2 y z$. Utilize um recurso computacional para encontrar uma aproximação para a temperatura máxima na parte da reta que se estende do plano $xz$ ao plano $xy$.
Dados dois vetores $\vec{A}$ e $\vec{B}$, e $\theta$ o ângulo entre eles, ache fórmulas para $\|\vec{A} + \vec{B}\|$ e $\|\vec{A} - \vec{B}\|$ (Sugestão: use a Lei dos Cossenos).
$\|\vec{A} + \vec{B}\|^2=\|\vec{A}\|^2+\|\vec{B}\|^2 +2\|\vec{A}\|\|\vec{B}\|\cos\theta$.
A reta $r$ passa pelo ponto $A(4,-3,-2)$ e é paralela à reta
$$\begin{cases} x=1+3t\\ y=2-4t\\ z=3-t. \end{cases}$$
Se $P(m,n,-5)\in r$, determinar $m$ e $n$.
$m=13,\;n=-15.$
Nesse sentido, podemos escrever a equação de $r$, pois temos um ponto $A(4,-3,-2)$ e sua direção:
$$\begin{cases} x=4+3\overline{t}\\ y=-3-4\overline{t}\\ z=-2-\overline{t} \end{cases}$$,
onde $\overline{t}$ é o parâmetro. Usamos $\overline{t}$ pois os parâmetros da reta $r$ são diferentes dos parâmetros da reta $s$. Assim, temos um valor de $z$ no ponto $P$, então podemos encontrar o valor de $\overline{t}$ correspondente, isto é, $-5=-2-\overline{t} \Longrightarrow \overline{t}=3.$ Substituindo, $ \overline{t}=3$ na equação obtida para a reta $r$, obtemos as coordenadas de $P$, isto é $m=4+3\overline{t} \Longrightarrow m=13$ e $n=-2-\overline{t}\Longrightarrow n=-15.$ Portanto, concluímos que os valores de $m=13$ e $n=-15$ e o ponto é dado por $P\left( 13,-15,5\right)$.
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}1 & 2 \\ 3 & 5\end{pmatrix}.\]
\[\begin{pmatrix}-5 & 2 \\ 3 & -1\end{pmatrix}.\]
Encontre uma equação em coordenadas cartesianas para a curva cuja equação em coordenadas polares é dada por $r^2=2sen2\theta$.
Usando a relação entre coordenadas polares e rectangulares, obtemos a seguinte equação: $\displaystyle x^2+y^2=2\sin(2\arctan\dfrac{y}{x}), \quad x\neq 0.$
- Encontre a equação da reta $r$ que passa pelos pontos $A=(3,5,3)$ e $B=(1,1,1)$.
- Considere $s$ a reta $(x,y,z)=(1,2,3)+t(1,2,1).$ Verifique se as retas $r$ e $s$ são paralelas, reversas ou concorrentes.
- Ache, se possível, uma equação geral do plano que contém as retas $r$ e $s$.
- Calcule a distância entre as retas $r$ e $s$.
- $\left\{
\begin{array}{l}
x=1+2t \\
y=1+4t \\
z=1+2t
\end{array}
\right. $. - Paralelas.
- $3x-2y+z=2.$
- $\sqrt{\frac{7}{3}}.$
Considere a cônica definida pela equação $2xy+x-2=0.$
Determinar seu centro.
Classificar a cônica.
Esboçar seu gráfico.
Um homem parado num ponto $Q=(x,y)$ ouve o estampido de um rifle localizado no ponto $P_1=(1000,0)$ e o som do projétil atingindo o alvo no ponto $P_2=(-1000,0)$ ao mesmo tempo. Se o projétil viaja a $2000$ pés/s e o som a $1100$ pés/s, ache uma equação relacionando $x$ e $y$.
Verifique a posição relativa do seguinte par de retas (isto é, verifique se são paralelas, concorrentes ou reversas):
\[r:(2,4,1) + t(1,-2,3), \ \ \ s:(-1,3,2) + s(4,-1,2) .\]
São concorrentes.
Examine o sistema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[\left\{\begin{array}{ccccccccccr}&&x_1&+&x_2&-&x_3&+&2x_4&=&6 \\&-&x_1&+&x_2&+&4x_3&-&3x_4&=&-2 \\&&&&x_2&+&3x_3&+&x_4&=& 5 \\&&&&x_1&+&5x_2&+&5x_3& =&14 \\\end{array}\right. . \]
Esse sistema possui infinitas soluções.
Mostre que o elipsóide obtido girando uma elipse com semi-eixo maior $a$ e semi-eixo menor $b$ em torno do eixo menor tem área de superfície
$$ S= 2\pi ab\left(\dfrac{a}{b}+\dfrac{b}{c}\ln\dfrac{a+c}{b}\right), $$
onde $c=\sqrt{a^2-b^2}$.
Determine a equação da superfície de revolução gerada pela rotação da curva dada por $9x^2+4y^2=36$ e $z=0$ em torno do eixo $y$.
Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+y^2+(1/3)xy+6x+8y-5=0$.
Construa a curva cujas equações paramétricas são dadas por: $x=\cos\theta$, $y=2\sin\theta$ e $z=3\theta$.
Identifique a cônica descrita pela equação $49x^2-42xy+9y^2+56x-24y+16=0$.
Mostre que o sistema linear:
$$ \left\{ \begin{array}{ccccc}a_{11} x &+& a_{12} y & = & b_1\\a_{21} x &+& a_{22} y & = & b_2 \end{array} \right.$$
pode ser escrito em forma matricial $AX=b$, onde:
$$A=\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}, X = \begin{pmatrix} x \\ y \end{pmatrix}, b = \begin{pmatrix} b_1 \\ b_2 \end{pmatrix}.$$
Reduza a equação $xz = 1$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
A equação da quádrica $xz = 1$ pode ser escrita em forma matricial:
$$X^tAX-1=0,$$
onde:
$$X=\begin{pmatrix}x \\ y \\ z\end{pmatrix}, \ A=\begin{pmatrix}0 & 0 & 1/2 \\0 & 0 & 0 \\1/2 & 0 & 0\end{pmatrix}. $$
Seja:
$$P(\lambda)=\det(A-\lambda I)=\det\begin{pmatrix}-\lambda & 0 & 1/2 \\0 & -\lambda & 0 \\1/2 & 0 & -\lambda\end{pmatrix}=-\lambda^3+\lambda/4.$$
As raízes de $P(\lambda)$ são $0$, $-1/2$ e $1/2$. Considere os sistemas lineares referentes às raízes $0$ e $1/2$: $A X = 0$ e $(A-1/2 I) X = 0$. Uma solução de norma unitária desses sistemas consiste em $U_1=(0,1,0)$ e $U_2=(1/\sqrt{2},0,1/\sqrt{2})$, respectivamente. Sejam $U_3=U_1 \times U_2 = (1/\sqrt{2},0,-1/\sqrt{2})$, $Q=(U_1,U_2,U_3)$ e $X'=\begin{pmatrix}x' \\ y' \\ z'\end{pmatrix}.$ Dessa forma, com a mudança de coordenadas dada por $X=QX'$, a equação $xz=1$ se transforma em:
$$\dfrac{(y')^2}{2}-\dfrac{(z')^2}{2}=1,$$
que é a equação de um cilindro hiperbólico.
Ache a equação do círculo com centro $(-2,5)$ e raio $r = 3$.
$(x+2)^2+(y-5)^2=9$, ou seja, $x^2+y^2+4x-10y+20=0$.
Decida se a cônica $C$ determinada pela equação $\displaystyle 4y^2-4y-24x+9=0$ é degenerada ou não. Se não for degenerada, encontre os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.
Dada a reta $r:\;(x,y,z)=(3+t,1-2t,-1+2t)$, determinar as equações reduzidas das retas projeções de $r$ sobre os planos $xOy$ e $xOz$.
$r_{xOy}=(3+t',1-2t',0),\;r_{xOz}=(3+t,0,-1+2t)$
Encontre condições sobre o vetor $v=(a,b,c)$ para que exista uma reta na direção de $v$ que intercepte simultaneamente as retas $r$ e $s$:
$$r:\begin{cases} x= 2 + t\\y = 5 - t\\z = 3 + t \end{cases}\ \ \ {\rm e}\ \ \ s:\begin{cases} x= t\\y = 1 - t\\z = -2 \end{cases}$$
Determine a equação da superfície de revolução gerada pela rotação da curva dada por $yz=1$ e $x=0$ em torno do eixo $z$.
A resultante de $n$ forças $\vec{F_1}, \vec{F_2}, \ldots, \vec{F_n}$ (que podem ser representadas por vetores) é dada pela soma $\vec{F_1}+\vec{F_2}+\ldots,\vec{F_n}$. A magnitude de uma força $\vec{F}$ é dada pela norma $\|\vec{F}\|$. Dadas as forças na figura abaixo, determine a magnitude da força resultante e o ângulo que ela faz com o eixo $x$ positivo (sugestão: use a Lei dos Cossenos e a Lei dos Senos).
Dadas as matrizes
\[A=\left(\begin{array}[c]{rrr}1 & -3 & 2\\2 & 1 & -3\\4 & -3 & -1\end{array}\right) \text{, }B=\left(\begin{array}[c]{rrrr}1 & 4 & 1 & 0\\2 & 1 & 1 & 1\\1 & -2 & 1 & 2\end{array}\right) \text{ e }C=\left(\begin{array}[c]{rrrr}2 & 1 & -1 & -2\\3 & -2 & -1 & -1\\2 & -5 & -1 & 0\end{array}\right) ,\]
mostre que $AB=AC$.
$AB=\left(\begin{array}[c]{rrrr}-3 & -3 & 0 & 1\\1 & 15 & 0 & -5\\-3 & 15 & 0 & -5\end{array}\right) $ e $AC=\left(\begin{array}[c]{rrrr}-3 & -3 & 0 & 1\\1 & 15 & 0 & -5\\-3 & 15 & 0 & -5\end{array}\right) $.
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$.
\[\left\{\begin{array}{ccccccr}2x_1&+&5x_2&+&12x_3&=& 6 \\3x_1&+&x_2&+&5x_3&=& 12 \\5x_1&+&8x_2&+&21x_3&=& 17\\\end{array}\right. .\]
Uma força $\vec{F} = (4,-6,1)$ N é aplicada a um ponto que se move uma distância de $15$ metros na direção e sentido do vetor $(1,1,1)$. Quanto trabalho foi realizado?
Identifique a seguinte cônica, determinando sua excentricidade, sua equação cartesiana, a equação cartesiana da diretriz e as coordenadas cartesianas do(s) foco(s) e do(s) vértice(s): $r=\frac{3}{2+4cos\theta}$.
Verificar se as retas são concorrentes e, em caso afirmativo, encontrar o ponto de interseção:
$$r_1:\;\begin{cases}x=2+t\\ y=4-t\\ z=-t. \end{cases}\ \ \ {\rm e } \ \ \ \begin{cases} y=6-x\\ z=2-x\end{cases}$$
As retas são coincidentes.
A Pirâmide de Quéops, também conhecida como Grande Pirâmide de Gizé, no Egito, tem o formato muito próximo de um tetraedro regular. Pesquise as suas medidas e utilizando o produto misto, calcule aproximadamente o volume interno da pirâmide. Defina o sistema de coordenadas e os três vetores do produto misto de forma a facilitar as contas.
Mostre que o vetor $\displaystyle p=b-\frac{a\cdot b}{a\cdot a}\;a$ é perpendicular ao vetor $a$.
$\displaystyle p\cdot a=b\cdot a-\frac{a\cdot b}{a\cdot a}\;a\cdot a=b\cdot a-\frac{a\cdot b}{||a||^2}||a||^2=b\cdot a-a\cdot b\,\frac{||a||^2}{||a||^2}=b\cdot a-a\cdot b=0$.
Os únicos números reais cujos quadrados são eles próprios são $0$ e $1$. Ache todas as matrizes quadradas $A$, $2\times2$, tais que $A^{2}=A.$
Cujas soluções são:
$X_1= \left(\begin{array}[c]{cc}x & y\\\frac{x-x^2}{y} & 1-x\end{array}\right), \forall x,y\in \mathbb{R};$ $X_2= \left(\begin{array}[c]{cc}0 & 0\\z & 1\end{array}\right), \forall z\in \mathbb{R};$ $X_3= \left(\begin{array}[c]{cc}1 & 0\\z & 0\end{array}\right), \forall z\in \mathbb{R};$ $X_4= \left(\begin{array}[c]{cc}0 & 0\\0 &0\end{array}\right);$ $X_5= \left(\begin{array}[c]{cc}0 & 0\\0 & 1\end{array}\right);$ $X_6= \left(\begin{array}[c]{cc}1 & 0\\0 & 0\end{array}\right);$ $X_7= \left(\begin{array}[c]{cc}1 & 0\\0 & 1\end{array}\right).$
Ache a equação do círculo com centro $C=(3,-2)$ tangente a $2x-y=0$.
Visto que seu centro é dado, nos basta então encontrar seu raio. Para isso, vamos determinar o ponto de tangencia, digamos, $P=(x_1,y_1)$. Você pode notar, inicialmente, que a reta dada passa pela origem e tem diretor $\vec{v}=(1,2)$. Assim, devemos ter que $\displaystyle (P-C)\cdot\vec{v}=0$, ou seja, $(x_1-3,y_1+2)\cdot (1,2)=0\Longrightarrow x_1+2y_1=-1$. Por outro lado, como $P$ é um ponto da reta
dada, deve cumprir sua equação. Enfim, $P$ pode ser obtido pelo sisteminha $$\begin{cases} x_1+2y_1=-1,
\\ 2x_1-y_1=0, \end{cases}\Leftrightarrow \left(\begin{array}{cccc} 1&2 & \vdots & -1 \\ 2 & -1 & \vdots & 0 \end{array}\right)
\begin{array}{c} {}\\ \sim \\ {}\end{array} \left(\begin{array}{cccc} 1 & 2 & \vdots & -1 \\ 0& -5 & \vdots & 2\end{array}\right). $$ Donde obtemos a solução $$ x_1=\frac{1}{5} \quad\text{e}\quad y_1=-\frac{2}{5}. $$ Segue que o raio é dado então por $r=\|P-c\|=2\sqrt{\dfrac{13}{5}}$. Portanto, a equação procurada do círculo é dada por $$ (x-3)^2+(y+2)^2=\frac{52}{5}.$$
Ache as equações dos dois círculos tangentes a $2x-5y+1=0$ no ponto $(2,1)$ e com raio $r = 3$.
Um roteador de internet sem fio é instalado de forma que o sinal
chegue com mesma intensidade em qualquer ponto $(x,y)$ a uma distância
de $10$m do local de instalação $(0,0)$ (desconsiderando eventuais efeitos
que possam diminuir a intensidade do sinal). Um outro roteador (nas mesmas condições), é instalado na posição $(20,0)$. Um terceiro roteador deve ser colocado de forma que o sinal chegue a uma maior área possível, ao mesmo tempo que fique próximo dos outros dois roteadores. Determine os dois pontos no plano cartesiano tais que este novo roteador possa ser instalado.
Mostre que a projeção no plano $yz$ da curva correspondente à intersecção das superfícies $x = 1 - y^{2}$ e $x = y^{2} + z^{2}$ é uma elipse. Explique bem seu raciocínio.
Considere a multiplicação de matrizes $3\times3$ abaixo, em que os pontos de interrogação representam coeficientes desconhecidos:
\[\left(\begin{array}[c]{rrr}9 & -8 & 4\\? & -7 & 2\\? & -4 & ?\end{array}\right) \left(\begin{array}[c]{rrr}-5 & -9 & ?\\? & 5 & ?\\4 & -8 & -7\end{array}\right) =\left(\begin{array}
[c]{ccc}c_{11} & c_{12} & c_{13}\\c_{21} & c_{22} & c_{23}\\c_{31} & c_{32} & c_{33}\end{array}\right) .\]
Só é possível determinar um coeficiente da matriz produto. Qual é ele e qual é o seu valor?
Lembre-se que a multiplicação de matrizes é feita entre linhas 'vezes' colunas. Note que, na primeira matriz apenas a primeira linha está completada (não tem ?), enquanto na outra matriz apenas a segunda coluna não contém um símbolo ?. Assim, na matriz produto, apenas a entrada \(c_{12}\) estará bem-definida e seu valor será:
\[\left(\begin{array}{ccc} 9 & -8 & 4 \end{array}\right) \left(\begin{array}{c} -9 \\ 5 \\ -8 \end{array}\right) = -9^2- 8\cdot 5 -4\cdot 8 = -153.\]
Uma viga metálica fina, com extremidades nas coordenadas $A=(-1,4,7)$ e $B=(3,-2,-1)$, deve ser dividida em duas partes iguais. Determine o ponto $C$ que realiza esta divisão.
Resolver o sistema linear:\[\left\{\begin{array}{rrrrrcr}1x_1+&3x_2-&7x_3+&5x_4+&2x_5&=&0 \\2x_1+&3x_2-&20x_3+&7x_4+&8x_5&=&0 \\10x_1+&22x_2-&46x_3+&34x_4+&12x_5&=&0 \\\end{array}\right. . \]
$x_3 =\dfrac{11x_1+4x_2}{5}, x_4 = \dfrac{6 x_1-x_2}{5}, x_5 = \dfrac{21 x_1 + 9 x_2}{5}, \forall x_1, x_2 \in \mathbb{R}$.
Um silo com formato cônico de raio $r=1$ m e altura $h=2$ m é preenchido com trigo em $70\%$ de sua capacidade.
Quanto mais de trigo podemos colocar a fim de preenchê-lo completamente?
Resolver o sistema linear:
\[\left\{\begin{array}{cccccr}2x_1+&1x_2+&4x_3+&x_4&=&-5 \\2x_1+&8x_2-&10x_3+&8x_4&=&2 \\&&-9x_3+&2x_4&=&2\\4x_1+&1x_2+&6x_3+&5x_4&=&-3\\4x_1+&5x_2-&8x_3+&8x_4&=&-3\\\end{array}\right . .\]
$x_1 = -\dfrac{27}{7}, x_2=\dfrac{-5}{7}, x_3 =\dfrac{2}{7} , x_4 =\dfrac{16}{7}.$
Encontrar as equações paramétricas da reta que passa por $A$ e é simultaneamente ortogornal às retas $r_1$ e $r_2$: $A$ é a interseção de $r_1$ e $r_2$; $$r_1:\;x-2=\frac{y+1}{2}=\frac{z}{3}\ \ \ {\rm e}\ \ \ r_2:\;\begin{cases} x=1-y\\ z=2+2y. \end{cases}$$
$r:(x,y,z)=(-2+t',3-5t',2+2t').$
Encontre os vértices (ou vértice), os focos (ou foco) e a excentricidade da cônica descrita por $49x^2-9y^2=441$. Esboce também o gráfico.
Resolver o sistema linear: \[\left\{\begin{array}{ccccccr}2x_1&+&5x_2&+&12x_3&=& 6 \\3x_1&+&x_2&+&5x_3&=& 12 \\5x_1&+&8x_2&+&21x_3&=& 17\\\end{array}\right. .\]
Esse sistema linear não possui solução.
Resolver o sistema linear:
\[\left\{\begin{array}{ccccccccccr}&&x_1&+&x_2&-&x_3&+&2x_4&=&6 \\&-&x_1&+&x_2&+&4x_3&-&3x_4&=&-2 \\&&&&x_2&+&3x_3&+&x_4&=& 5 \\&&&&x_1&+&5x_2&+&5x_3& =&14 \\\end{array}\right. . \]
$x_2 = \dfrac{13-2 x_1}{5}, x_3 = \dfrac{1+x_1}{5}, x_4 = \dfrac{9-x_1}{5}, \forall x_1\in\mathbb{R}.$
Mostre que o elipsóide obtido girando uma elipse com semi-eixo maior $a$ e semi-eixo menor $b$ em torno do eixo maior tem volume $\displaystyle V=\dfrac{4}{3}\pi ab^2$.
Mostre que o elipsóide obtido girando uma elipse com semi-eixo maior $a$ e semi-eixo menor $b$ em torno do eixo menor tem volume $\displaystyle V=\dfrac{4}{3}\pi a^2b$.
Seja $a$ o semi-eixo maior da órbita de um planeta em torno do Sol, e seja $T$ o seu período. Pelas Leis de Kepler, a órbita é elíptica com o Sol em um dos focos, e $T=a^{3/2}$. Mostre que se $T$ for medido em dias e $a$ em quilômetros, então $\displaystyle T=(365\times 10^{-9})\left(\dfrac{a}{150}\right)^{3/2}$.
Use o resultado do item anterior para encontrar o período do planeta Mercúrio, em dias, dado que o seu semi-eixo maior é $a=57,95\times 10^6$ km.
Escolha um sistema de coordenadas polares com o Sol no pólo e encontre uma equação para a órbita de Mercúrio naquele sistema de coordenadas, dado que a excentricidade da órbita é $e=0,206$.
Use um recurso gráfico computacional para gerar a órbita de Mercúrio a partir da equação obtida no item 3.
Identificar a cônica $8y^2+6xy-12x-26y+11=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).
Demonstre que o segmento que une os pontos médios dos lados não paralelos de um trapézio é paralelo às bases e seu comprimento é a média aritmética dos comprimentos das bases.
$\overrightarrow{MN}=\overrightarrow{NB}+\overrightarrow{BA}+\overrightarrow{AM},$ $\overrightarrow{MN}=\overrightarrow{NC}+\overrightarrow{CD}+\overrightarrow{DM}.$ Portanto, $2\overrightarrow{MN}=\overrightarrow{BA}+\overrightarrow{CD}.$
A equação $x^{2}=1$ possui apenas duas soluções reais: $x=1$ e $x=-1$. Ache todas as matrizes $2\times2$ que são soluções da equação matricial $X^{2}=I$, onde $I$ é a matriz identidade $2\times2$.
Cujas soluções são:
$X_1= \left(\begin{array}[c]{cc}x & y\\\frac{1-x^2}{y} & -x\end{array}\right), \forall x,y\in \mathbb{R};$ $X_2= \left(\begin{array}[c]{cc}-1 & 0\\z & 1\end{array}\right), \forall z\in \mathbb{R};$ $X_3= \left(\begin{array}[c]{cc}1 & 0\\z & -1\end{array}\right), \forall z\in \mathbb{R};$ $X_4= \left(\begin{array}[c]{cc}-1 & 0\\0 &-1\end{array}\right);$ $X_5= \left(\begin{array}[c]{cc}-1 & 0\\0 & 1\end{array}\right);$ $X_6= \left(\begin{array}[c]{cc}1 & 0\\0 & -1\end{array}\right);$ $X_7= \left(\begin{array}[c]{cc}1 & 0\\0 & 1\end{array}\right).$
Mostre que se
$$u= u_a a + u_b b + u_c c,$$
$$v = v_a a + v_b b + v_c c,$$
$$w= w_a a + w_b b + w_c c,$$
então
$$(u\cdot v\times w)(a\cdot b\times c) = \det\left(\begin{array}{ccc} u\cdot a & u\cdot b & u\cdot c\\ v\cdot a & v\cdot b & v\cdot c\\ w\cdot a & w\cdot b & w\cdot c\\\end{array}\right).$$
Esta fórmula reduz o cálculo de dois determinantes (pois cada produto misto envolve o cálculo de um determinante) ao cálculo de um único.
Sugestão: Use a seguinte relação:
$$u\cdot(v\times w)=\det\left(\begin{array}{ccc} u_a & u_b & u_c \\ v_a & v_b & v_c \\ w_a & w_b & w_c \\\end{array}\right)[a\cdot(b\times c)].$$
Um roteador de internet sem fio é instalado de forma que o sinal chegue com mesma intensidade em qualquer ponto $(x,y)$ a uma distância $r$ do local de instalação $(a,b)$ (desconsiderando eventuais efeitos que possam diminuir a intensidade do sinal). Determine a equação do lugar geométrico no plano cartesiano tal que a internet possa ser utilizada sem problemas.
Encontre as equações vetoriais e paramétricas para a reta $r$ que passa pelo ponto $P_0=(1,-1,1)$, é paralela à reta $r^{\prime}: (x,y,z) = (1,0,1) + t(1,1,3/2)$ e ortogonal ao eixo $z$ .
Identifique a cônica descrita pela equação $16x^2+16y^2-16x+8y-59=0$.
Classifique a superfície $\displaystyle z^2-\dfrac{x^2}{36}-\dfrac{y^2}{25}=1$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Construa a curva cujas equações paramétricas são dadas por: $x=t$, $y=t$ e $z=1-t^2$.
Resolver o sistema linear: \[\left\{\begin{array}{ccccccccccr}x_1&-&2x_2&+&3x_3&+&2x_4&+&x_5&=&10 \\2x_1&-&4x_2&+&8x_3&+&3x_4&+&10x_5&=& 7 \\3x_1&-&6x_2&+&10x_3&+&6x_4&+&5x_5&=&27\\\end{array}\right..\]
$x_3 = \dfrac{-19+2 x1- 4 x2}{3}, x_4 = \dfrac{ 41 - 4 x_1 + 8 x_2}{3}, x_5 = \dfrac{5- x_1+2 x_2}{3}, \forall x_1, x_2\in \mathbb{R}$.
Sejam $a,b,c$ três vetores não coplanares e denotemos por $[a,b,c]$ o produto misto $a\cdot(b\times c)$. Os vetores
$$a'=\frac{b\times c}{[a,b,c]},\; b'=-\frac{a\times c}{[a,b,c]},\; c'=\frac{a\times b}{[a,b,c]}$$
são chamados os vetores recíprocos aos vetores $a,b,c$.
Uma das utilidades dos vetores recíprocos consiste em encontrar as coordenadas de um vetor $v$ qualquer em termos dos vetores $a,b,c$. Isto é, queremos encontrar escalares $x,y,z$ tais que
$$ v=xa+yb+zc. $$
Mostre que, $$v = (v\cdot a')a \; + \; (v\cdot b')b \;+\; (v\cdot c')c.$$ Ou seja,
$$ x=v\cdot a', \; y=v\cdot b', \; z=v\cdot c'. $$
Mostre que se $a,b,c$ são três vetores unitários, dois a dois ortogonais e que satisfazem a regra da mão direita, então $a'=a$, $b'=b$ e $c'=c$ (ou seja, neste caso os vetores recíprocos de $a,b,c$ são eles próprios). Em particular, segue que $$v = (v\cdot a) a \; + \; (v\cdot b) b \;+\; (v\cdot c) c.$$
Verifique que se
$$ v=xa'+yb'+zc', $$
então $$v = (v\cdot a)a' \; + \; (v\cdot b)b' \;+\; (v\cdot c)c'.$$
Mostre que valem as relações
$$ a'\cdot a = b'\cdot b = c'\cdot c =1,$$
$$a'\cdot b =a'\cdot c = b'\cdot a = b'\cdot c = c'\cdot a = c'\cdot b = 0. $$
Em outras palavras, o produto escalar de vetores correspondentes é $1$, enquanto que o produto escalar de vetores não-correspondentes é $0$.
Reciprocamente, mostre que se
$$ A\cdot a = B\cdot b = C\cdot c =1,$$
$$A\cdot b = A\cdot c = B\cdot a = B\cdot c = C\cdot a = C\cdot b = 0, $$
então
$$ A=a', \; B=b', \; C=c'.$$
Conclua que os vetores recíprocos de $a',b',c'$ são exatamente $a,b,c$.
Considere a reta $r=\{(x,y):2x-3y=1\}\subset\mathbb{R}^2$. Seja $B$ a base formada pelos vetores $(3,2)$ e $(1,0)$ e $x^{\prime}$ e $y^{\prime}$ coordenadas definidas em $\mathbb{R}^2$ pela origem usual e pela base $B$. Ache a equação de $r$ nas coordenadas $x^{\prime}$ e $y^{\prime}$.
Uma liga de metal $L_1$ contém $20\%$ de ouro e $80\%$ de prata e uma liga $L_2$ tem $65\%$ de ouro e $35\%$ de prata. Quanto gramas de cada liga são necessários para se formar $100$ gramas de uma liga com quantidade igual de ouro e prata?
Serão necessárias aproximadamente 33.3333 gramas da liga $L_1$ e 66.6667 gramas da liga $L_2$.
Verifique se a equação $x^2+y^2+z^2-2x-4y+10=0$ descreve uma esfera. Em caso afirmativo, identifique o centro e o raio.
Completando quadrados, vemos que não descreve uma esfera.
Esboce o gráfico da equação paramétrica dada por $(x,y) = (3t-1,4t+2)$.
Se $V$ é o vetor que satisfaz as condições:
$V$ é ortogonal aos vetores $(1,0,2)$ e $(-2,1,0);$
$\left\| V\right\| =\sqrt{21};$
o ângulo entre $V$ e o vetor $(0,1,2)$ é menor que $90^{\circ }.$
Encontre o ponto final do representante de $V$ que tem ponto inicial em $(9,0,-2)$.
$(11,4,-3)$.
As funções trigonométricas seno hiperbólico e cosseno hiperbólico são definidas, respectivamente, por
$$\cosh t=\dfrac{e^t+e^{-t}}{2}\quad\text{e}\quad \sinh t\dfrac{e^t-e^{-t}}{2}, \quad t\in\mathbb{R},$$
e vale a relação $\cosh^2 t-\sinh^2 t=1$.
Mostre que as equações paramétricas da hipérbole de equação $\displaystyle \dfrac{x^2}{a^2}-\dfrac{y^2}{b^2}=1$ são $$ x=\pm a\cosh t, \quad y=b\sinh t.$$
Mostre que não existem funções contínuas $f_1$ e $f_2$ tais que a hipérbole possa ser escrita como $x=f_1(t)$ e $y=f_2(t)$.
Identificar a cônica $x^2-3y^2-2xy -x-y=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).
Uma liga de metal $L_1$ contém $20\%$ de ouro e $80\%$ de prata, uma liga $L_2$ tem $65\%$ de ouro e $35\%$ de prata, e uma liga $L_3$ tem mesma quantidade de ouro e prata.
Escreva um sistema linear cuja solução dê a quantidade de gramas de cada liga necessários para se formar $100$ gramas de uma liga com $60$ gramas de ouro e $40$ gramas de prata.
Este problema tem solução única? Justifique utilizando conceitos sobre sistemas lineares.
Determine a(s) solução(ões) do sistema linear.
- Se $x$, $y$ e $z$ designam as quantidades, em gramas, das ligas $L_1$, $L_2$ e $L_3$, respectivamente, o sistema pode ser escrito como a seguir
$$ \left\{ \begin{array}{rcrcc}0,2 x &+&0,65 y &+ &0,5 z & = &60\\0,8 x &+&0,35 y &+ &0,5 z & = &40\end{array} \right. $$ - Existem infinitas soluções para este problema. Por que?
- As soluções são dadas por $y=\dfrac{200}{3}+2x$, $z=\dfrac{100}{3}-3x$.
Como $x$, $y$ e $z$ representam pesos, a solução só fará sentido para $x,y,z \in \mathbb{R}^+$. Logo, é preciso que $x\leq\dfrac{100}{9}$ gramas.
Sejam $a$, $b$, $c$, $d$ números reais tais que $ax+by+cz+d>0$ para quaisquer $x$, $y$, $z\in\mathbb{R}$. Mostre que $a=b=c=0$ e $d>0$.
Reduza a equação $4x^2+3y^2-z^2-12xy+4xz-8yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Sejam $\vec{OA}$ e $\vec{OB}$ dois vetores não colineares no espaço. Qual o conjunto dos pontos $P$ tais que $\vec{OP} = \lambda\vec{OA}+(1-\lambda)\vec{OB}$?
Trata-se da reta passando pelos pontos $A$ e $B$.
Calcule o determinante da matriz:
$
\begin{pmatrix}
1&a\\ 1&b\
\end{pmatrix}.
$
\(b-a\)
Encontre uma equação em coordenadas polares para a curva cuja equação em coordenadas cartesianas é dada por $(x^2+y^2)^2=4(x^2-y^2)$.
Apenas usando a definição de coordenadas polares, obtemos a seguinte equação: $\displaystyle r=2\sqrt{\cos(2\theta)}$, com $\theta\in[0,2\pi]$.
Considere as retas $r=\{ (1,1,0)+t(0,1,1), t\in\mathbb{R}\}$ e $s:\frac{x-1}{2}=y=z$. Sejam $A$ o ponto de intersecção de $s$ e $\pi : x-y+z=2$; $B$ e $C$ as intersecções de $r$ com os planos coordenados $xz$ e $xy$ respectivamente. Calcule a área do triângulo $ABC$.
$\frac{\sqrt{3}}{2}$
Verifique a posição relativa do seguinte par de retas (isto é, verifique se são paralelas, concorrentes ou reversas):
\[
\left\{\begin{array}{ccr}x &=& 2-t\\y &=& 3+2t\\ z &=& 1 + t\end{array}\right., \ \ \
\left\{\begin{array}{ccr}x &=& 5-2s\\y &=& 2+4s\\ z &=& 1 + 2s\end{array}\right. .\]
São paralelas.
Calcule o determinante da matriz:
$
\begin{pmatrix}
a&b&c&d\\ -b&a&d&-c\\ -c&-d&a&b\\ -d&c&-b&a
\end{pmatrix}.
$
$(a^2 + b^2 + c^2 + d^2)^2$
Identifique a cônica descrita pela equação$7x^2+6xy-y^2-2x+10y-9=0$.
São dados quatro vértices, $A = (-2,-1,1)$, $B = (1,1,1)$, $D = (5,1,-1)$, e $E = (1,1,-1)$, de um paralelepípedo, cuja distribuição está esquematizada no desenho abaixo.
Determine as coordenadas do ponto $C$.
Encontrar o volume do paralelepípedo.
Determinar o valor da altura $h$ do paralelepípedo em relação à base $ABCD$.
Encontrar a equação do plano $\pi$ que contém a face do paralelepípedo onde está o vértice $E$ e é paralela à face $ABCD$.
A mudança de coordenadas entre os sistemas $xy$ e $x_{1}y_{1}$ é feita através de uma matriz ortogonal $U$, como segue
\[ \begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix} = \begin{pmatrix}{\frac{\,3}{5}} & {\frac{\,4}{5}} \\{\frac{\,-4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}\quad \text{ e }\quad\begin{pmatrix}x\\ y\end{pmatrix} = \begin{pmatrix}{\frac{\,3}{5}} & {\frac{-4}{5}} \\ {\frac{\,4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix},\quad \text{ lembrar que } U^{-1} = U^{t}.\]
Já a mudança entre os sistemas $x_{1}y_{1}$ e $XY$ é dada por $X = x_{1}+1$, $Y = y_{1}+1$.
Encontre as coordenadas dos pontos $a_{1}$ e $b_{1}$ (Figura 1) nos sistemas $xy$ e $x_{1}y_{1}$.
Encontre as coordenadas dos pontos $c_{1}$, ,$d_{1}$, $\textbf{O}$, e $A_{2}$ (Figura 2) em relação aos eixos $xy$, $x_{1}y_{1}$ e $XY$.
Verificar se as retas são concorrentes e, em caso afirmativo, encontrar o ponto de interseção:
$$r_1:\;(x,y,z)=(2,4,1)+t(1,-2,3)\ \ \ {\rm e} \ \ \ \ r_2:\;(x,y,z)=(-1,2,5)+t(4,3,-2)$$
As retas não são concorrentes.
Determinar a equação reduzida da seguinte cônica: hipérbole com assíntotas $y=\pm x$ e um ponto da hipérbole $P=(2,7)$.
Resolver o sistema linear: \[\left\{\begin{array}{ccccccccr}3x& + &3y& - &2z& - &t&=& 2\\5x& + &2y& + &z& - &2t&=& 1\\2x& - &y& + &3z& - &t&=& -1\end{array}\right. .\]
$z = \dfrac{-3+x+4y}{5}, t =\dfrac{-4+13 x+7 y}{5}, \forall x, y \in \mathbb{R}.$
Determine todos os valores de $\lambda$ para os quais $\det(A-\lambda I_3)=0$, onde
\[
A = \left( \begin{array}{ccc}
2 & 2 & 3 \\
1 & 2 & 1 \\
2 & -2 & 1
\end{array}\right) .\]
\(\lambda=-1\), \(2\) ou \(4\).
Ache a equação da esfera que passa pelos pontos $(0,0,1)$, $(1,0,0)$, $(0,1,0)$ e cujo centro está no plano $x+y-z=0$.
Verifique que a intersecção dos planos $\pi_1:x-y=0$, $\pi_2:x+z=0$ e $\pi_3:x-y+3z+3=0$ é um ponto. Modifique o coeficiente de $y$ na equação do plano $\pi_3$ para que a intersecção $\pi_1\cap\pi_2\cap\pi_3$ seja uma reta.
Dados três pontos $A=(1,-5,8)$, $B=(5,2,4)$ e $C=(3,9,1)$, ache três pontos diferentes tais que cada um deles forma com $A,B,C$ um paralelogramo.
Considere a matriz diagonal $ A = diag\{a, b\},$ onde $a,b\in\mathbb{R}$, e seja $\Delta$ um triângulo com vértices $0$, $u$ e $v$, onde $u$ e $v$ são pontos na circunferência $S^1$ de equação $x^2+y^2=1$. Seja $A\Delta$ o triângulo
de vértices $0$, $A\cdot u$ e $A\cdot u$.
Mostre que os vértices $A\cdot u$ e $A\cdot v$ estão na elipse $E$ de equação $\dfrac{x^2}{a^2}+\dfrac{y^2}{b^2}=1$.
Mostre que se $S(\Delta$) for a área de $\Delta$ e $S(A\Delta$) for a área de $A\Delta$, então $S(A\Delta)=abS(\Delta)=S(\Delta)\,\det A$.
Mostre que a relação do item anterior é preservada para qualquer polígono inscrito na circunferência.
Inspirando-se no processo clássico para o cálculo da área do círculo, pense na área da região limitada pela elipse $E$ como sendo
o limite das áreas dos polígonos inscritos em $E$, quando o lado maior tende a zero. Conclua que esta área é dada por $\pi ab$.
Ache o ângulo entre duas retas no espaço que passam pela origem, no primeiro octante, sendo uma delas com ângulos diretores tais que $\cos \alpha_1=\cos \beta_1$, $\cos \gamma_1=1/3$; e a outra com ângulos diretores tais que $\cos \alpha_2=\cos \beta_2$, $\cos \gamma_2=1/4$ (Sugestão: cada par de retas forma um plano que contém um dos eixos coordenados -- por quê?).
$\cos^{-1} (1/4) - \cos^{-1} (1/3)$.
Determine uma equação da superfície consistindo em todos os pontos $P(x,y,z)$ que estão eqüidistantes do ponto $(0,0,1)$ e do plano $z=-1$. Identifique a superfície.
Construa a curva cujas equações paramétricas são dadas por: $x=\sin^2\theta$, $y=\sin\theta\cos\theta$ e $z=\cos\theta$.
Sejam $A\in M_{2\times 3}$, $B\in M_{3\times 1}$ e $C\in M_{3\times 3}$. Quais dos produtos existem?
- $A\,B$;
- $B\,A$;
- $A\,B^t$;
- $A\,C$;
- $A\,C^t$;
- $A\,B\,C$;
- $A\,C\,B$.
Apenas os produtos 1, 3, 4, 5 e 7estão definidos.
Um vetor no espaço tem dois de seus ângulos diretores dados: $\alpha=45^\circ$ e $\beta=120^\circ$. Ache o outro ângulo diretor e faça um esboço do vetor. Quantas respostas existem? (Sugestão: use as fórmulas de cosseno diretor).
$60^\circ$, $120^\circ$. Existem duas respostas.
Classifique a superfície $\displaystyle \dfrac{x^2}{36}+\dfrac{y^2}{25}-z^2=1$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Dada a reta $r = \left\{\begin{array}{rcl}x &=& 1+m\lambda\\y &=& 2+n\lambda\\ z &=& 1+(n-1)\lambda\end{array}\right.$, determine, se possível, $m$ e $n$ em cada um dos seguintes casos:
- $r$ é paralela ao eixo $Y$;
- $r$ é paralela ao plano $XY$;
- $r$ passa pela origem.
- Devemos ter $m=0$ e $n=1$.
- Para este caso: $n=1$ e $m$ pode ser qualquer.
- $m=1$ e $n=2$.
Para o par de vetores $u=(1,2,-2)$ e $v=(3,-2,1)$, encontrar a projeção ortogonal de $v$ sobre $u$ e decompor $v$ como soma de $v_{1}$ com $v_{2}$, sendo $v_{1} \parallel u$ e $v_{2}\perp u$.
$\textrm{proj}_{u}{v}=\dfrac{-1}{3}(1,2,-2)$.
$v_1=\dfrac{-1}{3}(1,2,-2)$.
$v_2=\dfrac{1}{3}(10,-4,1)$.
Reduza a equação $2z^2+5x+12y+12z+18=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Considere as retas $r$ e $s$ de respectivas equações
\[
r:\ \frac{x-2}{2}\ =\ y\ =\ z+1, \ s:\ x\ =\ y+1\ =\ z-
2
\]
- Verifique se as retas $r$ e $s$ são paralelas, concorrentes ou reversas.
- Determine a equação da reta $t$ perpendicular e concorrente com as retas $r$ e $s$.
- Calcule o ângulo e a distância entre as retas $r$ e $s$.
- Reversas.
- $\left\{
\begin{array}{l}
x=-4 \\
y=-5-t \\
z=-2+t
\end{array}
\right. .$ - Ângulo $\left( r,s\right) =\arccos \frac{4}{\sqrt{18}} $; dist$(r,s)=\sqrt{8}.$
Qual é o valor de $c_{23}$ na multiplicação das matrizes abaixo?
\[\left(\begin{array}[c]{rr}1 & -2\\5 & -2\\-4 & 4\\-1 & 2\end{array}\right) \left(\begin{array}
[c]{rrrr}-5 & 1 & 5 & -4\\-2 & 5 & 2 & 2\end{array}
\right) =\left(\begin{array}[c]{cccc}c_{11} & c_{12} & c_{13} & c_{14}\\c_{21} & c_{22} & c_{23} & c_{24}\\c_{31} & c_{32} & c_{33} & c_{34}\\c_{41} & c_{42} & c_{43} & c_{44}\end{array}\right) .\]
Note que, como o enunciado apenas pede o valor da entrada \(c_{23}\), basta multiplicar a linha \(2\) da primeira matriz pela coluna \(3\) da outra:
\[c_{23}=\left(\begin{array}{cc} 5 & -2
\end{array}\right)\left(\begin{array}{c} 5 \\ 2 \end{array}\right) =
5\cdot5 -2\cdot2 =21.\]
Construa a curva cujas equações paramétricas são dadas por: $x=\cos\theta$, $y=\cos^2\theta$ e $z=\sin\theta$.
Dê equações paramétricas para a curva $y^2-8x-8y+8=0$, indicando os valores para o seu parâmetro $t$. Esboce suas parametrizações.
Um trecho de uma estrada passa sob três viadutos. Aproximadamente, a estrada pode ser considerada como pertencente ao plano $\pi: 5x+4y+20z-20=0$, e os viadutos têm seus pontos mais baixos nas retas: $r_1: X=(5,6,3)+t(4,0,-1)$, $r_2: X=(3,3,4)+t(0,5,-1)$ e $r_3=(2,6,4)+t(4,5,-2)$. As medidas são consideradas em metros. Determine aproximadamente a altura máxima dos veículos que podem trafegar na estrada.
Considere a forma quadrática $2x^2+8xy+2y^2+x+y-9=0$. Escrevendo-a numa base conveniente, determine:
qual o eixo que contém o(s) foco(s);
qual é a translação e a rotação associadas.
Reduza a equação $144x^2+100y^2+81z^2-216xz-540x-720z=0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Um homem deseja construir uma ampulheta dispondo de $v$ m$^3$ de uma certa areia. Considerando que a ampulheta possa ser "modelada" como uma porção simétrica de uma superfície cônica, encontre a equação do cone, com abertura no eixo $z$, que contém essa ampulheta.
Verifique se a equação $x^2-6x+y^2-4y+z^2+14z+58=0$ descreve uma esfera. Em caso afirmativo, identifique o centro e o raio.
Completamos quadrados para reescrevê-la como $\displaystyle (x-3)^2+(y-2)^2+(z+7)^2=4$. Ou seja, neste caso, a equação descreve uma esfera de raio $2$ e centro em $(3,2,-7)$.
Qual(is) das quádricas abaixo representa(m) uma superfície obtida pela rotação de uma parábola em torno do eixo z?
$ 6x^2+3y^2-z^2=-2$,
$z=4x^2+4y^2$,
$\frac{x^2}{10}+\frac{y^2}{9}+\frac{z^2}{5}=1$,
$-x^2+ y^2+z^2=0$.
Sejam $A=(2,1,2)$, $B=(1,0,0)$ e $C=(1+\sqrt 3,\sqrt 3,-\sqrt 6)$ três pontos no espaço. Calcule os ângulos do triângulo $ABC$, e os comprimentos da mediana e da altura que saem do vértice $A$.
Encontre uma equação em coordenadas polares para a curva cuja equação em coordenadas cartesianas é dada por $2xy=25$.
Apenas utilizando a definição de coordenadas polares, obtemos a seguinte equação: $\displaystyle r=\dfrac{5}{\sqrt{\sin(2\theta)}}$, com $\displaystyle \theta\in(0,\pi)\cup (\pi,2\pi)$.
Determinar a equação reduzida da seguinte cônica e fazer um esboço gráfico da mesma: parábola com vértice na origem e foco $F=(3,0).$
Encontre o volume do paralelepípedo determinado pelos vetores $u$, $v$ e $w$, dados por: $u=\vec{i}+3\vec{j}+2\vec{k}$, $v=2\vec{i}+\vec{j}-\vec{k}$ e $w=\vec{i}-2\vec{j}+\vec{k}$.
$|u\cdot(v\times w)|=|-20|=20$
Responda, justificando, falso ou verdadeiro a cada uma das seguintes afirmações:
Se $u$, $v$ e $w$ são vetores no espaço, com $v$ não nulo e $v\times u=v\times w$, então $u=w$.
Se $u$, $v$ e $w$ são vetores no espaço então: $\mid u\cdot(v\times w) \mid=\mid v\cdot(u\times w) \mid=\mid w\cdot(v\times u) \mid=\mid v\cdot(w\times u) \mid$.
Se $u$, $v$ e $w$ são vetores no espaço, então $u\times (v\times w)= (u\times v)\times w$.
Se $u$, $v$ e $w$ são vetores no espaço, $u$ é não nulo e $u\times v=u\times w=\vec{0}$, então $v\times w=\vec{0}$.
Reduza a equação $x^2+z^2-xy+xz+yz-2x+2y-2z+1=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Determinar a equação reduzida da seguinte cônica: elipse com vértices $A_1=(5,0), \, A_2=(-5,0), \, B_1=(0,2), \, B_2=(0, -2)$.
Calcule o determinante da matriz:
$
\begin{pmatrix}
a&b&c\\ b&c&a\\ c&a&b
\end{pmatrix}.
$
$-a^3 - b^3 + 3 a b c - c^3$.
Encontre a equação do plano $\pi$ que é perpendicular a cada um dos planos $x-y-2z=0$ e $2x+y-4z-5=0$ e contém o ponto $A=(4,0,-2)$.
$$\pi: 2x+z=6$$
Considere os pontos $A = (3,-2,8)$, $B = (0,0,2)$ e $C = (2,3,2)$.
Usando vetores, mostre que o triângulo de vértices $A$, $B$ e $C$ é retângulo (Dica: O lado $BA$ é paralelo ao vetor $\stackrel{\longrightarrow}{BA}$).
Determine o ponto $H$ na aresta $AC$ para o qual os segmentos $AC$ e $HB$ são ortogonais ($=$ perpendiculares).
Determine o vetor $\stackrel{\longrightarrow}{AH}$. (Dica: $\stackrel{\longrightarrow}{AH}$ é a projeção ortogonal de $\stackrel{\longrightarrow}{AB}$ sobre $\stackrel{\longrightarrow}{AC}$.)
Calcule a área do triângulo (Dica: área do triângulo = (1/2) de base $\times$ altura).
Mostre que quaisquer vetores $a, b, c$ satisfazem a relação $$(a\times b)\cdot(c\times d)\;+\;(a\times c)\cdot(d\times b)\;+\;(a\times d)\cdot(b\times c)=0.$$
Ache a equação do círculo tangente ao eixo $y$ na origem e com raio $r = a$.
$(x-a)^2+y^2=a^2$
Determinar o ângulo entre a reta que passa por $A(3,-1,4)$ e $B(1,3,2)$ e a sua projeção ortogonal no plano $xy$.
$\theta=\arccos \left(\frac{5}{\sqrt{30}}\right)$
Encontre a equação da parábola que tem foco no ponto $F = (1,1)$ e tem reta diretriz com equação $y = -x - 2$.
Resolva a equação $f(x)=0$, onde $f(x)=\det(A-xI)$ e
$
A = \begin{pmatrix}
\cos a& \sin a\\ -\sin a&\cos a
\end{pmatrix}.
$
\(\displaystyle \cos a\pm \sqrt{\cos^2a-1}\)
Calcule o determinante da matriz:
$
\begin{pmatrix}
1&2&3&4\\ 5&6&7&8\\ 9&10&0&0\\ 11&12&0&0
\end{pmatrix}.
$
\(8\)
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$.
\[\left\{\begin{array}{cccccr}2x_1+&1x_2+&4x_3+&x_4&=&-5 \\2x_1+&8x_2-&10x_3+&8x_4&=&2 \\&&-9x_3+&2x_4&=&2\\4x_1+&1x_2+&6x_3+&5x_4&=&-3\\4x_1+&5x_2-&8x_3+&8x_4&=&-3\\\end{array}\right . .\]
Uma piscina olímpica pode ser vista como um paralelepídeo. Pesquise as medidas padronizadas de uma piscina olímpica e e calcule, utilizando o produto misto, o volume de água utilizado para enchê-la. Defina o sistema de coordenadas e os três vetores do produto misto de forma a facilitar as contas.
Reduza a equação $x^2 + y^2 + z^2 + 2xy + 2xz - 2yz + x - y + z + 1 = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Sejam $\mathcal{C}$ a circunferência de equação $x^2+y^2=r^2$ e $P=(x_1,y_1)$ um ponto em $\mathcal{C}$. Mostre que a equação da reta tangente à circunferência por $P$ é $x_1x+y_1y=r^2$. (Lembre que a reta tangente em $P$ sempre é perpendicular ao vetor $\vec{OP}$, com $O$ sendo o centro de $\mathcal{C}$.)
Um ponto $x=(x,y)$ qualquer sobre a reta tangente a $\mathcal{C}$ pelo ponto $P$ deverá satisfazer $(x-P)\cdot\overrightarrow{OP}=0$. Ou seja, $\vec{x}$ deverá cumprir $(x-x_1)x_1+(y-y_1)y_1=0$ pela condição de perpendicularidade. Como $P\in\mathcal{C}$, então $x_1^2+y_1^2=r^2$ e a condição anterior fica $\displaystyle xx_1+yy_1=r^2$.
Dadas a equação da curva diretriz $y^2=4x$, $z=0$ e um vetor $V=(1,-1,1)$ paralelo às retas geratrizes, determine a equação da superfície cilíndrica.
Mostre que os dois lados não paralelos de um trapézio e a reta que liga os pontos médios dos lados paralelos são concorrentes.
- Ache $x,y,z$ e $w$ tais que
\[\left(\begin{array}[c]{cc}x & y\\z & w\end{array}\right) \left(\begin{array}[c]{cc}2 & 3\\3 & 4\end{array}\right) =\left(\begin{array}[c]{cc}1 & 0\\0 & 1\end{array}\right) .\] - Mostre que não existem $x,y,z$ e $w$ tais que
\[\left(\begin{array}[c]{cc}x & y\\z & w\end{array}\right) \left(\begin{array}[c]{cc}1 & 0\\0 & 0\end{array}\right) =\left(\begin{array}[c]{cc}1 & 0\\0 & 1\end{array}\right) . \] - Existem $x,y,z$ e $w$ tais que
\[\left(\begin{array}[c]{cc}x & y\\z & w\end{array}\right) \left(\begin{array}[c]{cc}1 & 1\\1 & 1\end{array}\right) =\left(
\begin{array}[c]{cc}1 & 0\\0 & 1\end{array}
\right) ?\]
- $x=-4$; $ y=3$; $z=3$; $w=-2$.
- \[\left(\begin{array}[c]{cc}x & y\\z & w\end{array}\right) \left(\begin{array}[c]{cc}1 & 0\\0 & 0\end{array}\right) =\left(\begin{array}[c]{cc}x & 0\\z & 0\end{array}\right) =\left(\begin{array}[c]{cc}1 & 0\\0 & 1\end{array}\right) . \]
Mas $0=1$ é absurdo. - \[\left(\begin{array}[c]{cc}x & y\\z & w\end{array}\right) \left(\begin{array}[c]{cc}1 & 1\\1 & 1\end{array}\right) =\left(
\begin{array}[c]{cc}x+y & x+y\\w+z & w+z\end{array}
\right)=\left(
\begin{array}[c]{cc}1 & 0\\0 & 1\end{array}
\right) .\]
Portanto, o sistema é sobredeterminado e impassível de solução.
Encontre uma equação em coordenadas cartesianas para a curva cuja equação em coordenadas polares é dada por $r=\frac{6}{2-3sen\theta}$.
Dois piolhos andam em trajetórias retilíneas no espaço. No instante $t$, as posições $(x,y,z)$ dos piolhos 1 e 2 são dadas pelas retas $r_1$ e $r_2$:
$$r_1: \ x=4-t, \ y=1+2t, \ z=2+t;$$
$$r_2: x=t, \ y=1+t, \ z=1+2t.$$
Suponha que a distância esteja em centímetros e o tempo em minutos.
Determine a distância entre os piolhos no instante $t=0$.
Use um recurso gráfico para fazer o gráfico da distância entre os piolhos como uma função do tempo de $t=0$ a $t=5$.
O que o gráfico nos diz sobre a distância entre os piolhos?
Quão perto ficam os piolhos?
Um quadrado $ABCD$ tem a diagonal $BD$ contida na reta $\displaystyle \begin{cases} x=1\\ y=z\end{cases}$. Sabendo que $A=(0,0,0)$, determine os vértices $B$, $C$ e $D$.
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$.
\[\left\{\begin{array}{rrrcr}2x_1+&3x_2-&5x_3&=& 2 \\2x_1+&3x_2-&x_3&=& 8 \\6x_1+ &9x_2-&7x_3&=& 18 \\\end{array}\right. . \]
$Y = x_1 \left(1, \dfrac{-2}{3}, 0\right)^T$, $\forall x_1\in\mathbb{R}$.
$X_o = \left(0, \dfrac{19}{6},\dfrac{ 3}{2}\right)^T$.
$X_o + Y = \left(x_1, \dfrac{19}{6}-\dfrac{2 x_1}{3},\dfrac{ 3}{2}\right)^T$, $\forall x_1\in\mathbb{R}$.
Quais são os cossenos diretores da reta que passa pela origem no primeiro octante e que tem ângulos iguais com os três eixos coordenados?
$1/\sqrt{3},1/\sqrt{3},1/\sqrt{3}$.
Suponha que o sistema de coordenadas $x'y'$ tenha sido obtido pela rotação de um sistema de coordenadas $xy$ por um ângulo $\theta$. Mostre que, para cada valor de $\theta$, a equação $x^2+y^2=r^2$ é transformada na equação $x'^2+y'^2=r^2$. Dê uma explicação geométrica.
Para dois vetores $\vec{A}$ e $\vec{B}$, mostre que vale a Lei Distributiva: $m(\vec{A} + \vec{B})=m\vec{A}+m\vec{B}$ (Sugestão: mostre que $m\vec{A}+m\vec{B}$ está na mesma direção que $\vec{A}+\vec{B}$ e que $\|m\vec{A}+m\vec{B}\|$ é igual a $m$ vezes $\|\vec{A}+\vec{B}\|$). O que ocorre se $m$ for negativo?
Estabeleça as equações gerais dos planos bissetores dos ângulos formados pelos planos $xOy$ e $yOz$.
$x-y=0$
Decompor o vetor $w = (1,3,2)$ como soma de dois vetores $w = u + v$, onde $u$ é paralelo ao vetor $(0,1,3)$ e $v$ é ortogonal a $(0,1,3)$.
$u=(0,11/10,33/10)$ e $v=(1,9/10,-3/10)$.
Mostre que se as coordenadas dos quatro vértices de um tetraedro são
$$ (x_1,y_1,z_1),\; (x_2,y_2,z_2),\; (x_3,y_3,z_3),\; (x_4,y_4,z_4), $$
então o seu volume é dado por
$$ Vol=\frac{1}{6}\det\left(\begin{array}{cccc} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \\\end{array}\right). $$
(Sugestão: Verifique primeiro que o volume do tetraedro é um sexto do volume do paralelepípedo determinados pelos seus vértices.)
- Encontre o seu centro e seu raio.
- Encontre a equação do plano tangente à esfera e que passa pelo ponto $P=(2,1,4)\in S$.
Completando quadrados, temos que $(x-2)^2+(y-1)^2+z^2=16$. Ou seja, a esfera tem centro $C=(2,1,0)$ e raio 4.
O plano tangente terá normal $n=P-C=(0,0,4)$ e passa por $P$ (enunciado). Logo, ele é dado por $\displaystyle z=4$.
Encontre a equação da reta $r$ que passa por $(1,2,-1)$ e é paralela ao eixo $X$.
Ser paralela ao eixo $x$ nos diz que podemos tomar $(1,0,0)$ como um diretor. Assim, a reta pode ser descrita parametricamente como $$ r: (1,2,-1)+t(1,0,0)\quad t\in\mathbb{R}.$$
Calcule o determinante da matriz: $\begin{pmatrix}
\sin\alpha&\cos\alpha \\ \sin\beta&\cos\beta
\end{pmatrix}.$
\(\displaystyle \sin(\alpha-\beta)\)
Reduza a equação $3x^2+4y^2+z^2-12x-8y-2z+16=0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
$\dfrac{(x-2)^2}{1/3}+\dfrac{(y-1)^2}{1/4}+(z-1)^2=1$: elipsóide.
Resolver o sistema linear: \[\left\{\begin{array}{ccccccccr}3x& + &3y& - &2z& - &t&=& 2\\5x& + &2y& + &z& - &2t&=& 1\\2x& - &y& + &3z& - &t&=& -1\end{array}\right. .\]
$z = \dfrac{-3+x+4y}{5}, t =\dfrac{-4+13 x+7 y}{5}, \forall x, y \in \mathbb{R}.$
Resolva a equação $f(x)=0$, onde $f(x)=\det(A-xI)$ e
$
A=\begin{pmatrix}
3&4\\ 5&2
\end{pmatrix}.
$
\(x=7\) ou \(x=-2\)
Sabendo que o sistema
$ \left\{\begin{array}{rrrl}x&+y&+z&=1\\mx&+2y&+3z&=0\\m^2x&+4y&+9z&=1\end{array}\right.$
admite uma única solução, podemos concluir que $m$ pode assumir todos os valores no intervalo real:
- $[0,1]$
- $[1,2]$
- $[3,4)$
- $[0,4]$.
Construa a curva cujas equações paramétricas são dadas por: $x=e^t$, $y=e^{-t}$ e $z=t$.
Responda falso ou verdadeiro para cada uma das afirmações abaixo (justifique suas respostas).
Se $A$ e $B$ são duas matrizes $n\times n$ e $AB=BA$, então $(AB)^{p}=A^{p}B^{p}$ para todo número natural $p$.
Se $A$ e $B$ são matrizes $n\times n$ tais que $AB={\bf 0}$, então $BA={\bf 0}$.
Se $A$ é uma matriz $n\times n$ e $A^4 - 3A^2 + 7A -I_n={\bf 0}$ então $A$ é invertível (isto é, $AB=BA=I_n$ para alguma matriz $B$, $n\times n$).
Seja $C$ o lugar geométrico dos pontos $P = (x,y)$ de um plano cujas coordenadas $x$ e $y$ satisfazem a equação $9x^2-24xy+16y^2-34x-38y+51=0$.
Qual a natureza da cônica $C$?
Escrever a forma canônica da equação de $C$.
Caso $C$ seja uma elipse ou uma hipérbole, encontre os focos e a excentricidade. Caso seja uma hipérbole, encontre também as equações das retas assíntotas no sistema $xy$ original.
Construa a curva cujas equações paramétricas são dadas por: $x=4\sin^2\theta$, $y=2\cos\theta$ e $z=2\sin\theta$.
A cúbica retorcida $T(t) = (t, t^2, t^3)$ (e suas primas) aparece em geometria algébrica. Mostre que se $a$, $b$, $c$ e $d$ são números reais distintos, então os pontos $T(a)$, $T(b)$, $T(c)$ e $T(d)$ não pertencem a um único plano em $\mathbb{R}^3$. (Dica: primeiro resolva o problema correspondente para a parábola em $\mathbb{R}^2$.)
Identificar a cônica $4x^2+4xy+y^2-6x+3y+2=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).
Sejam $u = (2,-1,3)$, $v = (0,1,7)$ e $w = (1,4,5)$.
Mostre que existem dois números $\alpha$ e $\beta$ tais que $u\times(v\times w) = \alpha\,v + \beta\,w$.
Mostre que existem dois números $a$ e $b$ tais que $(u\times v)\times w = a\,u + b\,v$.
Mostre que o conjunto dos pontos do espaço que satisfazem uma equação da forma $f(x,y)=0$ ou $f(x,z)=0$ ou $f(y,z)=0$ representa uma superfície cilíndrica que tem retas geratrizes paralelas ao eixo cuja variável não aparece na equação. Equação esta que é também a equação da curva diretriz no plano coordenado correspondente às variáveis que aparecem na equação.
Dê equações paramétricas para a curva $y=x^3-x^2$, indicando os valores para o seu parâmetro $t$. Esboce suas parametrizações.
As equações a seguir representam as trajetórias retilíneas de duas partículas com velocidade uniforme. Determine se as trajetórias se interceptam. Em caso afirmativo, determine se há colisão entre as partículas.
- $\alpha(t) =(1+t,-2t,3-t)$ e $\beta(t) = (-2+t,6-2t,6-t)$.
- $\gamma(t) = (1+t,-2t,3-t)$ e $\delta(t) = (-1+t,4-2t,-3-t)$.
- $\varepsilon(t) = (1+t,-2t,3-t)$ e $\eta(t) =(6+t,-10-t,-2-t)$.
- $\theta(t) = (1+t,-2t,3-t)$ e $\lambda(t) = (6+2t,-10-2t,-2-2t)$.
- $\mu(t) =(1+t,-2t,3-t)$ e $\nu(t) = (5+t,-10-t,-2-t)$.
As coordenadas esféricas estão relacionadas com as coordenadas em longitude e latitude usadas na navegação. Para ver como, vamos definir um sistema de coordenadas retangulares satisfazendo a regra da mão direita, com sua origem no centro da Terra, o seu eixo $z$ positivo passando pelo Pólo Norte e o seu eixo $x$ positivo passando pelo meridiano principal. Supondo a Terra uma esfera de raio $\rho=4000$ milhas, então cada ponto sobre a Terra tem coordenadas esféricas da forma $(4000,\theta,\phi)$, onde $\phi$ e $\theta$ determinam a latitude e a longitude do ponto. É comum especificar longitudes em graus leste ou oeste do meridiano principal e latitudes em graus norte ou sul do Equador. A cidade de New Orleans, nos EUA, está localizada a $90^\circ$ de longitude oeste e $30^\circ$ de latitude norte. Determine as coordenadas esféricas e retangulares associadas a esta localização (suponha que a distância esteja em milhas).
Uma longitude de $90^\circ$ oeste corresponde a $\theta=360^\circ-90^\circ=270^\circ$ ou $\theta=3\pi/2$ radianos; enquanto $30^\circ$ de latitude norte corresponde a $\phi=90^\circ-30^\circ=60^\circ$ ou $\phi=\pi/3$ radianos. Assim, as coordenadas esféricas $(\rho, \theta,\phi)$ de New Orleans são $(4000,3\pi/2,\pi/3)$. Para determinarmos as coordenadas rectangulares, aplicamos as fórmulas de conversão de esféricas para retangulares. Assim, obteremos \begin{align*} x &=4000\sin\dfrac{\pi}{3}\cos\dfrac{3\pi}{2}=4000\dfrac{\sqrt{3}}{2}(0)= 0\ \text{milhas} \\ y & = 4000\sin\dfrac{\pi}{3}\sin\dfrac{3\pi}{2}=4000\dfrac{\sqrt{3}}{2}(-1)=-2000\sqrt{3}\ \text{milhas} \\ z& = 4000\cos\dfrac{\pi}{3}=4000(\dfrac{1}{2})=2000\ \text{milhas}.\end{align*}
Decida se a cônica $C$ determinada pela equação $y^2+x^2+3xy-10x-10y+5=0$ é degenerada ou não. Se não for degenerada, encontre os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.
Responda verdadeiro ou falso, justifique suas respostas.
- Se $A^2 = -2\,A^4$, então $(I + A^2)^{-1} = I - 2\,A^2$.
- Se $A^t = -A^2$ e $A$ é não singular, então $\det A = -1$.
- Se $B = A\,A^t\,A^{-1}$, então $\det(A) = \det(B)$.
- $\det(A + B) = \det A + \det B$.
- Verdadeira, pois $A^2 = -2\,A^4 \Rightarrow -A^2 -2\,A^4=0$.
E $(I + A^2)^{-1} = I - 2\,A^2 \Leftrightarrow (I - 2\,A^2) (I+A^2)=I$ e $ (I+A^2) (I - 2\,A^2) =I$.
O que vale, visto que $(I - 2\,A^2) (I+A^2)=I+A^2- 2\,A^2- 2\,A^4=I-\,A^2- 2\,A^4=I-0=I$.
E $ (I+A^2) (I - 2\,A^2)=I- 2\,A^2+A^2- 2\,A^4=I-A^2- 2\,A^4=I-0=I$. - Falsa, pois $\det(A)\neq0$ e $A^t = -A^2 \Rightarrow \det(A^t)=\det(-A^2)$.
Mas $\det(A^t)=\det(A)$ e $\det(-A^2)=\det(-A)\det(A)=(-1)^n \det(A) \det(A)$, onde $n$ é a ordem da matriz $A$.
Logo $\det(A)=\det(A^t)=\det(-A^2)=(-1)^n\det(A)^2 \Rightarrow 1=(-1)^n \det(A) \Rightarrow \det(A)=(-1)^n$.
Portanto, se a matriz for de ordem par $\det(A)=1$ e se a matriz for de ordem ímpar $\det(A)=-1$. - Verdadeira.
$B = A\,A^t\,A^{-1} \Rightarrow \det(B)=\det(A)\det(A^t)\det(A^{-1})=\det(A) \det(A)\dfrac{1}{\det(A)}=\det(A)$. - Falsa, contra exemplo:
sejam $A$ e $B$ matrizes de ordem dois tais que $A=I$ e $B=2I$. Então $A+B=3I$. E $\det(A+B)=9$. Mas, como $\det(A)=1$ e $\det(B)=4$, $\det(A)+\det(B)=5\neq 9=\det(A+B)$.
Dados o ponto $A(3,4,-2)$ e a reta
$$r:\;\begin{cases}x=1+t\\ y=2-t\\ z=4+2t\end{cases},$$
- determinar as equações paramétricas da reta que passa por $A$ e é perpendicular a $r$,
- calcular a distância de $A$ a $r$,
- determinar o ponto simétrico de $A$ em relação a $r$.
- $\begin{cases}
x=3-4t\\
y=4\\
z=-2+2t
\end{cases}$; - $2\sqrt{5}$;
- $A'=(-5,4,2)$
Identifique a cônica $5 x^2+12 x y= 1$ e seu parâmetros associados.
Resolver o sistema linear:
\[\left \{\begin{array}{rrrrl}x&-y&+2z&-t&=0\\3x&+y&+3z&+t&=0\\x&-y&-z&-5t&=0\end{array}\right..\]
$y = \dfrac{-6 x}{5}, z = \dfrac{-4 x}{5}, t = \dfrac{3 x}{5}, \forall x \in \mathbb{R}$.
Mostre que: se um triângulo tem duas medianas iguais então ele é isósceles.
Seja o triângulo $\ ABC$, $M$ o ponto médio de $\overrightarrow{BN}$ e $N$ o de $\overrightarrow{AC}.$ Seja também $P$ a interseção de $\overrightarrow{BN}$ e $\overrightarrow{AM},$ e por hipótese, temos $\left\Vert \overrightarrow{BN}\right\Vert =\left\Vert\overrightarrow{AM}
\right\Vert .$ Observe que os triângulos $NPM$ e $APB$ são isósceles. Observe também que como $\overrightarrow{MN}$ é paralelo a $\overrightarrow{AB}$ os ângulos $N\widehat{P}A$ e $M\widehat{P}B$ são iguais. Assim, pela lei dos cossenos, temos
$\left\Vert \overrightarrow{AN}\right\Vert ^{2}=\left\Vert \overrightarrow{PN}-\overrightarrow{PA}\right\Vert ^{2}=\left\Vert \overrightarrow{PM}-\overrightarrow{PB}\right\Vert ^{2}=\left\Vert \overrightarrow{BM}\right\Vert ^{2}$
Como, $2\left\Vert \overrightarrow{AN}\right\Vert =\left\Vert \overrightarrow{AC}\right\Vert $e $2\left\Vert \overrightarrow{BM}\right\Vert =\left\Vert \overrightarrow{BC}\right\Vert ,$ então $\left\Vert \overrightarrow{AN}\right\Vert =\left\Vert \overrightarrow{BC}\right\Vert ,$ e portanto, o triângulo é isósceles.
Verifique que a reta $x-1=z-2 y=3$ é paralela ao plano $x+2y-z=3$ e encontre a distância perpendicular entre eles.
Escrevendo $z$ como parâmetro livre, obtemos que $v=(1,0,1)$ é um
vetor diretor da reta dada e, sendo $n=(1,2,-1)$ o vetor normal ao
plano, vemos que $v\cdot n=0$. Ou seja, a reta é paralela ao plano.
Tomando os pontos $p=(-1,3,0)$ sobre a reta e $p_1=(3,0,0)$ sobre o
plano, segue também que a distância procurada é dada por $$
\|\mathrm{proj}_{n}\overrightarrow{p_1p}\| = \sqrt{\frac{2}{3}}.$$
Seja \[A=\left(\begin{array}[c]{rr}3 & -2\\-4 & 3\end{array}\right) : \]
- Encontre uma matriz $B$ tal que $B^{2}=A$ (isto é, $B$ é uma "raiz quadrada'' de $A$).
- Encontre todas as soluções da equação matricial $X^{2}=A$.
- $B= \left(\begin{array}[c]{cc}1 & -1\\-2 & 1\end{array}\right) . $
- Se $X= \left(\begin{array}[c]{cc}x & y\\z & w\end{array}\right),$ $X^2=A \rightarrow \left(\begin{array}[c]{cc}x^2+yz & wy+xy\\wz+xz & w^2+yz\end{array}\right)=\left(\begin{array}[c]{cc}3 & -2\\-4 & 3\end{array}\right).$
Cujas 4 soluções são:
$X'= \left(\begin{array}[c]{cc}1 & -1\\-2 & 1\end{array}\right);$ $X''= \left(\begin{array}[c]{cc}-1 & 1\\2 & -1\end{array}\right);$ $X'''= \left(\begin{array}[c]{cc}\sqrt{2} & -\sqrt{2}/2\\-\sqrt{2} & \sqrt{2}\end{array}\right);$ $X''''= \left(\begin{array}[c]{cc}-\sqrt{2} & \sqrt{2}/2\\\sqrt{2} & -\sqrt{2}\end{array}\right).$
Às vezes o gráfico de uma equação quadrática é uma reta, um par de retas ou até mesmo um único ponto. Nos referimos a tais gráficos como cônicas degeneradas. É também possível que a equação não seja satisfeita para nenhum valor real das variáveis, caso este no qual não existe um gráfico e dizemos tratar-se de uma cônica imaginária. Nos itens abaixo, identifique a cônica com a equação dada, dizendo se é degenerada ou imaginária. Quando possível, esboce também o gráfico.
$\displaystyle x^2+2xy+y^2=0$;
$\displaystyle x^2-2xy+y^2+2\sqrt{2}x-2\sqrt{2}y=0$;
$\displaystyle 2x^2+2xy+2y^2+2\sqrt{2}x-2\sqrt{2}y+6=0$.
Sejam $u=(1,-1,3)$ e $v=(3,-5,6)$ dois vetores. Encontre $\mathrm{proj}_{u+v} (2u-v)$.
$\dfrac{1}{133}(-88,132,-198)^T$
Esboce a figura correspondente às seguintes equações polares:
- $r = 1$,
- $r = 9$,
- $\theta = \frac{\pi}{2}$,
- $\theta^{2} = \frac{\pi^{2}}{16}$.
Os vetores $(1,1,0,-1),(1,2,1,3),(1,1,-9,2),(16,-13,1,3)$ formam uma base para $\mathbb{R}^{4}$?
Sim, porque são 4 vetores linearmente independentes, e dim $\mathbb{R}^{4}=4$.
Resolver o sistema linear:
\[\left\{\begin{array}{rrrcr}2x_1+&3x_2-&5x_3&=& 2 \\2x_1+&3x_2-&x_3&=& 8 \\6x_1+ &9x_2-&7x_3&=& 18 \\\end{array}\right. . \]
$x_2 =\dfrac{19-4x_1}{6}, x3 =\dfrac{3}{2}, \forall x_1 \in \mathbb{R}$.
A resultante de $n$ forças $\vec{F_1}, \vec{F_2}, \ldots, \vec{F_n}$ (que podem ser representadas por vetores) é dada pela soma $\vec{F_1}+\vec{F_2}+\ldots,\vec{F_n}$. A magnitude de uma força $\vec{F}$ é dada pela norma $\|\vec{F}\|$. Dadas as forças na figura abaixo, determine a magnitude da força resultante e o ângulo que ela faz com o eixo $x$ positivo (sugestão: use a Lei dos Cossenos e a Lei dos Senos).
Verificar se as retas são concorrentes e, em caso afirmativo, encontrar o ponto de interseção:
$$r_1:\;\begin{cases} y=2x-3\\ z=-x+5 \end{cases}\ \ \ {\rm e } \ \ \ r_2:\;\begin{cases}y=3x+7\\ z=x+1\end{cases}$$
As retas não são concorrentes.
Dadas a equação da curva diretriz $4x^2+z^2+4z=0$, $y=0$ e um vetor $V=(4,1,0)$ paralelo às retas geratrizes, determine a equação da superfície cilíndrica.
- Determine todas as matrizes $D$, $2\times 2$ e diagonais, que satisfazem: $DB=BD$ para toda matriz, $2\times 2$, $B$.
- Determine todas as matrizes $A$, $2\times 2$, que satisfazem: $AB=BA$ para toda matriz $B$, $2\times 2$.
- Tente generalizar a) e b) para matrizes $n\times n$.
Mostre que as diagonais de um losango cortam-se mutuamente em seu ponto médio e que são ortogonais entre si.
Reduza a equação $3x^2+3z^2+4xy+8xz+4yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Encontre as equações vetoriais e paramétricas para a reta $r$ que passa pelos pontos $A=(1,0,1)$ e $B=(2,3,1)$.
Um vetor diretor pode ser tomado como sendo um mútiplo de
$B-A=(1,3,0)$. Assim, a reta procurada terá a seguinte representação
vetorial $$\vec{r}= (1,0,1) + t(1,3,0),\quad t\in\mathbb{R}$$ ou,
parametricamente $$ \begin{cases} x=1+t, \\ y=3t,\\ z=1, \quad
t\in\mathbb{R}.\end{cases}$$
Uma viga metálica fina, com extremidades nas coordenadas $A=(2,5,3)$ e
$B=(1,1,0)$, deve ser dividida em três partes iguais. Determine os
pontos $C$ e $D$ que realizam esta divisão.
Reduza a equação $2x^2 + 30y^2 + 23z^2 + 72xz + 150 = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Considere a equação
$$x^{2} - 14 x y + y^{2} = 1.$$
Efetue a troca de variáveis $x = u \cos \theta + v\,\textrm{sen} \theta$ e $y = - u\, \textrm{sen} \theta + v \cos \theta$. Escolha, usando sua intuição ou fazendo as contas, $\theta$ de forma que a equação obtida em $u$ e $v$ seja a equação canônica de uma hipérbole. Explique o significado geométrico deste resultado e obtenha, nas coordenadas $x$ e $y$, as equações das retas que servem de assíntotas à tal hipérbole.
Considere o plano $\pi : ax + by + cz = 0$. Encontre as coordenadas:
- da projeção ortogonal do vetor $(x,y,z)$ sobre o plano $\pi$;
- da reflexão do vetor $(x,y,z)$ em relação ao plano $\pi$.
Resolver o sistema linear:
\[ \left\{\begin{array}{rrrrl}x&+5y&+4z&-13z&=3\\3x&-y&+2z&+5t &=2\\2x&+2y&+3z&-4t&=1\end{array}\right. .\]
Esse sistema linear não possui solução.
Se $u$, $v$ e $w$ são vetores no espaço então: mostre que $\langle u,v\times w\rangle = \langle v, w\times u\rangle = \langle w , v\times u\rangle$.
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$.
\[\left\{\begin{array}{rrrrrcr}1x_1+&3x_2-&7x_3+&5x_4+&2x_5&=&0 \\2x_1+&3x_2-&20x_3+&7x_4+&8x_5&=&0 \\10x_1+&22x_2-&46x_3+&34x_4+&12x_5&=&0 \\\end{array}\right. . \]
$Y = x_ 1\left ( 1,0, \dfrac {11} {5}, \dfrac {6} {5},\dfrac {21} {5} \right)^T+x_2\left ( 0,1, \dfrac {4} {5}, \dfrac {-1} {5},\dfrac {9} {5} \right)^T$, $\forall x_1, x_2\in\mathbb {R}$.
Seja o triângulo de vértices $A(-1,4,-2),\; B(3,-3,6)$ e $C(2,-1,4)$. Escrever as equações paramétricas da reta que passa pelo ponto médio do lado $AB$ e pelo vértice oposto $C$.
$r:\begin{cases}x=2+2t\\ y=-1-3t\\ z=4+4t.\end{cases}$
Existe alguma reta paralela a $r=\{ (0,1,1)+t(1,-1,-1), t\in\mathbb{R}\}$, contida no plano $\pi : x-2y+3z-1=0$? Por quê?
Sim, pois o vetor diretor de $r$ está contido no plano $\pi$, haja visto que $(1,-1,-1)\cdot(1,-2,3)=0$. De outra forma, podemos deduzir (como?) que $v_1=(2,1,0)$ e $v_2=(-3,0,1)$ formam um par gerador para $\pi$ e que o vetor diretor da reta $r$ pode ser escrito como combinação deste par. Ou seja, se escalonarmos a matriz cujas linhas são estes três vetores, então obteremos uma linha nula na forma escalonada reduzida.
Examine o sistema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[\left\{\begin{array}{ccccccccr}3x& + &3y& - &2z& - &t&=& 2\\5x& + &2y& + &z& - &2t&=& 1\\2x& - &y& + &3z& - &t&=& -1\end{array}\right. .\]
Esse sistema possui infinitas soluções.
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$.
\[\left\{\begin{array}{ccccccccccr}x_1&-&2x_2&+&3x_3&+&2x_4&+&x_5&=&10 \\2x_1&-&4x_2&+&8x_3&+&3x_4&+&10x_5&=& 7 \\3x_1&-&6x_2&+&10x_3&+&6x_4&+&5x_5&=&27\\\end{array}\right..\]
Como é afetado o formato de uma hipérbole quando sua excentricidade tende a $1$? E quando tende a $+\infty$? Esboce algumas figuras para ilustrar suas conclusões.
Resolver o sistema linear:\[\left\{\begin{array}{rrrrrcr}1x_1+&3x_2-&7x_3+&5x_4+&2x_5&=&0 \\2x_1+&3x_2-&20x_3+&7x_4+&8x_5&=&0 \\10x_1+&22x_2-&46x_3+&34x_4+&12x_5&=&0 \\\end{array}\right. . \]
$x_3 =\dfrac{11x_1+4x_2}{5}, x_4 = \dfrac{6 x_1-x_2}{5}, x_5 = \dfrac{21 x_1 + 9 x_2}{5}, \forall x_1, x_2 \in \mathbb{R}$.
Mostre que as medianas de um triângulo interceptam-se em um único ponto. Encontre a razão em que esse ponto divide cada mediana.
Tente generalizar o item (a) para tetraedros.
$\overrightarrow{AG}=\frac{2}{3}\overrightarrow{AM},$ $\overrightarrow{BH}=\frac{2}{3}\overrightarrow{BN},$ $\overrightarrow{CI}=\frac{2}{3}\overrightarrow{CP}.$
Assim, observe que
$\overrightarrow{GI}=\overrightarrow{GA}+\overrightarrow{AC}+\overrightarrow{CI}=\frac{2}{3}\overrightarrow{MC}+\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{CP}=\frac{2}{3}\overrightarrow{MP}+\frac{1}{3}\overrightarrow{AC}=\frac{1}{3}\left( \overrightarrow{BA}+\overrightarrow{AB}+\overrightarrow{CB}+\overrightarrow{BC}\right) =0.$
De maneira análoga, mostramos que $\overrightarrow{GH}=.$ Portanto,
concluímos que $G=H=I,$ e vale as propoções citadas acima.
b) Vamos mostrar que o centro de massa do tetraedro é a interseção das medianas. Sendo assim, seja o tetraedro $ABCD$. A mediana do tetraedro
é definida comos sendo o segmento que une um baricentro de uma das faces do tetraedro, com o seu vértice oposto.
Sejam $A^{\prime },B^{\prime },C^{\prime },D^{\prime }$, sendo respectivamente os baricentros das faces $DBC,$ $ABC,$ $ADC$ e $ADB.$
Observe que $\overrightarrow{D^{\prime }A}+\overrightarrow{D^{\prime }B}+\overrightarrow{D^{\prime }C}=0,$ pois $\overrightarrow{D^{\prime }A}+
\overrightarrow{D^{\prime }B}=2\overrightarrow{D^{\prime }P},$ onde $P=\frac{A+B}{2}.$ Como $D^{\prime }$ é o baricentro do triângulo $ABC$, segue que $\overrightarrow{CD^{\prime }=}2\overrightarrow{D^{\prime }P}.$
Assim,
$\overrightarrow{D^{\prime }A}+\overrightarrow{D^{\prime }B}+\overrightarrow{D^{\prime }C}=2\overrightarrow{D^{\prime }P}+\overrightarrow{D^{\prime }C}=\overrightarrow{CD^{\prime }}+\overrightarrow{D^{\prime }C}=0.$
Seja $G$ o centro de massa do tetraedro. Uma propriedade dele, é que
$\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=0.$
Assim,
$3\overrightarrow{GD^{\prime }}=\overrightarrow{GA}+\overrightarrow{
AD^{\prime }}+\overrightarrow{GB}+\overrightarrow{BD^{\prime }}+
\overrightarrow{GC}+\overrightarrow{CD^{\prime }}=\overrightarrow{GA}+
\overrightarrow{GB}+\overrightarrow{GC}-\left( \overrightarrow{D^{\prime }A}+\overrightarrow{D^{\prime }B}+\overrightarrow{D^{\prime }C}\right) =
\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=- \overrightarrow{GD}=\overrightarrow{DG}.$
Portanto, $3\overrightarrow{GD^{\prime }}=\overrightarrow{DG},$ ou seja, o centro de massa $G$ pertence ao segmento $\overrightarrow{DD^{\prime}}.$ De maneira análoga, mostramos que $G$ pertence aos segmentos $\overrightarrow{AA^{\prime }},$ $\overrightarrow{BB^{\prime }}, \overrightarrow{CC^{\prime }}.$ Ou seja, $G$ é o ponto de interseção das medianas.
Dê equações paramétricas para a curva $y=x^2-x^4$, indicando os valores para o seu parâmetro $t$. Esboce suas parametrizações.
Encontre as equações vetoriais e paramétricas para a reta $r$ que tem vetor diretor $v=(1,1,-1)$ e passa pelo ponto $P_o=(0,1,7)$.
Equação vetorial: $$ \vec{r}=P_0+tv =(0,1,7)+t(1,1,-1),\quad t\in\mathbb{R}. $$ Ou, ainda, $$ \begin{cases} x=t,\\y=1+t,\\z=7-t,\quad t\in\mathbb{R}.\end{cases} $$
Encontre a equação de uma reta mediatriz do segmento de extremos $A = (1,1,1)$ e $B = (3,3,3)$.
O ponto médio do segmento é dado por $M=\dfrac{1}{2}(A+B)=(2,2,2)$.
Já para um vetor diretor, podemos escolher qualquer vetor que seja
ortogonal a $B-A=2(1,1,1)$. Por exemplo, tomando o vetor $(1,-1,0)$ como
diretor, teremos a seguinte forma paramétrica para uma mediatriz: $$
(2,2,2)+t(1,-1,0),\quad t\in\mathbb{R}.$$
Reduza a equação $3x^2+y^2-2xy+2xz-2yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Examine o sistema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[\left\{\begin{array}{cccccr}2x_1+&1x_2+&4x_3+&x_4&=&-5 \\2x_1+&8x_2-&10x_3+&8x_4&=&2 \\&&-9x_3+&2x_4&=&2\\4x_1+&1x_2+&6x_3+&5x_4&=&-3\\4x_1+&5x_2-&8x_3+&8x_4&=&-3\\\end{array}\right . .\]
Esse sistema possui uma única solução.
Dados os pontos $A = (2,3,0), \; B = (4,0,1)$ e $C = (0,1,2)$ no $\mathbb{R}^{3}$, determine:
O comprimento do lado $AB$.
A medida do ângulo entre os lados $BA$ e $BC$.
A área do triângulo $ABC$.
O comprimento da altura do triângulo $ABC$ relativa ao vértice $A$.
As coordenadas do ponto no lado $AC$ por onde passa a perpendicular a esse lado que contém o ponto $B$.
Desenhe o triângulo $ABC$ no espaço $\mathbb{R}^{3}$.
Encontre a equação do plano $\pi$ que passa pelo ponto $P=(3,1,2)$ e tem vetor normal $N=(1,2,-3)$.
$x+2y-3z=-1$
Mostre que, quando $b$ varia, a equação polar
$$ r=b\mathrm{\,cosec\,}\theta \quad(0 < \theta < \pi ) $$
descreve uma família de retas paralelas ao eixo polar.
Considere três vetores do $\mathbb{R}^{3}$: $u = (1,0,-1)$, $v = (1,1,1)$ e $w = (x,y,z)$.
Se $w = (-1,-5,-9)$, mostre que existem escalares $a$ e $b$ tais que $w = au + bv$.
Ainda para $w = (-1,-5,-9)$, existem escalares $a', b'$ tais que $(a',b') \ne (a,b)$ e $w = a'u + b'v$?
Para todo $w$ existem escalares $a$ e $b$ tais que $w = au + bv$ como no item anterior?
Existe alguma relação entre as perguntas acima e o estudo de sistemas?
- $a=4$ e $b=-5$.
- Não.
- Não. Com apenas dois vetores não é possível gerar todos os vetores de $\mathbb{R}^3$. Por exemplo, não existem $\alpha$ e $\beta\in\mathbb{R}$ tais que $\alpha u + \beta v=(-1,5,9)$.
- Uma conclusão básica é que nem todo sistema de três equações e duas incógnitas terá solução. Mais conclusões são possíveis.
Se uma esfera $\displaystyle \dfrac{x^2}{a^2}+\dfrac{y^2}{a^2}+\dfrac{z^2}{a^2}=1$ de raio $a$ for comprimida na direção $z$, então a superfície resultante, chamada de esferóide oblato, tem uma equação da forma $\displaystyle \dfrac{x^2}{a^2}+\dfrac{y^2}{a^2}+\dfrac{z^2}{c^2}=1$, onde $c<a$. Mostre que o esferóide oblato tem um traço circular de raio $a$ no plano $xy$ e um traço elíptico no plano $xz$, com eixo maior de comprimento $2a$ ao longo do eixo $x$ e eixo menor de comprimento $2c$ ao longo do eixo $z$.
Verifique se os seguintes pontos são colineares: $A=(3,1,4)$, $B=(2,7,1)$ e $C=(0,1,5)$.
Os pontos não são colineares.
Verificar se as retas são concorrentes e, em caso afirmativo, encontrar o ponto de interseção:
$$r_1:\;\begin{cases} y=2x-3\\ z=-x-10. \end{cases}\ \ \ {\rm e } \ \ \ r_2:\; \begin{cases}y=3x+7\\ z=x+1\end{cases}$$
As retas não são concorrentes.
Seja $A$ uma matriz $2\times 2$ simétrica e $k$ um escalar. Mostre que o gráfico da equação quadrática $\textbf{x}^tA\textbf{x}=k$ é:
uma hipérbole se $k\neq 0$ e $\det A<0$;
uma elipse, círculo ou cônica imaginária se $k\neq 0$ e $\det>0$;
um par de retas ou uma cônica imaginária se $k\neq 0$ e $\det A=0$;
um par de retas ou um único ponto se $k=0$ e $\det A \neq 0$;
uma linha reta se $k=0$ e $\det A=0$.
[Dica: use o Teorema dos Eixos Principais.]
Construa a curva cujas equações paramétricas são dadas por: $x=\sin\theta$, $y=\mathrm{cosec\,}\theta$ e $z=\cos\theta$.
Resolver o sistema linear:
\[\left\{\begin{array}{cccccr}2x_1+&1x_2+&4x_3+&x_4&=&-5 \\2x_1+&8x_2-&10x_3+&8x_4&=&2 \\&&-9x_3+&2x_4&=&2\\4x_1+&1x_2+&6x_3+&5x_4&=&-3\\4x_1+&5x_2-&8x_3+&8x_4&=&-3\\\end{array}\right . .\]
$x_1 = -\dfrac{27}{7}, x_2=\dfrac{-5}{7}, x_3 =\dfrac{2}{7} , x_4 =\dfrac{16}{7}.$
Seja $M= \left( \begin{array}{cccc}a & 0 & b & 2\\a & a & 4 & 4\\0 & a & 2 & b\end{array}\right) $ a matriz ampliada (ou aumentad de um sistema linear. Para que valores de $a$ e $b$ o sistema admite:
- Solução única;
- Solução com uma variável livre;
- Solução com duas variáveis livres;
- Nenhuma solução.
Considere a matriz $$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & a \\ 2 & 2a-2 & -a-2& 3a-1 \\ 3 & a + 2 & -3 & 2a + 1 \end{bmatrix}.$$ Determine o conjunto solução do sistema $A\,X = B$, em que $B = \begin{bmatrix} 4 & 3 & 1 & 6\end{bmatrix}^t$, para todos os valores de $a$.
Para $a=5$, o sistema não possui solução.
Para $a=1$, o sistema possui infinitas soluções com $x=2-w$, $y=z=1$ e $w\in\mathbb{R}$.
Para $a\neq 5$ e $a\neq 1$, $x = \dfrac{4a-11}{a-5}$, $y = \dfrac{4}{5-a}$, $z = \dfrac{4}{5-a}$, $w = \dfrac{1}{5-a}$.
Calcule o cosseno do ângulo entre a diagonal de um cubo e suas arestas.
Consideraremos o cubo com arestas paralelas aos eixos coordenados. Sejam a origem $\left( 0,0,0\right) $ e os pontos $\left( k,0,0\right) ,\left(
0,k,0\right) $ e $\left( 0,0,k\right) $ quatro vértices do cubo. Considere agora o vetor diagonal, isto é, o vetor $\overline{d}$ obtido considerando a origem e o vértice oposto $\left( k,k,k\right) $. Então, o ângulo $\theta $ entre o vetor diagonal e a aresta $u_{x}=\left(k,0,0\right) $ é obtido como segue:
$\overline{d}.u_{x}=\left( k,k,k\right) .\left( k,0,0\right) =\left\vert
\overline{d}\right\vert .\left\vert \overline{u_{x}}\right\vert \cos \theta ,
$ $k^{2}=\sqrt{3k^{2}}k\cos \theta .$
Logo, $\cos \theta =\frac{1}{\sqrt{3}},$ e $\theta =arc\cos \left( \frac{1}{
\sqrt{3}}\right) ,$ onde escolhemos a determinação do $\arccos $ em $
\left( 0,\pi \right) $. Os ângulos com as arestas são iguais. Observe que o ângulo obtido é sempre independente da escolha de $k.$
Sendo $\|u\|=3, \|v\|=4$ e $120^{\circ}$ o ângulo entre os vetores $u$ e $v$, calcule:
$\|u+v\|,$
$\|u\times(v-u)\|.$
Dado um plano qualquer com um sistema de coordenadas $xy$, encontre os vértices (ou vértice), os focos (ou foco) e a excentricidade da cônica descrita por $49x^2-9y^2=441$. Esboce o gráfico.
Forneça equações paramétricas para o ramo positivo da curva $9x^2-4y^2+90x+32y+125=0$, indicando valores para o parâmetro $t$. Esboce suas parametrizações.
Para o par de vetores $u=(3,1,-3)$ e $v=(2,-3,1)$, encontrar a projeção ortogonal de $v$ sobre $u$ e decompor $v$ como soma de $v_{1}$ com $v_{2}$, sendo $v_{1} \parallel u$ e $v_{2}\perp u$.
Posto que $u \cdot v=0$, $u$ e $v$ são ortogonais. Assim, a projeção ortogonal de $v$ sobre $u$ é zero. Nesse caso, $v_1=0$ e $v_2=v$.
Resolva a equação $f(x)=0$, onde $f(x)=\det(A-xI)$ e
$
A = \begin{pmatrix}
5&6&-3\\ -1&0&1\\ 1&2&1
\end{pmatrix}.
$
\(x=2\) é uma raíz tripla.
Seja $(4,5)$ o ponto médio de um segmento de reta tal que uma extremidade é $(-1,2)$. Ache a outra extremidade.
$(9,8)$.
Construa a curva cujas equações paramétricas são dadas por: $x=2t$, $y=4t^2$ e $z=t$.
Sejam $a,b,c$ três vetores não coplanares e denotemos por $[a,b,c]$ o produto misto $a\cdot(b\times c)$. Os vetores
$$ a'=\frac{b\times c}{[a,b,c]},\; b'=-\frac{a\times c}{[a,b,c]},\; c'=\frac{a\times b}{[a,b,c]} $$ são chamados os vetores recíprocos aos vetores $a,b,c$.
Mostre que
$$ [a',b',c']=\frac{1}{[a,b,c]}. $$
O lugar geométrico dos pontos do espaço que satisfaz a equação $\displaystyle x^{2/3}+y^{2/3}+z^{2/3}=a^{2/3}$ é denominado esfera astroidal. Mostre que essa superfície pode ser representada parametricamente como \begin{align*} x& = a(\sin u\cos v)^3 \\ y& = a(\sin u\sin v)^3 \\ z & = a (\cos u)^3, \quad (0\leq u\leq \pi, \ 0\leq v\leq 2\pi). \end{align*} Tente esboçar o seu gráfico.
A hipérbole $\ell$ tem focos $F_1$, $F_2$ e vértices $A_1$, $A_2$. Encontrar equações paramétricas de $\ell$ se
$F_1=(2,0)$, $F_2=(8,0)$, $A_1=(3,0)$, $A_2=(7,0)$;
$F_1=(0,0)$, $F_2=(4,8)$, $A_1=(1,2)$, $A_2=(3,6)$.
Use um recurso computacional para investigar como a família de curvas polares $r=1+a\cos(n\theta)$ é afetada pela mudança nos valores de $a$ e $n$, sendo $a$ um número real positivo e $n$ um inteiro positivo.
Mostre que um sistema de equações lineares homogêneo de $n$ equações e $n$ incógnitas admite solução(ões) não trivial(is) se e somente se o determinante da matriz dos coeficientes for nulo.
Encontre a inversa da matriz abaixo (se existir):
\[\begin{pmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{pmatrix}.\]
\[\begin{pmatrix}\cos x & -\sin x \\ \sin x & \cos x\end{pmatrix}.\]
Sabemos que se $B$ é uma base de $R^3$ formada pelos vetores $U,V$ e $W$, então as leis de mudança de base entre a base usual e a base $B$ são $$ P_B = [U,V,W]^{-1}P\ \ {\rm e}\ \ P = [U,V,W]P_B$$ Determine a mudança de base entre a base $B$ e uma base $B^{\prime}$ distinta da usual.
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$.
\[ \left\{\begin{array}{rrrrl}x&+5y&+4z&-13z&=3\\3x&-y&+2z&+5t &=2\\2x&+2y&+3z&-4t&=1\end{array}\right. .\]
Verificar se as retas são concorrentes e, em caso afirmativo, encontrar o ponto de interseção:
$$r_1:\;\begin{cases}x=2-t\\ y=3-5t\\ z=6-6t. \end{cases}\ \ \ {\rm e } \ \ \ \begin{cases}x=-3+6h\\ y=1+7h\\ z=-1+13h\end{cases}$$
$P=(3,8,12)$.
Em cálculo de uma variável vemos que se $x_0$ é um extremo local (máximo ou mínimo) de uma função $f(x)$, então a reta tangente ao gráfico de $f$ em $x_0$ é horizontal, ou seja, $f'(x_0)=0$.
Encontre uma relação similar entre um extremo local de uma função de duas variáveis e o plano tangente ao seu gráfico.
Use esta relação para encontrar os extremos locais da função $\displaystyle f(x,y)=2x^2+2y^2-2x-6y+14$.
Verifique se sua resposta no item anterior está correta completando os quadrados em $f(x,y)$ e identificando a quádrica.
Encontre ou mostre a impossibilidade de encontrar $\gamma\in\mathbb{R}$ tal que $\displaystyle x^2+3y^2-2xy=\gamma$ represente uma elipse.
Seja $A$ uma matriz $2\times 2$ real com autovalores complexos $\lambda=a\pm bi$ tais que $b\neq 0$ e $|\lambda|=1$. Mostre que toda trajetória do sistema dinâmico $\textbf{x}_{k+1}=A\textbf{x}_k$ está sobre uma elipse. [Dica: use que se $\textbf{v}$ é um autovetor associado a $\lambda=a-bi$, então a matriz $P=[ \textrm{Re}\,\textbf{v}\quad \textrm{Im}\,\textbf{v}]$ é invertível e temos que $\displaystyle A=P\left[\begin{array}{cc} a & -b \\ b & a \end{array}\right]P^{-1}$. Ponha $\displaystyle B=(PP^t)^{-1}$. Mostre que a equação quadrática $\textbf{x}^tB\textbf{x}=k$ define uma elipse para todo $k>0$, e prove que se $\textbf{x}$ está sobre esta elipse, então $A\textbf{x}$ também estará.]
Considere a forma quadrática $2x^2+8xy+2y^2+x+y-9=0$. Escreva-a numa base conveniente e identifique qual é a cônica e seus paramêtros associados.
Seja $\vec{v}\ne 0$ um vetor do $\mathbb{R}^{3}$ e sejam $\alpha$, $\beta$ e $\gamma$ os ângulos que $\vec{v}$ faz com os eixos coordenados $X$, $Y$ e $Z$, respectivamente. Mostre que:
se $\|\vec{v}\| = 1$, então $\vec{v} = (\cos(\alpha),\cos(\beta),\cos(\gamma))$ (Dica: calcular os cossenos de $\alpha$, $\beta$ e $\gamma$ fazendo o produto escalar de $\vec{v}$ com os vetores de comprimento $1$ na direção dos eixos coordenados. Como é um vetor de comprimento $1$ na direção de $X$? Isto é, sobre o eixo $X$.).
para um vetor $\vec{v}$ qualquer, vale que $\vec{v} = \|\vec{v}\|(\cos(\alpha),\cos(\beta),\cos(\gamma))$.
$\cos^{2}(\alpha) + \cos^{2}(\beta) + \cos^{2} (\gamma) = 1$.
Mostre a seguinte propriedade de Reflexão da Parábola: A reta tangente em um ponto $P$ da parábola faz ângulos iguais com a reta que passa por $P$ paralela ao eixo de simetria e com a reta que passa por $P$ e o foco. (Sugestão: Escolha os eixos coordenados de tal modo que a parábola tenha a equação $x^2=4py$.
Mostre que a reta tangente em $P(x_0,y_0)$ intersecta o eixo $y$ no ponto $Q(0,-y_0)$ e que é isósceles o triângulo cujos três vértices estão em $P$, $Q$ e o foco.
Determinar as equações paramétricas e representar graficamente a reta que passa por $A(4,-3,-2)$ e tem a direção de $3i\;-\;2j$.
$r:(x,y,z)=(4+3t,-3-2t,-2)$.
Sejam $\vec{A}$, $\vec{B}$ e $\vec{C}$ vetores no plano, com $\|\vec{A}\|=2$, $\|\vec{B}\|=3$ e $\|\vec{C}\|=4$. O ângulo entre $\vec{A}$ e $\vec{B}$ é de $120^\circ$, entre $\vec{A}$ e $\vec{C}$ é de $135^\circ$ e entre $\vec{B}$ e $\vec{C}$ é de $105^\circ$. Faça um esboço do gráfico desses três vetores. Qual combinação linear de $\vec{A}$ e $\vec{B}$ é igual a $\vec{C}$?
$\vec{C} = -(\sqrt{2}+\sqrt{2/3})\vec{A} + -(4\sqrt{2})/(3\sqrt{3}) \vec{B}$.
- Determine a equação do plano $\pi_1$ que passa por $A = (10, 1,-1)$, $B = (1, 9,-1) \text{ e } C = (1,-1, 5)$.
- Determine a equação do plano $\pi_2$ que passa por $D = (-1, 4,-1)$, $E = (3,-1, 10)$ e é paralelo ao eixo $z$.
- Escreva as equações paramétricas para a reta $r$, interseção dos planos $\pi_1$ e $\pi_2$.
- Qual o ângulo entre os planos $\pi_1$ e $\pi_2$?
- Qual o ponto $P$ de $\pi_1$ que está mais próximo da origem? (Sugestão: este ponto é tal que $\overrightarrow{OP}$ é ortogonal ao plano $\pi_1$.)
Seja \[A=\left(\begin{array}[c]{cc}2 & x^{2}\\2x-1 & 0\end{array}\right) .\]
Qual é o valor de $x$ para que tenhamos $A^{t}=A$?
\(x=1\)
Decompor o vetor $\vec{w} = (-1,-3,-2)$ como soma de dois vetores $\vec{w} = \vec{u} + \vec{v}$, onde $\vec{u}$ é paralelo ao vetor $(0,1,3)$ e $\vec{v}$ é ortogonal a $(0,1,3)$ (Dica: $u$ pode ser escolhido como a projeção de $\vec{w}$ sobre $(0,1,3)$).
$\vec{u}=\left(0,-\frac{9}{10},-\frac{27}{10}\right)^T$ e $\vec{w}=\left(-\sqrt{\frac{10}{59}},-\frac{21}{\sqrt{590}},\frac{7}{\sqrt{590}}\right)^T$
Construa a curva cujas equações paramétricas são dadas por: $x=2\sin^2t$, $y=\sin(2t)$ e $z=2\cos t$.
Ache os pontos de $r:x-1=2y=z$ que equidistam de $s=\{ (2,t,0),t\in\mathbb{R}\}$ e do eixo $x$.
Calcule o determinante da matriz:
$
\begin{pmatrix}
1&1&-1\\ -1&0&1\\ -1&-1&0
\end{pmatrix}.
$
\(-1\)
Encontre a equação da reta $r$ que passa pelos pontos $(-2,1,-3)$ e $(-4,0,2)$.
Um vetor diretor pode ser tomado pela diferença $(-4,0,2)-(-2,1,-3)=(-2,-1,5)$. Assim, temos a seguinte forma paramétrica $$ r: (-2,1,-3)+t(-2,-1,5)\quad t\in\mathbb{R}.$$
O vetor $w$ é ortogonal aos vetores $u=(2,3,-1)$ e $v=(1,-2,3)$ e $w\cdot(2,-1,1) = -6$. Encontre $w$.
$w=(-3,3,3)$
Considere o hiperbolóide de uma folha $H$ dado pela equação $x^2+y^2=1+z^2$. Mostre que por cada um dos seus pontos passam duas retas inteiramente contidas na superfície $H$. Generalize para qualquer hiperbolóide de uma folha. (Sugestão: $x^2+y^2=1+z^2\Leftrightarrow(x+z)(x-z)=(1+y)(1-y)$.)
Sejam $(x,y,z)$ coordenadas em relação ao sistema usual de $\mathbb{R}^3$, $S_0=\{O,i,j,k\}$. Considere o paralelepípedo $P$ com vértices $(0,0,0)$, $(3,0,0)$, $(0,2,0)$, $(0,0,1)$ (quais são os outros quatro?). Determine os vetores que representam as quatro diagonais de $P$. Escolha três deles e mostre que formam uma base de $R^3$. Chame esta base de $\beta =\{V_1,V_2,V_3\}$.
Mostre que para dois vetores $\vec{A}$ e $\vec{B}$, $\|\vec{A}\| - \|\vec{B}\| \leq \|\vec{A} \pm \vec{B}\| \leq \|\vec{A}\| + \|\vec{B}\|$. Em que condições vale a igualdade?
$\|\vec{A} - \vec{B}\|^2=\|\vec{A}\|^2+\|\vec{B}\|^2- 2\|\vec{A}\|\|\vec{B}\|\cos\theta$.
Seja $\ell$ a curva com equações paramétricas $x=a(1+t^2)/(1-t^2)$, $y=2bt/(1-t^2)$. Determine $\ell$.
Reduza a equação $-x^2-y^2-7z^2+16xy+8xz+8yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Mostre que o elipsóide obtido girando uma elipse com semi-eixo maior $a$ e semi-eixo menor $b$ em torno do eixo maior tem área de superfície
$$ S= 2\pi ab\left(\dfrac{b}{a}+\dfrac{a}{c}\arcsin\dfrac{c}{a}\right), $$
onde $c=\sqrt{a^2-b^2}$.
Considere a reta
\[
r:\left\{
\begin{array}{ccl}
x & = & 1 \\
y & = & -z
\end{array}
\right.
\]
e o ponto $A\ =\ (1,1,1)$. Determine a equação do plano $\pi $ que é paralelo à reta $r$, passa por $A$ e é tal que a sua reta normal pelo ponto $A$ seja perpendicular e concorrente com a reta $r$.
$y+z=2$
Identifique a cônica $3 x^2-12 x y+12 y^2+ 2 \sqrt{5} x+\sqrt{5} y=0$ e seu parâmetros associados.
Um construtor tem contratos para construir 3 estilos de casa: moderno, mediterrâneo e colonial. A quantidade de material empregada em cada tipo de casa é dada pela tabela:
\[
\begin{array}{lccccc}
& \text{Ferro} & \text{Madeira} & \text{Vidro} &
\text{Tinta} & \text{Tijolo}\\
\text{Moderno} & 5 & 20 & 16 & 7 & 17\\
\text{Mediterrâneo} & 7 & 18 & 12 & 9 & 21\\
\text{Colonial} & 6 & 25 & 8 & 5 & 13
\end{array}
\]
Se ele pretende construir 5, 7 e 12 casas dos tipos moderno, mediterrâneo e colonial, respectivamente, quantas unidades de cada material serão empregadas?
Suponha que os preços por unidade de ferro, madeira, vidro, tinta e tijolo sejam, respectivamente, 15, 8, 5, 1 e 10. Qual é o preço unitário de cada tipo de casa?
Qual é o custo total do material empregado?
- As quantidades de ferro, madeira, vidro, tinta e tijolo serão 146, 526, 260,158 e 388, respectivamente.
- O preço unitário dos tipos moderno, mediterrâneo e colonial serão 492, 528 e 465, respectivamente.
- O custo total do material empregado para construir 5 casas do estilo moderno, 7 casas do estilo mediterrâneo e 12 casas do estilo colonial é 11736.
Sejam $\vec{A}$, $\vec{B}$ e $\vec{C}$ vetores no plano, com $\|\vec{A}\|=3$, $\|\vec{B}\|=2$ e $\|\vec{C}\|=6$. O ângulo entre $\vec{A}$ e $\vec{B}$ é de $60^\circ$ e $\vec{C}$ está sobre a bissetriz deste ângulo. Faça um esboço do gráfico desses três vetores. Qual combinação linear de $\vec{A}$ e $\vec{B}$ é igual a $\vec{C}$?
$\vec{C} = 2/\sqrt{3} \vec{A} + \sqrt{3} \vec{B}$.
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$, em função do parâmetro $\lambda$:
\[\left\{\begin{array}{ccccl}x_1-&2x_2-&x_3+&x_4&=-2 \\2x_1+&7x_2+&3x_3+&x_4&=\ \, 6 \\11x_1+&11x_2+&4x_3+&8x_4&=\ \, 8\\10x_1+&2x_2+&&8x_4&=\ \, \lambda \\\end{array}\right. .\]
Identifique a quádrica definida pela equação reduzida $\dfrac{x^2}{6}+\dfrac{y^2}{5}+\dfrac{z^2}{3}=1$ e esboce seu gráfico.
Calcule os produtos:
- $\begin{pmatrix}\phantom{-}3 & 1\\ -1 &2\end{pmatrix} \cdot \begin{pmatrix}\phantom{-}0 & 5\\ -1 &6\end{pmatrix}$;
- $\begin{pmatrix}\phantom{-}3\\ -1\\ \phantom{-}2\end{pmatrix}\cdot
\begin{pmatrix}2 & -6 & 7\end{pmatrix}$; - $\left(\begin{array}{ccc}1 & -4 & 5\end{array}\right)\cdot
\left(\begin{array}{c}\phantom{-}3\\ \phantom{-}4\\
-1\end{array}\right)$; - $A\cdot A^t$, onde $A=\begin{pmatrix}1&2&3\\ 3&2&1\end{pmatrix}$;
- $\begin{pmatrix}2& -4 & 6\\ 5 &\phantom{-}2 & 7 \\ 1& \phantom{-}0&4 \end{pmatrix} \cdot \begin{pmatrix}5& 0 & \phantom{-}0\\ 0 &2 & \phantom{-}0 \\ 0& 0&-1\end{pmatrix}$;
- $\begin{pmatrix}2&-1&3 \\ 0&\phantom{-}1&2\end{pmatrix}\cdot \begin{pmatrix}-2&\phantom{-}1\\ \phantom{-}0&\phantom{-}2\\ \phantom{-}1&-1\end{pmatrix}\cdot\begin{pmatrix}2 & -1\\ 3 & \phantom{-}0\end{pmatrix}$;
- $\begin{pmatrix} \cos \alpha &- \sin \alpha \\ \sin \alpha & \phantom{-}\cos \alpha \end{pmatrix} \cdot \begin{pmatrix}
\cos \alpha & -\sin \alpha \\ \sin \alpha& \phantom{-}\cos \alpha \\
\end{pmatrix}$.
- \[\left(\begin{array}{cc} -1 & 21 \\ -2 & 7 \end{array}\right);\]
- \[\left(\begin{array}{ccc} 6 & -18 & 21 \\ -2 &6 & -7 \\ 4 & -12 & 14 \end{array}\right);\]
- \(\displaystyle -18;\)
- \[\left(\begin{array}{cc} 14 & 10 \\ 10 & 14\end{array}\right);\]
- \[\left(\begin{array}{ccc} 10 & -8 & -6\\ 25 & 4 & -7\\ 5& 0 -4 \end{array}\right);\]
- \[\begin{pmatrix} -11 & 1\\ 4 &-2 \end{pmatrix};\]
- \[\begin{pmatrix} \cos(2\alpha) & -\sin(2\alpha) \\ \sin(2\alpha) & \cos(2\alpha) \end{pmatrix}.\]
Verifique a posição relativa do seguinte par de retas (isto é, verifique se são paralelas, concorrentes ou reversas):
\[
\left\{\begin{array}{ccr}x &=& 1-2t\\y &=& -1-t\\ z &=& 3 + 3t\end{array}\right., \ \ \
\left\{\begin{array}{ccr}x &=& 3+4s\\y &=& -4+2s\\ z &=& 1 + s\end{array}\right. .
\]
São reversas.
Qual é o vetor unitário na direção de $4\vec{i}-12\vec{j}+3\vec{k}$?
$\dfrac{4\vec{i}-12\vec{j}+3\vec{k}}{13}$.
Encontre uma equação em coordenadas polares para a curva cuja equação em coordenadas cartesianas é dada por $x^2-y^2=16$.
Apenas usando a definição de coordenadas polares, obtemos a seguinte equação: $\displaystyle r\sqrt{\cos(2\theta)}=4$.
Sabendo que $u\cdot(v\times w)=2$, calcular:
$u\cdot(w\times v)$.
$v\cdot(w\times u)$.
$(v\times w)\cdot u$.
$(u\times w)\cdot 3v$.
$u\cdot(2w\times v)$.
$(u+v)\cdot(u\times w)$.
Examine o sistema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz, em função do parâmetro $\lambda$.
\[\left\{\begin{array}{cccl}2x_1+&3x_2+&x_3&=1 \\x_1+&6x_2+&x_3&=3 \\2x_1-&3x_2+&2x_3&=\lambda\\x_1+&3x_2+&2x_3&=1 \\\end{array}\right.. \]
Que condições devem satisfazer os vetores $a$ e $b$ para que sejam válidas as seguintes relações?
$\|a + b \| = \|a - b \|$;
$\| a + b \| > \| a - b \|$;
$\| a + b \| < \| a - b \|$.
Diga qual é a cônica obtida pela intersecção do cone
$$x^{2} + y^{2} - z^{2} = 0$$
com o plano
$$x - y + z\;\sqrt{2/3} = 5 \sqrt{2/3} .$$
Explique seu raciocínio.
Examine o sitema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[\left\{\begin{array}{rrrrl}4x&+3y&-z&+t&=4\\x&-y&+2z&-t&=0\\5x&+2y&+z&&=4\end{array}\right. . \]
Esse sistema linear possui infinitas soluções.
Encontre a equação geral do plano que contém os pontos $A=(1,0,0)$, $B=(1,5,-2)$ e é paralelo ao vetor $(1,-1,1)$. Determine a distância de $C=(1,-1,1)$ ao plano encontrado e a área do triângulo formado pelos vértices $A$, $B$ e $C$.
Seja $O$ a origem de um sistema de coordenadas no plano. Mostre que se $ABC$ é um triângulo qualquer, suas medianas se interceptam no ponto $$M=\frac{OA+OB+OC}{3}.$$
Encontre a equação da reta simétrica à reta $r$ em relação ao plano $\pi$:
$$r:\begin{cases} x= 1 + 2t\\
y = -2 + 7t
\\z = -2 + 5t \end{cases}\ \ \ {\rm e}\ \ \ \pi:x-y+z=1.$$
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$.
\[\left\{\begin{array}{cccccr}&x_1&-&7x_2&=&-11 \\-&x_1&+&11x_2&=&31 \\&2x_1&-&12x_2&=&-26 \\&3x_1&-&17x_2&=&-15 \\\end{array}\right. . \]
$Y = (0, 0)^T$.
Não existe solução particular $X_o$ para esse sistema. Ou seja, o sistema linear não possui solução.
Classifique a superfície $\displaystyle \dfrac{x^2}{36}+\dfrac{y^2}{25}-z=0$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Encontre o volume do paralelepípedo determinado pelos vetores $u$, $v$ e $w$, dados por: $u=\overrightarrow{AB}$, $v=\overrightarrow{AC}$ e $w=\overrightarrow{AD}$, onde $A=(1,3,4)$, $B=(3,5,3)$, $C=(2,1,6)$ e $D=(2,2,5)$.
$u\cdot(v\times w)=1$
Reduza a equação $2xy + z = 0$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Seja $\mathcal{C}$ a cônica cuja equação em relação ao sistema $xy$ é dada por $29x^2 + 24xy + 36y^2 + 22x + 96y = 115$. A mudança de coordenadas entre os sistemas $xy$ e $x_{1}y_{1}$ é feita através de uma matriz ortogonal $U$, como segue
\[ \begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix} = \begin{pmatrix}{\frac{\,3}{5}} & {\frac{\,4}{5}} \\{\frac{\,-4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}\quad \text{ e }\quad
\begin{pmatrix}x\\ y\end{pmatrix} = \begin{pmatrix}{\frac{\,3}{5}} & {\frac{-4}{5}} \\ {\frac{\,4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix},\quad \text{ lembrar que } U^{-1} = U^{t}.\]
Já a mudança entre os sistemas $x_{1}y_{1}$ e $XY$ é dada por $X = x_{1}+1$, $Y = y_{1}+1$.
Encontre a equação de $\mathcal{C}$ nos sistemas $x_{1}y_{1}$ e $XY$.
Encontre as coordenadas dos vértices e dos focos de $\mathcal{C}$ nos três sistemas, $xy$,\,$x_{1}y_{1}$ e $XY$. Dica: Encontrar primeiro no sistema $XY$ e ir voltando.
Faça um esboço do desenho da cônica.
Encontre os vértices (ou vértice), os focos (ou foco) e a excentricidade da cônica descrita por $3x^2-14y=0$. Esboce também o gráfico.
Encontre condições sobre o vetor $v=(a,b,c)$ para que exista uma reta na direção de $v$ que intercepte simultaneamente as retas $r$ e $s$:
$$r:\begin{cases} x=2 + t\\
y = 5 - t
\\z = 3 + t \end{cases}\ \ \ {\rm e}\ \ \ s:\begin{cases} x= t\\
y = 1 - t
\\z = -2 + t \end{cases}$$
Mostre que se o gráfico polar de $r=f(\theta)$ for girado no sentido anti-horário em torno da origem por um ângulo $\alpha$, então $r=f(\theta-\alpha)$ é uma equação para a curva girada. (Sugestão: se $(r_0,\theta_0)$ for um ponto qualquer do gráfico original, então $(r_0,\theta_0+\alpha)$ é um ponto no gráfico girado.)
Calcular $k$ de modo que a reta determinada por $A(1,-1,0)$ e $B(k,1,2)$ seja paralela ao plano
$$\pi:\;\begin{cases}x=1+3h\\ y=1+2h+t\\ z=3+3t \end{cases}$$
$k=3/2$
Justificar as afirmações abaixo:
$\vec{u} \cdot (\vec{u}\times \vec{v})=0,$ para quaisquer dois vetores $\vec{u}$ e $\vec{v}.$
Se as diagonais de um paralelogramo são perpendiculares, então este paralelogramo é um losango.
Dê equações paramétricas para o círculo centrado em $(h,k)$ e de raio 1, indicando o domínio onde o parâmetro $t$ assume valores. Esboce suas parametrizações.
Nesta questão, todos os sistemas de coordenadas têm mesma origem $O$. Sejam $(x,y,z)$ coordenadas em relação à base usual $\{i,j,k\}$; $(u,v,w)$ coordenadas em relação à base $\beta =\{j,i,i-j+k\}$ e $(r,s,t)$ coordenadas em relação à base $\gamma =\{k,i-j,i+j\}$. Dado um ponto $P\in\mathbb{R}^3$, escrito na base $\beta$ como $P_{\beta} = (3,2,1)$, ache $P_{\gamma}$, isto é, $P$ na base $\gamma$.
Encontre uma equação em coordenadas cartesianas para a curva cuja equação em coordenadas polares é dada por $r=\frac{5}{2-2cos\theta}$.
Usando a definição de coordenadas cartesianas, obtemos: $\displaystyle 2+\frac{5}{x-\sqrt{x^2+y^2}}=0. $
O momento escalar ou torque sobre o ponto $P$ de uma força $\vec{F}$ aplicada a um ponto $Q$ é dado por $\|\vec{PQ} \times \vec{F}\|$. Uma força $\vec{F}$ com magnitude de $10 N$ é aplicada na direção $y$ positiva sobre o ponto $Q=(1,1,1)$ em um cubo com lados de tamanho $1m$. Determine o momento escalar de $\vec{F}$ sobre o ponto $P = (1,0,1)$. Faça um esboço do gráfico, indicando a força e o momento escalar.
Mostre que a equação de uma superfície cônica com vértice num ponto $P_0=(x_0,y_0,z_0)$ e curva diretriz situada no plano $z=c$ com equação $f(x,y)=0$ é $$f(x_0+\dfrac{c-z_0}{z-z_0}(x-x_0), y_0+\dfrac{c-z_0)}{z-z_0}(y-y_0))=0. $$
Examine o sistema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz, em função do parâmetro $\lambda$.
\[\left\{\begin{array}{ccccl}x_1-&2x_2-&x_3+&x_4&=-2 \\2x_1+&7x_2+&3x_3+&x_4&=\ \, 6 \\11x_1+&11x_2+&4x_3+&8x_4&=\ \, 8\\10x_1+&2x_2+&&8x_4&=\ \, \lambda \\\end{array}\right. .\]
Determinar as equações paramétricas e representar graficamente a reta que passa por $A(-2,3,4)$ e é ortogonal ao mesmo tempo aos eixos dos $x$ e dos $y$.
$r:(x,y,z)=(-2,3,4+t);$
Identifique a quádrica definida pela equação reduzida $x^2+ y^2-z^2=0$ e esboce seu gráfico.
Reduza a equação $2x^2+2y^2-z^2+8xy-4xz-4yz=2 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Para quais valores de $m$ os pontos $A=(m,1,2), B=(2,-2,-3), C=(5,-1,1)$ e $D=(3,-2,-2)$ são coplanares?
$m=\pm 4$
Verifique se os seguintes pontos são colineares: $A=(1,0,1)$, $B=(2,2,0)$ e $C=(0,-2,2)$.
Os pontos são colineares.
Identificar a cônica $x^2-2xy+y^2-10x-6y+25=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).
Reduza a equação $4x^2+6y^2+4z^2-4xz+1=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Provar, utilizando o produto escalar, que todo triângulo inscrito em uma semicircunferência é reto.
Consideremos a semicircunferência de raio $R$ com centro na origem $O$ do sistema cartesiano e situada no semiplano $y\geq 0$. Sejam $A=(R,0)$, $B=(x,y)$ e $C=(-R,0)$ três pontos sobre esta semicircunferência, sendo $B$ um ponto qualquer tal que $x^2+y^2=R^2$. Assim, teremos que
\begin{multline*}\vec{CB}\cdot\vec{AB}=(B-C)\cdot(B-A)=(x+R,y)\cdot(x-R,y)= \\ =(x+R)(x-R)+y^2 =x^2-R^2+y^2=(x^2+y^2)-R^2=R^2-R^2=0.\end{multline*} Ou seja, o triângulo inscrito $ABC$ é retângulo no vértice $B$.
Mostre que, ao variar $a$, a equação polar
$$ r=a\sec\theta \quad(-\pi/2 < \theta < \pi/2 ) $$
descreve uma família de retas perpendiculares ao eixo polar.
Resolver o sistema linear em função do parâmetro $\lambda$:
\[\left\{\begin{array}{ccccl}x_1-&2x_2-&x_3+&x_4&=-2 \\2x_1+&7x_2+&3x_3+&x_4&=\ \, 6 \\11x_1+&11x_2+&4x_3+&8x_4&=\ \, 8\\10x_1+&2x_2+&&8x_4&=\ \, \lambda \\\end{array}\right. .\]
$x_3 = 2 - \dfrac{x_1- 9 x_2}{4} , x_4 = -\dfrac{5x_1-x_2}{4}, \lambda = 0, \forall x_1,x_2\in\mathbb{R}$.
Dados os pontos $A=(-3,2)$ e $B=(5,4)$:
Faça um esboço de $\vec{AB}$.
Calcule a distância de $A$ até $B$.
Ache o ponto médio entre $A$ e $B$.
Ache o vetor $\vec{BA}$.
Ache o ponto em $\vec{AB}$ cuja distância é 3 vezes maior de $A$ do que de $B$. Isto é, o ponto que divide $\vec{AB}$ na razão $3:1$ (existe outro ponto que está fora de $\vec{AB}$).
Ache o ponto em $\vec{AB}$ cuja coordenada $x$ é igual a $2$.
Ache o ponto em $\vec{AB}$ (extendido) cuja coordenada $y$ é igual a $5$.
Ache os pontos no eixo $x$ e no eixo $y$ que são equidistantes de $A$ e $B$.
Sejam $u$ e $v$ vetores no espaço. Mostre que
$(u+v)\times (u-v)=2v\times u$.
Se $u\times v$ é não nulo e $w$ é um vetor qualquer no espaço, então existem números reais $a, b$ e $c$ tais que $w=a(u\times v)+bu+cv$.
Se $u\times v$ é não nulo e $u$ é ortogonal a $v$, então $u\times (u\times v)$ é paralelo a $v$.
Ache a equação do círculo que passa pelos pontos $(3,4)$, $(-1,2)$ e $(-2,4)$. Ache também seu centro, raio, e faça um esboço de seu gráfico.
Encontre uma equação em coordenadas cartesianas para a curva cuja equação em coordenadas polares é dada por $r^2=cos\theta$.
Para o par de vetores $u=(1,1,1)$ e $v=(3,1,-1)$, encontrar a projeção ortogonal de $v$ sobre $u$ e decompor $v$ como soma de $v_{1}$ com $v_{2}$, sendo $v_{1} \parallel u$ e $v_{2}\perp u$.
$\textrm{proj}_{u}{u}=u$.
$v_1=u$; $v_2=(2,0,-2).$
Qual(is) das quádricas abaixo representa(m) uma superfície de rotação?
$ 3x^2+y^2-2z^2=1$,
$\frac{x^2}{6}+\frac{y^2}{5}+\frac{z^2}{3}=1$,
$x^2+ y^2-z^2=0$.
Encontre uma equação em coordenadas cilíndricas para a superfície cuja equação em coordenadas cartesianas é dada por $x^2+y^2=9$.
Esboce o gráfico da equação paramétrica dada por $(x,y)=( t^2-2t,t)$.
Forneça equações paramétricas para $\frac{(x-h)^2}{a^2}+\frac{(y-k)^2}{b^2}=1$, indicando os valores para o seu parâmetro $t$. Esboce suas equações paramétricas.
Dados $A=(4,8,11)$, $B=(-3,1,4)$ e $C=(2,3,-3)$, faça uma figura esquemática, verificando que os pontos formam um triângulo, e:
Ache os tamanhos dos três lados do triângulo.
Ache os pontos médios dos três lados.
Calcule a soma dos vetores $\vec{AB}$, $\vec{BC}$ e $\vec{CA}$. Por que a soma é nula?
Ache o ponto em $AB$ cuja coordenada $y$ é $5$.
Ache os três pontos nos planos coordenados em $AB$ (extendidos).
Ache o ângulo entre $\vec{AB}$ e $\vec{BC}$ (sugestão: use a Lei dos Cossenos).
Ache os dois pontos de trisecção em $BC$ (internamente).
Ache o tamanho da altura saindo de $B$ e oposta ao lado $AC$.
Calcule a área do triângulo $ABC$.
Ache o tamanho da reta que bissecta o ângulo em $C$ (sugestão: use $\cos \theta/2 = \sqrt{(1+\cos\theta)/2}$; use trigonometria de triângulos retângulos).
Ache o raio e o centro do círculo circunscrito ao triângulo (sugestão: a hipotenusa é o diâmetro).
Ache os três pontos $D$ tais que $ABCD$ é um paralelogramo.
Calcule o determinante da matriz:
$
\begin{pmatrix}
1&-2&3&2\\ 0&2&-1&1\\ 0&0&-1&1\\ 2&0&0&3
\end{pmatrix}.
$
\(14\)
Uma corda da circunferência $x^2+y^2=25$ se encontra sobre a reta cuja equação é $x-7y+25=$. Qual o comprimento dessa corda?
Suponha que uma partícula se mova no espaço e tenha posição $H(t) = (\cos(t), \sin(t), t)$ no instante $t$ (hélice cilíndrica). Esboce a trajetória da partícula. Qual a sua direção no instante $t$?
Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $3x^2+5y^2+4x-2y-10=0$.
Determinar a equação reduzida da seguinte cônica e fazer um esboço gráfico da mesma: hipérbole com focos no eixo $x$, assíntotas $y=\pm 2 x $ e o ponto $P=(5,6).$
Encontre a equação da reta simétrica à reta $r$ em relação ao plano $\pi$:
$$r:\begin{cases} x - 2y = 4\\
3y + z = -8\end{cases}\ \ \ {\rm e}\ \ \ \pi:x-y+z=0.$$
Considere a reta $r$ e o plano $\pi$ de respectivas equações
\[
\frac{x}{2}\ =\ \frac{1-y}{4}\ =\ z-3, \]
\[ x+y+2z\ =\ 1.\]
Determine a equação paramétrica da reta $s$ que é igual a projeção ortogonal da reta $r$ sobre o plano $\pi$.
$\left\{
\begin{array}{l}
x=-1+2t \\
y=-4t \\
z=1+t
\end{array}
\right. .$
Encontre os vértices (ou vértice), os focos (ou foco) e a excentricidade da cônica descrita por $4x^2+9y=144$. Esboce também o gráfico.
Forneça equações paramétricas para $\frac{x^2}{4}+\frac{y^2}{9}=1$, indicando os valores para o seu parâmetro $t$. Esboce suas equações paramétricas.
Reduza a equação $4x^2+y^2-8z^2+4xy-4xz+8yz$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Calcule o determinante da matriz:
$
\begin{pmatrix}
1&1&1\\ a&b&c\\ a^2&b^2&c^2
\end{pmatrix}.
$
$-(a - b)(a - c)(b - c)$
Sendo $\|u\|=3, \|v\|=4$ e $120^{\circ}$ o ângulo entre os vetores $u$ e $v$, calcule o volume do paralelepípedo determinado por $u\times v$, $u$ e $v$.
$108$
Reduza a equação $2x^2+2y^2-4z^2-5xy-2xz-2x-2y+z=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Na equação $18x^2+12xy+2y^2+94\frac{\sqrt{10}}{10}x-282\frac{\sqrt{10}}{10}y+94=0$, elimine, por meio de uma rotação, o termo $xy$. Identifique o conjunto solução e nos casos em que for uma cônica encontre as coordenadas, no sistema inicial, do(s) foco(s) e esboce o gráfico.
O que acontece com a distância entre a diretriz e o centro de uma elipse se os focos permanecerem fixados e a excentricidade tender a $0$?
Em cálculo de uma variável vemos que se $x_0$ é um extremo local (máximo ou mínimo) de uma função $f(x)$, então a reta tangente ao gráfico de $f$ em $x_0$ é horizontal, ou seja, $f'(x_0)=0$.
Encontre uma relação similar entre um extremo local de uma função de duas variáveis e o plano tangente ao seu gráfico.
Use esta relação para encontrar os extremos locais da função $\displaystyle f(x,y)=-2xy$.
Verifique se sua resposta no item anterior está correta, primeiro achando uma mudança de coordenadas conveniente (rotação) e, em seguida, completando os quadrados em $f(x',y')$ de tal forma a identificar a quádrica resultante.
Construa a curva cujas equações paramétricas são dadas por: $x=2\cos\theta$, $y=2\sin\theta$ e $z=2\theta$.
Dados os pontos $A=(1,0,1)$, $B=(-1,1,1)$ e $C=(0,1,2)$.
Determine o ponto $D$ tal que $A$, $B$, $C$ e $D$ sejam os vértices consecutivos de um paralelogramo.
Determine o ponto médio entre $A$ e $C$ e o ponto médio entre $B$ e $D$.
- \( D=(2,0,2)\)
- \(\dfrac{1}{2}(A+C)=(\dfrac{1}{2},\dfrac{1}{2},\dfrac{3}{2})=\dfrac{1}{2}(B+D)\)
Mostre que as diagonais de um paralelogramo se cortam ao meio (Sugestão: Sejam $M$ e $N$ os pontos médios das duas diagonais. Mostre que $\overline{MN}=\vec{0}$.).
Considere o paralelogramo $ABCD$, de diagonais $AC$ e $DB.$ Seja $M$ o ponto médio de $AC.$ Vamos provar que $M$ é também ponto médio de $BD.$ Ora, $\overrightarrow{BM}=\overrightarrow{BC}+ \overrightarrow{CM}=\overrightarrow{AD}+\overrightarrow{MA}=\overrightarrow{MD}.$ Logo, $M$ é o ponto médio de $BD.$
Considere o subconjunto de vetores $\mathcal{B} =\{(1,1,-2),(1,-1,0),(1,1,1)\}$.
- Mostre que $\mathcal{B}$ é uma base para $\mathbb{R}^{3}$.
- Encontre a matriz de mudança de coordenadas $A$ da base canônica $\{i,j,k\}$ de $\mathbb{R}^{3}$ para a base $\mathcal{B}$. Qual é matriz de mudança de coordenadas $A^{\prime}$ da base $\mathcal{B}$ para a base canônica?
- Quais são as coordenadas dos vetores canônicos $i,j$ e $k$ em relação à base $\mathcal{B}$?
- Se o ponto $P$ tem coordenadas $(1,-2,5)$ no sistema $\{O,i,j,k\}$, quais são as coordenadas de $P$ no sistema $\{O,\mathcal{B}\}$?
- Como eles são ortogonais dois a dois e dim $\!\mathbb{R}^{3}=3$, eles são L.I.
- $A^{\prime}=\left[\begin{array}[c]{rrr}1 & 1 & 1\\1 & -1 & 1\\-2 & 0 & 1\end{array}\right] ;A=(A^{\prime})^{-1}=\left[\begin{array}[c]{rrr}
\frac{1}{6} & \frac{1}{6} & -\frac{1}{3}\\\overset{}{\frac{1}{2}} & -\frac{1}{2} & 0\\\overset{}{\frac{1}{3}} & \frac{1}{3} & \frac{1}{3}\end{array}\right] $. - São as colunas de $A$, respectivamente: $\left(
\frac{1}{6},\frac{1}{2},\frac{1}{3}\right) ,\left( \frac{1}{6},-\frac{1}%
{2},\frac{1}{3}\right) $ e $\left( -\frac{1}{3},0,\frac{1}{3}\right) $. - $\left( -\frac{11}{6},\frac{3}{2},\frac{4}{3}\right) $.
Identificar a cônica $x^2+3y^2-2xy+3=0$ e calcular os focos, diretrizes, e assíntotas (quando couber).
Resolver o sistema linear:
\[\left\{\begin{array}{rrrcr}2x_1+&3x_2-&5x_3&=& 2 \\2x_1+&3x_2-&x_3&=& 8 \\6x_1+ &9x_2-&7x_3&=& 18 \\\end{array}\right. . \]
$x_2 =\dfrac{19-4x_1}{6}, x3 =\dfrac{3}{2}, \forall x_1 \in \mathbb{R}$.
Identifique a cônica descrita pela equação $4x^2-4xy+y^2-2x+y+15=0$.
Suponha que:
$$ \left\{ \begin{array}{rcrcc}a x &+& b y & = & 0\\c x &+& d y & = & 0 \end{array} \right. ,$$
sejam duas equações de retas, onde $a$, $b$, $c$ e $d$ são números reais.
O que significa, geometricamente, o fato de que os termos independentes são nulos?
Como estudar a existência/tipo de interseções entre essas duas retas usando sistemas lineares?
- Significa que ambas as retas passam pela origem do plano cartesiano. Afinal, ponto $(x,y)=(0,0)$ satisfaz ambas as equações do sistema.
- Posto que as duas retas passam pelas origem, esse tipo de sistema possui sempre ao menos uma solução, ponto de interseção das retas, a origem. Restando a possibilidade de, se o determinante da matriz dos coeficientes for nulo, que as retas sejam coincidentes.
Dadas duas retas que se cortam, seja $L_2$ a reta de maior ângulo de inclinação $\phi_2$ e e $L_1$ a reta de menor ângulo de
inclinação $\phi_1$. Definimos o ângulo entre $L_1$ e $L_2$ por $\theta=\phi_2-\phi_1$. Prove os resultados abaixo.
Se $L_1$ e $L_2$ não são perpendiculares, então $$ \tan\theta = \dfrac{m_2-m_1}{1+m_1m_2},$$ onde $L_1$ e $L_2$ têm inclinações $m_1$ e $m_2$.
Propriedade de Reflexão da Elipse: uma reta tangente a uma elipse em um ponto $P$ faz ângulos iguais com as retas que unem $P$ aos focos. (Sugestão: Introduza coordenadas de tal modo que a elipse seja descrita pela equação $x^2/a^2+y^2/b^2=1$ e use o item 1.)
Propridedade de Reflexão da Hipérbole: Uma reta tangente à hipérbole em um ponto $P$ faz ângulos iguais com as retas que unem $P$ aos focos. ([)Sugestão: Introduza coordenadas de tal modo que hipérbole seja descrita pela equação $x^2/a^2-y^2/b^2=1$ e use o item 1.)
A elipse $\ell$ tem focos $F_1=(1,2)$ e $F_2=(2,4)$ e vértices $A_1=(0,0)$ e $A_2=(3,6)$. Dê as equações paramétricas de $\ell$.
Encontre a equação da reta simétrica à reta $r$ em relação ao plano $\pi$:
$$r:\begin{cases} x= 1 + t\\
y = -2 - t
\\z = -1 + t \end{cases}\ \ \ {\rm e}\ \ \ \pi:x-y+z=2.$$
Verifique se as matrizes abaixo estão na forma escalonada. Usando operações de linha equivalência escalone as (encontre a forma escalonada das) que não estiverem na forma escalonada.
- $ \begin{pmatrix}1&0&0\\0&1&0\\0&0&1\\1&0&0\end{pmatrix}.,$
- $ \begin{pmatrix}1&1&0\\0&0&1\\0&0&0\end{pmatrix}. $
Mostre que o segmento que une os pontos médios de 2 lados de um triângulo é paralelo ao terceiro lado e é igual a sua metade.
Considere o triângulo $ABC,$ sendo $M$ o ponto médio do lado $AC$ e $N$ o do lado $BC.$ Assim, podemos escrever $\overrightarrow{MN}=\overrightarrow{MC}+\overrightarrow{CN}=\frac{1}{2} \overrightarrow{AC}+\frac{1}{2}\overrightarrow{CB}=\frac{1}{2} \overrightarrow{AB}.$
Portanto, concluímos que $MN//AB$ e $\left\Vert \overrightarrow{MN}\right\Vert =\left\Vert \overrightarrow{AB}\right\Vert .$
Suponha que o sistema de coordenadas $x'y'$ tenha sido obtido pela rotação de um sistema de coordenadas $xy$ por um ângulo $\theta$. Explique como podemos encontrar as coordenadas $xy$ de uma reta cuja equação nas coordenadas $x'y'$ seja conhecida.
Sabendo que $\| u \| = \sqrt{2}$, $\| v \| = \sqrt{3}$ e que $u$ e $v$ formam um ângulo de ${3\pi}/4$, determinar:
$| (2u-v)\cdot(u-2v)|$.
$\|u-2v\|$.
- $| (2u-v)\cdot(u-2v)|=10+5\sqrt{3}$.
- $\|u-2v\|=2\sqrt{2+\sqrt{3}}$.
Encontre uma equação em coordenadas polares para a curva cuja equação em coordenadas cartesianas é dada por $x^3+y^3-6xy=0$.
Pela definição de coordenadas polares, obtemos a seguinte equação: $$r=\frac{6\cos(\theta)\sin(\theta)}{\cos^3(\theta)+\sin^3(\theta)} \quad \theta\in[0,2\pi].$$
Uma indústria produz três produtos $p_1,p_2,p_3$, com duas matérias prima distintas, $m_1$ e $m_2$. Para a fabricação de cada unidade de $p_1$ são utilizados $1$ unidade de $m_1$ e $2$ unidades de $m_2$; para cada unidade de $p_2$, $1$ unidade de $m_1$ e $1$ unidade de $m_2$; e para cada unidade de $p_3$, $1$ unidade de $m_1$ e $4$ unidades de $m_2$.
Escreva um sistema linear que relacione as quantidades de $x$ unidades de $p_1$, $y$ unidades de $p_2$ e $z$ unidades de $p_3$ que podem ser produzidas com $200$ unidades de $m_1$ e $300$ unidades de $m_2$.
Utilizando conhecimentos sobre sistemas lineares, responda se há apenas uma configuração possível de produção dos produtos $p_1$, $p_2$ e $p_3$. Determine esta(s) configuração(ões) e interprete.
- $$ \left\{ \begin{array}{rcrcc}x &+& y &+ & z & = &200\\2x &+& y &+ &4 z & = &300\end{array} \right. $$
- Há infinitas configurações possíveis respeitando $y=\dfrac{500-2x}{3}$ e $z=\dfrac{100-x}{3}$ desde que $x,y,z \in\mathbb{I}^+$, logo $x\leq 100$.
Encontre o ponto $Q$ sabendo que o mesmo é a extremidade de um vetor com origem no ponto médio do segmento que liga os pontos $P_1=(1,1,3)$ e $P_2=(-1,1,1)$ e tem norma, direção e sentido do vetor $v=(-1,0,1)$.
$(−1,1,3)$.
Para o par de retas $r$ e $r^{\prime}$ abaixo encontre o ponto de interseção, $r\cap r^{\prime}$, se existir. E nos casos em que a interseção é vazia decida se elas são paralelas ou reversas.
$r:$ $\left\{ \begin{array}{c} 3x-y-z=0 \\ 8x-2y-3z=-1\end{array} \right.$ e $r^{\prime}: \left\{ \begin{array}{c}x-3y+z=-3 \\ 3x-y-z=-5\end{array} \right. .$
Neste caso, a intersecção é vazia e as retas são paralelas. De fato, note que os vetores $(3,-1,-1)\times(8, -2, -3)=(1,1,2)$ e $(1, -3, 1)\times(3,-1,-1)=(4,4,8)$ são múltiplos entre si (linearmente dependentes).
Mostre que a equação $x^2+y^2+2z^2+2xz-2yz=1$ representa uma superfície cilíndrica e determine a equação da curva diretriz e um vetor paralelo às retas geratrizes.
Decida se a cônica $C$ determinada pela equação $36x^2-24x+36y^2-36y+14=0$ é degenerada ou não. Se não for degenerada, encontre os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.
Identifique a curva $\ell$ consistindo de todos os pontos $P=(x,y)$ cujas coordenadas satisfazem a equação $x^2+(1/5)xy +y^2+2x+2y+2=0$.
Resolver o sistema linear em função do parâmetro $\lambda$:
\[\left\{\begin{array}{ccccl}x_1-&2x_2-&x_3+&x_4&=-2 \\2x_1+&7x_2+&3x_3+&x_4&=\ \, 6 \\11x_1+&11x_2+&4x_3+&8x_4&=\ \, 8\\10x_1+&2x_2+&&8x_4&=\ \, \lambda \\\end{array}\right. .\]
$x_3 = 2 - \dfrac{x_1- 9 x_2}{4} , x_4 = -\dfrac{5x_1-x_2}{4}, \lambda = 0, \forall x_1,x_2\in\mathbb{R}$.
- Mostre que $\mathcal{B}$ é uma base para $\mathbb{R}^{3}$.
- Encontre a matriz de mudança de coordenadas $A$ da base canônica $\{i,j,k\}$ de $\mathbb{R}^{3}$ para a base $\mathcal{B}$. Qual é matriz de mudança de coordenadas $A^{\prime}$ da base $\mathcal{B}$ para a base canônica?
- Quais são as coordenadas dos vetores canônicos $i,j$ e $k$ em relação à base $\mathcal{B}$?
- Se o ponto $P$ tem coordenadas $(1,-2,5)$ no sistema $\{O,i,j,k\}$, quais são as coordenadas de $P$ no sistema $\{O,\mathcal{B}\}$?
- Pois $\det\left[\begin{array}[c]{ccc}1 & 0 & 1\\1 & 1 & 0\\0 & 1 & 1\end{array}\right] =2\neq0$.
- $A^{\prime}=\left[\begin{array}[c]{ccc}1 & 0 & 1\\1 & 1 & 0\\0 & 1 & 1\end{array}\right] ;A=(A^{\prime})^{-1}=\left[\begin{array}[c]{rrr}\frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\\-\overset{}{\frac{1}{2}} & \frac{1}{2} & \frac{1}{2}\\\overset{}{\frac{1}{2}} & -\frac{1}{2} & \frac{1}{2}\end{array}\right] $.
- São as colunas de $A$, respectivamente: $\left(\frac{1}{2},-\frac{1}{2},\frac{1}{2}\right) ,\left( \frac{1}{2},\frac{1}{2},-\frac{1}{2}\right) $ e $\left( -\frac{1}{2},\frac{1}{2},\frac{1}{2}\right) $.
- $(-3,1,4).$
Ache o ângulo entre duas retas no espaço que passam pela origem, no primeiro octante, sendo uma delas com ângulos diretores $\alpha_1=\beta_1=60^\circ$; e a outra com ângulos diretores tais que $\cos \alpha_2=\cos \beta_2=1/2\sqrt{2}$ (Sugestão: cada par de retas forma um plano que contém um dos eixos coordenados -- por quê?).
$15^\circ$.
Examine o sistema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[\left\{\begin{array}{cccccr}&x_1&-&7x_2&=&-11 \\-&x_1&+&11x_2&=&31 \\&2x_1&-&12x_2&=&-26 \\&3x_1&-&17x_2&=&-15 \\\end{array}\right. . \]
O sistema não possui solução.
A área do triângulo $ABC$ é $\sqrt{6}$. Sabendo que $A = (2,1,0), \; B = (-1,2,1)$ e que o vértice $C$ está no eixo $Y$, encontre as coordenadas de $C$.
Como $C$ está sobre o eixo $Y$, vamos escrever $C=(0,y,0)$. Pela definição de área através do produto vetorial, segue que \begin{align*} 6 = \mathrm{area}^2 & = \frac{1}{4}\|(A-B)\times (C-B)\|^2 \\ & = \frac{1}{4}\|(3,-1,-1)\times (1,y-2,-1)\|^2 \\ & = \frac{1}{4}\|(y-1,2,3y-5)\|^2 \\ & = \frac{1}{4}\left( 10y^2-32 y+30\right). \end{align*} Ou seja, ficamos com $\displaystyle 10y^2-32y+6=0$, cujas raízes são $y=3$ e $y=\frac{1}{5}$. Portanto, podemos ter $C=(0,3,0)$ ou $C=(0,\dfrac{1}{5},0)$.
Tome $x'y'$ o sistema de eixos do plano que é a translação do sistema $xy$ para a nova origem $O'=(1,1)$, i.e., $ x'=x-1$ e $y'=y-1$.
Dado o ponto $P=(1,4)$ no sistema $xy$, encontre as coordenadas de $P$ no sistema $x'y'$.
Dado o ponto $A=(2,1)$ no sistema $x'y'$, encontre as coordenadas de $A$ no sistema $xy$.
Considere a reta $\mathcal{L}$ que no sistema $xy$ tem equação $2x - 3y + 4 = 0$. Qual seria a equação de $\mathcal{L}$ no sistema $x'y'$? Mudando-se a equação, muda-se $\mathcal{L}$ de lugar? O desenho muda?
Dada a curva $\mathcal{C}$, do plano, cujos pontos têm coordenadas $(x,y)$, no sistema $xy$, satisfazendo a equação $x^2-4x+y^2-6y=12$, encontre a equação que os pontos de $\mathcal{C}$ com coordenadas $(x',y')$ no sistema $x'y'$ devem satisfazer nas variáveis $x'y'$.
Mostre que as duas diagonais do trapézio e a reta que passa pelos pontos médios dos lados paralelos são concorrentes.
Calcule a área de um triângulo cujos vértices são: $A= (2,-1,-3)$, $B = (1,2,-4)$ e $C = (3,-1,-2)$.
$\|\vec{AB}\times\vec{AC}\|/2=\dfrac{3\sqrt{2}}{2}$
Determinar a equação reduzida da seguinte cônica e fazer um esboço gráfico da mesma: elipse com vértices $A_1=(10,0), \, A_2=(-10,0), \, B_1=(0,6), \, B_2=(0, -6).$
Identifique o círculo $x^2+y^2-4x+6y=12$, dando o seu centro e raio.
Centro igual $(2,-3)$ e com raio $5$.
Encontre uma equação em coordenadas cartesianas para a superfície cuja equação em coordenadas esféricas é dada por $r=2\tan\theta$.
Usando a definição de coordenadas esféricas, a equação dada fica: $\displaystyle (x^2+y^2)(z^2-4)+z^4=0$.
Considere as matrizes
\[A=\left(\begin{array}[c]{rrr}2 & -3 & -5\\-1 & 4 & 5\\1 & -3 & -4\end{array}\right) \text{, }B=\left(
\begin{array} [c]{rrr}-1 & 3 & 5\\1 & -3 & -5\\-1 & 3 & 5\end{array}\right) \text{ e }C=\left(
\begin{array}[c]{rrr} 2 & -2 & -4\\-1 & 3 & 4\\
1 & -2 & -3 \end{array}\right) .\]
- Mostre que $AB=BA=0$, $AC=A$ e $CA=C$.
- Use os resultados do item anterior para mostrar que $ACB=CBA$, $A^{2}-B^{2}=(A+B)(A-B)$ e $(A\pm B)^{2}=A^{2}+B^{2}$.
Determine todos os valores de $\lambda$ para os quais $\det(A-\lambda I_3)=0$.
\[
A = \left( \begin{array}{ccc}
2 & -2 & 3 \\
0 & 3 & -2 \\
0 & -1 & 2
\end{array}\right). \]
\[\lambda\in\{1,2,4\}\]
Uma liga de metal $L_1$ contém $20\%$ de ouro e $80\%$ de prata e uma liga $L_2$ tem $65\%$ de ouro e $35\%$ de prata. Quanto gramas de cada liga são necessários para se formar $100$ gramas de uma liga com quantidade igual de ouro e prata?
Serão necessárias aproximadamente 33.3333 gramas da liga $L_1$ e 66.6667 gramas da liga $L_2$.
Encontre o ângulo entre os vetores $u=(2,1,0)$ e $v=(0,1,-1)$ e entre os vetores $w=(1,1,1)$ e $z=(0,-2,-2)$.
\(\arccos(\dfrac{\sqrt{10}}{10})\) e \(\arccos(-\sqrt{\dfrac{2}{3}})\), respectivamente.
Seja $\pi $ o plano que contém as retas
\[
r_{1}:\left\{
\begin{array}{ccc}
x & \;=\; & 2t \\
y & \;=\; & t \\
z & \;=\; & 2-t
\end{array}
\right. \mathrm{onde}\ \;\;t\in \Bbb{R}\;\;\;\;\ \ \ \ \ \ \mathrm{e}\ \ \ \
\ \ \;\;r_{2}:\left\{
\begin{array}{ccc}
z & \;= & \;2 \\
x & \;= & y
\end{array}
\right.
\]
- Determine a equação de $\pi $.
- Escreva o vetor $\vec{V}=2\vec{\imath}+1\vec{\jmath}+2\vec{k}$ como a soma de 2 vetores $\vec{U_{1}}$ e $\vec{U_{2}}$, sendo $\vec{U_{1}}$ paralelo a $\pi $ e $\vec{U_{2}}$ ortogonal a $\pi $.
- $x-y+z=2.$
- $\overrightarrow{U}_{1}=(1,2,1)$ e $\overrightarrow{U}_{2}=(1,-1,1).$
Mostre que a equação $x^2+y^2-z^3=0$ representa uma superfície de revolução e determine o seu eixo de revolução e a equação da curva geratriz.
Determine a superfície dada pela representação paramétrica $\sigma(u,v) = (u, u\cos v, u\sin v)$.
Vamos, primeiro, escrever as equações paramétricas $x=u$, $y = u\cos v$ e $z=u\sin v$. Somando os quadrado de $y$ e $z$, temos $$ y^2 + z^2 = u^2\cos^2v+u^2\sin^2v= u^2(\cos^2v+\sin^2v)=u^2=x^2.$$ Assim, somos capazes de eliminar os parâmetros e então a equação em $x$, $y$ e $z$ fica dada por $x^2= y^2+z^2$. O prévio conhecimento da forma reduzida das superfícies quádricas nos permite dizer que se trata de um cone abrindo-se ao longo do eixo $x$.
Dada uma matriz $A = CD$, onde $C^{-1} = \left[\begin{array}{cc} 3 & 2 \\ 1 &3\end{array}\right]$ e $ D^{-1} =\left[\begin{array}{cr} 2 & 5 \\ 3 & -2\end{array}\right]$, resolva o sistema $AX = B$, sabendo que $B=\left[\begin{array}{c} -1 \\0 \end{array}\right]$.
Se $AX=B$ com $A=CD$, tem-se $CDX=B$.
Multiplicando a última expressão por $C^{-1}$ à esquerda: $C^{-1}CDX=C^{-1}B \Rightarrow I_2DX=C^{-1}B$ ou $DX=C^{-1}B$.
E então, multiplicando a expressão resultante por $D^{-1}$ à esquerda: $D^{-1}DX=D^{-1}C^{-1}B$ e $I_2X=D^{-1}C^{-1}B$ ou, equivalentemente, $X=D^{-1}C^{-1}B$.
Como $C^{-1}$ e $D^{-1}$ são dadas, basta realizar as multiplicações, obtendo-se $B=\left[\begin{array}{c} -11 \\7 \end{array}\right]$.
Seja $X_{o}$ uma solução particular de um sistema $AX = B$, e $Y$ a solução geral do sistema homogêneo associado, $AX = {\bf 0}$. Temos então que $X_{o} + Y$ é a solução geral do sistema $AX = B$.
Encontre as soluções gerais do sistema homogêneo associado ao sistema linear a seguir. Encontre também a solução geral do sistema da forma $X_{o} + Y$, em função do parâmetro $\lambda$:
\[\left\{\begin{array}{cccl}2x_1+&3x_2+&x_3&=1 \\x_1+&6x_2+&x_3&=3 \\2x_1-&3x_2+&2x_3&=\lambda\\x_1+&3x_2+&2x_3&=1 \\\end{array}\right.. \]
Encontre um vetor $u$ que seja ortogonal aos vetores $(2,3,-1)$ e $(2,-4,6)$ tal que $\parallel u\parallel = 3\sqrt{3}$.
$u=\pm(-3,3,3)$.
Seja $C$ o lugar geométrico dos pontos $P = (x,y)$ de um plano cujas coordenadas $x$ e $y$ satisfazem a equação $x^2-16y^2 + 8x +128y -256 = 0$.
Qual a natureza da cônica $C$?
Escrever a forma canônica da equação de $C$.
Caso $C$ seja uma elipse ou uma hipérbole, encontre os focos e a excentricidade. Caso seja uma hipérbole, encontre também as equações das retas assíntotas no sistema $xy$ original.
Reduza a equação $2x^2+4yz-4x+2y+6z+5=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
A resultante de $n$ forças $\vec{F_1}, \vec{F_2}, \ldots, \vec{F_n}$ (que podem ser representadas por vetores) é dada pela soma $\vec{F_1}+\vec{F_2}+\ldots,\vec{F_n}$. A magnitude de uma força $\vec{F}$ é dada pela norma $\|\vec{F}\|$. Dadas as forças na figura abaixo, determine a magnitude da força resultante e o ângulo que ela faz com o eixo $x$ positivo (sugestão: use a Lei dos Cossenos e a Lei dos Senos).
Encontre a inclinação da reta tangente à curva paramétrica $x=t/2$, $y=t^2+1$ em $t=-1$ e $t=1$ sem eliminar o parâmetro.
Verifique suas respostas do item anterior eliminando o parâmetro e diferenciando uma função apropriada de $x$.
Mostre que a intersecção de um plano $\displaystyle by+cz+d=0$, em que $b^2+c^2=1$, com o cone $x^2+y^2=z^2$ é uma cônica que pode ser uma elipse, uma hipérbole ou uma parábola. (Sugestão: mude para um sistema de coordenadas $\{O,U_1,U_2,U_3\}$ tal que $U_1=\vec{i}=(1,0,0)$, $U_2=(0,b,c)$ e $U_3=(0,-c,b)$).
Seja $Q$ um retângulo centrado na origem, cujo lado maior mede o triplo do lado menor. Sabendo que um dos vértices de $Q$ é $V_1=(1,2)$ e que o vértice $V_2$, consecutivo a $V_1$ no sentido trigonométrico (anti-horário), é tal que $V_1V_2$ é um lado menor, determine os outros vértices de $Q$.
Tomando o ângulo $\theta=\widehat{V_10V_2}$, temos que $V_2 = R_{\theta}(V_1)$, onde $$R_\theta=\left(\begin{array}{cc} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{array} \right) $$ denota a rotação por um ângulo $\theta$ (Fig.). Sendo $P$ o ponto médio do segmento $V_1V_2$, vamos ter que $\dfrac{\theta}{2}=\widehat{POV_2}$. Sendo $V_1V_2$ um lado menor e dada a relação entre os lados (enunciado), segue que $|OP|=3|PV_2|$. Assim, o triângulo retângulo $OPV_2$ nos fornece que $$ \sin\dfrac{\theta}{2} = \dfrac{|PV_2|}{|OV_2|} \quad\text{e}\quad \cos\dfrac{\theta}{2}=\dfrac{|OP|}{|OV_2|}=\dfrac{3|PV_2|}{|OV_2|}=3\sin\dfrac{\theta}{2}, $$ o que juntamente com a relação fundamental $\sin^2\theta+\cos^2\theta=1$, resulta em $\sin^2\dfrac{\theta}{2}+9\sin^2\dfrac{\theta}{2}=1$. Ou seja, temos que $$ \sin\dfrac{\theta}{2}=\dfrac{\sqrt{10}}{10} \quad\mathrm{e}\quad\cos\dfrac{\theta}{2}=\dfrac{3\sqrt{10}}{10}.$$ Conseqüentemente, temos que $$\cos\theta= \cos(2\dfrac{\theta}{2})=\cos^2\dfrac{\theta}{2}-\sin\dfrac{\theta}{2}= \dfrac{4}{5}\quad \text{e}$$ $$\sin\theta= \sin(2\dfrac{\theta}{2})= 2\cos\dfrac{\theta}{2}\sin\dfrac{\theta}{2}= \dfrac{3}{5} .$$ Assim, $$ V_2 = R_{\theta}(V_1)=\left(\begin{array}{cc} \dfrac{4}{5} & -\dfrac{3}{5} \\ \dfrac{3}{5} & \dfrac{4}{5} \end{array}\right)\left(\begin{array}{c} 1 \\ 2 \end{array}\right) = \left(\begin{array}{rcl} -\dfrac{2}{5} &,&\dfrac{11}{5} \end{array}\right). $$ Finalmente, como $V_3=R_{\pi}(V_1)$, $V_4=R_{\pi}(V_2)$, $cos\pi=-1$ e $\sin\pi=0$, obtemos que $$V_3=-V_1=(-1,-2) \quad \text{e}\quad V_4=-V_2=(\dfrac{2}{5},-\dfrac{11}{5}).$$
Determine a extremidade ou a origem do segmento orientado quando o mesmo: representa o vetor $v=(1,-2,1)$ e sua origem é o ponto $P=(1,0,1)$.
$(2,-2,2)$.
Encontre uma equação em coordenadas cartesianas para a superfície cuja equação em coordenadas cilíndricas é dada por $r=3\cos\theta$.
Sejam $A$ uma matriz $n\times m$, ${\bf 0}$ a matriz nula $m\times 1$ e $B$ uma matriz $m\times 1$.
- Sabendo que $Y_{1}$ e $Y_{2}$ são duas matrizes $m\times 1$ que são soluções do sistema $AX = {\bf 0}$ e que $a$ e $b$ são dois números reais, mostre que $Y_{3} = aY_{1} + bY_{2}$ também é solução do sistema $AX = {\bf 0}$.
- Sabendo que $X_{1}$ e $X_{2}$ são duas matrizes $m\times 1$, que são soluções do sistema $AX = B$, mostre que $X_{3} = X_{1} - X_{2}$ é uma solução do sistema $AX = {\bf 0}$.
- Sabendo que $U$ e $V$ são duas matrizes $m\times 1$ onde $U$ é uma solução do sistema $AX = {\bf 0}$ e $V$ é uma solução do sistema $AX = B$ mostre que $Z = U + V$ também é solução do sistema $AX = B$.
Um vetor no espaço tem dois de seus ângulos diretores dados: $\alpha=30^\circ$ e $\beta=60^\circ$. Ache o outro ângulo diretor e faça um esboço do vetor. Quantas respostas existem? (Sugestão: use as fórmulas de cosseno diretor).
$90^\circ$.
Reduza a equação $2x^2+y^2-4xy-4yz+12x+6y+6z=1 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Considere a reta $r$ e o plano $\pi $ de respectivas equações
\[
\frac{x-2}{2}\ =\ y-2\ =\ \frac{z-3}{3}\, \ \mathrm{e}, \ x+y+z\ =\ 1.
\]
Encontre uma equação paramétrica para a reta que é a projeção ortogonal de $r$ sobre $\pi$.
$\left\{
\begin{array}{l}
x=0 \\
y=1-t \\
z=t
\end{array}
\right. $
Encontre a equação da reta $r$ que passa por (1,-2,3), e tem vetor diretor $(-1,2,-3)$.
Parametricamente: $$ r: (1,-2,3) + t(-1,2,-3)\quad t\in\mathbb{R}.$$
Reduza a equação $3x^2+y^2+z^2+4yz+12x+2y-2z+9=0 $ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
Qual a equação da circunferência que passa pelos pontos $(1,2)$, $(3,4)$ e que tem centro sobre o eixo $y$?
Identifique a quádrica definida pela equação reduzida $z=4x^2+4y^2$ e esboce seu gráfico.
Mostre que os pontos em coordenadas polares $ \left(1,\frac{\pi}{3}\right)$, $ \left(\sqrt{3},\frac{\pi}{6}\right)$, e $\left(1,0\right)$ são vértices de um triângulo equilátero.
Verificar se as retas são concorrentes e, em caso afirmativo, encontrar o ponto de interseção:
$$r_1:\; \begin{cases}\frac{x-2}{3}=\frac{y+1}{-3}=\frac{z-2}{4} \end{cases}\ \ \ {\rm e } \ \ \ r_2:\; \begin{cases}x=-1+t\\ y=4-t\\ z=-8+3t\end{cases}$$
As retas não são concorrentes.
Dada a superfície $4x^2+y^2-z=0$, identifique a cônica obtida ao fixar:
$x=0$;
$y=0$;
$z=1$.
Ache o ângulo entre duas retas no espaço que passam pela origem, no primeiro octante, sendo uma delas com ângulos diretores $\alpha_1=45^\circ$, $\beta_1=45^\circ$; e a outra com ângulos diretores $\alpha_2=\beta_2=60^\circ$ (Sugestão: cada par de retas forma um plano que contém um dos eixos coordenados -- por quê?).
$45^\circ$.
Resolver o sistema linear:
\[\left\{\begin{array}{cccccr}&x_1&-&7x_2&=&-11 \\-&x_1&+&11x_2&=&31 \\&2x_1&-&12x_2&=&-26 \\&3x_1&-&17x_2&=&-15 \\\end{array}\right. . \]
O sistema não possui solução.
Decida se a cônica $C$ determinada pela equação $9y^2-9x^2+6x=1$ é degenerada ou não. Se não for degenerada, encontre os vértices (ou vértice), os focos (ou foco) e esboce o gráfico.
Encontre a equação da reta $r$ que passa por $(-3,2,-1)$ e é paralela à reta $s : \left\{\begin{array}{ccr}x &=& -3z-1\\ y &=& 4z + 3\end{array}\right.$.
Note que, como dada acima, $z$ aparece como parâmetro livre, tendo
$s$, portanto, vetor diretor $(-3,4,1)$. Assim, sendo $r$ paralela a
esta, então pode ser descrita, parametricamente, por $$ r:
(-3,2,-1)+t(-3,4,1), \quad t\in\mathbb{R}. $$
Calcule o determinante da matriz:
$
\begin{pmatrix}
a&b\\ -b&a
\end{pmatrix}.
$
\(a^2+b^2\)
Considere o sistema linear:
$$ \left\{ \begin{array}{rcrcrcc}a x &+& b y &+& cz & = & c\\(\alpha a) x &+& (\alpha b)y &+& (\alpha c) z & = & d \\(\beta a) x &+& (\beta b)y &+& (\beta c) z & = & e\end{array} \right. ,$$
onde $a$, $b$, $c$, $d$, $e$, $\alpha$ e $\beta$ são números reais.
Mostre que, se $d=\alpha c$ e $e=\beta c$, o sistema tem infinitas soluções em função de um único parâmetro real.
Mostre que, se $d=\alpha c$ e $e\neq\beta c$, ou, se $d\neq\alpha c$ e $e=\beta c$, o sistema tem infinitas soluções em função de dois parâmetros reais.
Mostre que, se $d\neq\alpha c$ e $e\neq\beta c$, o sistema tem solução única.
Encontre a equação da parábola que tem foco no ponto $F = (1,1)$ e tem reta diretriz com equação $y = -x - 2$.
Sejam $U=\begin{bmatrix} c & 4 & 1 \\ 0 & d+1 & 3 \\ 0 & 0 & c^2-4 \end{bmatrix}$, $M=\begin{bmatrix} -1 & 1 & -1 \\ -4 & 9 & -3 \\ 2 & 3 & 3 \end{bmatrix}$ e $N=\begin{bmatrix} 1 & -5 & 4 \\ -2 & 2 & 0 \\ -3 & -1 & -1 \end{bmatrix}$.
- Determine, se possível, $c$ e $d$ tais que $A=M\,U$ seja invertível;
- Determine, se possível, $c$ e $d$ tais que $B=N\,U$ seja invertível.
- Posto que $\det(M)=0$ e $\det(A)=\det(M)\det(U)$, não há valores de $c$ e $d$ tais que $A$ seja invertível.
- $\det(N)=40$, logo, se $\det(U)\neq0$, $B=NU$ será invertível, de novo porque $\det(B)=\det(N)\det(U)$. Os valores de $c$ e $d$ para os quais $\det(U)\neq$ são $c,\, d\in\mathbb{R}$ tais que $c\neq 0,$ $c\neq\pm 2$ e $d\neq -1$.
Seja o sistema linear $AX = B$, onde
\[A=\begin{pmatrix}1&\phantom{-}2&-3\\3&-1&\phantom{-}5\\1&\phantom{-}1&a^{2}-16\end{pmatrix}\quad\text{e}\quad B = \begin{pmatrix}4\\2\\a+14\end{pmatrix}.\]
Determine o valor (ou valores) de $a$ para que o sistema tenha solução única.
Exitem valores de $a$ para os quais o sistema tem infinitas soluções?
Exitem valores de $a$ para os quais o sistema não tem solução?
Quais são os cossenos diretores do vetor de $(2,-3,5)$ a $(-1,1,-7$)?
$-3/13,4/13,-12/13$.
Reduza a equação $4x^2-2y^2+z^2=1$ de forma a identificar a quádrica que ela representa e esboce o seu gráfico.
$\dfrac{x^2}{1/4} - \dfrac{y^2}{1/2} + z^2 = 1$: hiperbolóide de uma folha.
Considere o sistema linear:
$$ \left\{ \begin{array}{rcrcc}a x &+& b y & = & c\\(\alpha a) x &+& (\alpha b) y & = & d\end{array} \right. ,$$
onde $a$, $b$, $c$, $d$, $\alpha$ são números reais.
Mostre que, se $d=\alpha c$, o sistema tem infinitas soluções em função de um parâmetro $\lambda$ real, dadas por: $x=\dfrac{c-b\lambda}{a}$ e $y=\lambda$.
Mostre que, se $d \neq \alpha c$, o sistema não admite solução.
Resolver o sistema linear:
\[\left\{\begin{array}{ccccccccccr}&&x_1&+&x_2&-&x_3&+&2x_4&=&6 \\&-&x_1&+&x_2&+&4x_3&-&3x_4&=&-2 \\&&&&x_2&+&3x_3&+&x_4&=& 5 \\&&&&x_1&+&5x_2&+&5x_3& =&14 \\\end{array}\right. . \]
$x_2 = \dfrac{13-2 x_1}{5}, x_3 = \dfrac{1+x_1}{5}, x_4 = \dfrac{9-x_1}{5}, \forall x_1\in\mathbb{R}.$
Identifique a cônica descrita pela equação $4x^2-12xy+9y^2-6x+9y-4=0$.
Ache as retas tangentes ao círculo $x^2+y^2=4x$ que passam pelo ponto $(3,2)$.
Qual é o lugar geométrico de todas as retas que passam pela origem com ângulo diretor em relação ao eixo $z$ $\gamma=30^\circ$?
Um cone sobre o eixo $z$.
Considere as retas $r$ e $s$ dadas pelas equações:
\[
r:\ x\ =\ \frac{y}{2}\ =\ z, \ s:\left\{
\begin{array}{ccl}
x & = & -4+t \\
y & = & 2+2t \\
z & = & t , \ \ \ \ \ \ \ \ \mathrm{onde}\ \ t\in \mathbb{R}
\end{array}
\right. \ \
\]
Determine a equação da reta paralela a $r$ e a $s$, contida no mesmo plano de $r$ e $s$ e que seja equidistante de $r$ e de $s$.
$\left\{
\begin{array}{l}
x=-2+t \\
y=1+2t \\
z=t
\end{array}
\right. $
Obtenha o plano que contém a reta $r = \{ (1,1,0)+t(2,1,2), t\in\mathbb{R}\}$ e é paralelo à reta $s:\frac{x+1}{2}=y=z+3$.
Um vetor diretor para a reta $s$ é dado por $v_s=(2,1,0)$. Já para
$r$, $v_r=(2,1,2)$ é o vetor diretor. Fazendo $v_r\times v_s=(-1,2,3)$
obtemos, dessa forma, um vetor normal ao plano procurado. Como esse
plano deve conter o ponto $(1,1,0)$, então o mesmo pode ser descrito
como: $$(x-1,y-1,z)\cdot(-1,2,3)=0\Longleftrightarrow -x+2y+3z=-1.$$
A mudança de coordenadas entre os sistemas $xy$ e $x_{1}y_{1}$ é feita através de uma matriz ortogonal $U$, como segue
\[ \begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix} = \begin{pmatrix}{\frac{\,3}{5}} & {\frac{\,4}{5}} \\{\frac{\,-4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x\\ y\end{pmatrix}\quad \text{ e }\quad\begin{pmatrix}x\\ y\end{pmatrix} = \begin{pmatrix}{\frac{\,3}{5}} & {\frac{-4}{5}} \\ {\frac{\,4}{5}} & {\frac{\,3}{5}} \end{pmatrix}\begin{pmatrix}x_{1}\\ y_{1}\end{pmatrix},\quad \text{ lembrar que } U^{-1} = U^{t}.\]
Já a mudança entre os sistemas $x_{1}y_{1}$ e $XY$ é dada por $X = x_{1}+1$, $Y = y_{1}+1$.
Encontre as equações das retas suporte do eixo $X$ e do eixo $Y$ em relação aos sistemas $x_{1}y_{1}$ e $xy$.
Encontre as equações das retas suporte do eixo $x_{1}$ e do eixo $y_{1}$ em relação ao sistema $xy$.
Seja $\mathcal{L}$ a reta cuja equação no sistema $xy$ é dada por $y = 2x + 1$. Encontre as equações de $\mathcal{L}$ em relação aos eixos $x_{1}y_{1}$ e $XY$.
Sejam $\mathcal{C}$ a circunferência de equação $x^2+y^2=r^2$ e $P=(x_1,y_1)$ um ponto no exterior da circunferência. Sejam também $P_2=(x_2,y_2)$, $P_3=(x_3,y_3)$ os pontos de $\mathcal{C}$ tais que as retas $l_2$ que passa por $P$ e $P_2$, e $l_3$ que passa por $P$ e $P_3$ são tangentes à circunferência. Então mostre que a reta (secante) que passa por $P_2$ e $P_3$ tem equação $x_1x+y_1y=r^2$. (Sugestão: encontre as equações das retas $l_2$ e $l_3$ e use o fato de que $P$ está em ambas.)
Ache a equação do círculo que passa pelos pontos $(4,0)$, $(0,3)$ e a origem.
Encontre a equação da reta $r$ que passa pelo ponto (-1,2,3) e é paralela a reta que passa por $(1,0,-1)$ e tem $(-2,1,-3)$ como vetor diretor.
Como é paralela à reta mencionada, então terá o vetor diretor em comum com aquela. Assim, a reta procurada é dada parametricamente como $$ r: (-1,2,3) + t(-2,1,-3)\quad t\in\mathbb{R}.$$
Na equação $x^2-y^2+2\sqrt{3}xy+6x=0$, elimine, por meio de uma rotação, o termo $xy$. Identifique o conjunto solução e nos casos em que for uma cônica encontre as coordenadas, no sistema inicial, do(s) foco(s) e esboce o gráfico.
Dados os pontos $A=(-2,3,4)$, $B=(3,2,5)$, $C=(1,-1,2)$ e $D=(3,2,-4)$, calcular $\textrm{proj}_{CD}{AB}$.
$\textrm{proj}_{CD}{AB}=\dfrac{1}{49}(2,3,-6)$.
- Determine os coeficientes $a$, $b$, $c$ e $d$ da função polinomial $p(x)=ax^3+bx^2+cx+d$, cujo gráfico passa pelos pontos $P_1=(0,10)$, $P_2=(1,7)$, $P_3=(3,-11)$ e $P_4=(4,-14)$.
- Determine coeficientes $a, b$ e $c$ da equação do círculo, $x^2+y^2+ax+by+c=0$, que passa pelos pontos $P_1=(-2,7)$, $P_2=(-4,5)$ e $P_3=(4,-3)$.
- $a = 1/6$, $b = -1$, $c = -13/6$, $d=10$.
- $a= -2$, $b = -4$, $c = -29$.
Responda falso ou verdadeiro para cada uma das afirmações abaixo (justifique suas respostas).
Se $A$ é matriz $n\times n$ e $A^2={\bf 0}$, então $A={\bf 0}$, onde ${\bf 0}$ é a matriz nula.
A única matriz $n\times n $ simétrica e anti-simétrica ao mesmo tempo é a matriz nula.
Se $A$ é uma matriz $n\times n$ e $A^{2}=I_n$, então $A=I_n$ ou $A=-I_n$ ($I_n$ é a matriz identidade $n\times n$).
- Falsa. Contra-exemplo: $A= \left( \begin{array}{cc}
0 & 0 \\
1 & 0
\end{array}\right)$ é não-nula e $A^2={\bf 0}$. - Falsa. Qualquer matriz diagonal é simétrica e anti-seimétrica ao mesmo tempo.
- Falsa. Contra-exemplo: $A= \left( \begin{array}{cc}
-1 & 0 \\
z & 1
\end{array}\right)$ é diferente de $I_2$ e de $-I_2$ mas $A^2=I_2$.
Sejam os pontos $A=(-1,-1,2),\;B=(2,1,1) \;\mbox{e}\;C=(m,-5,3)$.
Para que valores de $m$ o triângulo $ABC$ é retângulo em $A$?
Determinar o ponto $H$, pé da altura relativa ao vértice $A$.
Determine todos os valores de $\lambda$ para os quais $\det(A-\lambda I_3)=0$, onde
\[A = \left( \begin{array}{ccc}
1 & 0 & 0 \\
-1 & 3 & 0 \\
3 & 2 & -2 \end{array}\right). \]
As raízes são: \(\lambda=-2\), \(\lambda=1\) e \(\lambda=3\).
Dado um triângulo isósceles, mostre que a mediana relativa à base é a mediatriz (isto é, é perpendicular à base).
$\overrightarrow{AM}=\overrightarrow{MC}\Longrightarrow \overrightarrow{AM}=\overrightarrow{BM}-\overrightarrow{BA}=\overrightarrow{BC}-\overrightarrow{BM}\Longrightarrow \overrightarrow{BA}+\overrightarrow{BC}=2\overrightarrow{BM}.$
Também, temos que $\overrightarrow{AM}.\overrightarrow{MB}=\left\Vert \overrightarrow{BM}\right\Vert ^{2}-
\overrightarrow{BA}-\overrightarrow{MB}$.
Assim, concluímos que $\overrightarrow{AM}. \overrightarrow{MB}=\left\Vert \frac{1}{2}\left(\overrightarrow{BA}+\overrightarrow{BC}\right) \right\Vert^{2}-\frac{1}{2}\overrightarrow{BA}\left( \overrightarrow{BA}+\overrightarrow{BC}\right) =\frac{1}{4}\left\Vert \overrightarrow{BA}\right\Vert ^{2}+\frac{1}{2}2\overrightarrow{BA}.\overrightarrow{BC}+\frac{1}{4}\left\Vert \overrightarrow{BC}\right\Vert ^{2}-\frac{1}{2}\left\Vert \overrightarrow{BA}\right\Vert ^{2}-\frac{1}{2}\overrightarrow{BA}.\overrightarrow{BC}=\frac{1}{2}\left\Vert \overrightarrow{BA}\right\Vert ^{2}-\frac{1}{2}\left\Vert \overrightarrow{BA}\right\Vert ^{2}=0$.
Dado um plano qualquer com um sistema de coordenadas $xy$, encontre os vértices (ou vértice), os focos (ou foco) e a excentricidade da cônica descrita por $3x^2-14y=0$. Esboce o gráfico.
Mostre que não existe $x$ tal que os vetores $v=(x,2,3)$ e $u=(x,-2,3)$ sejam perpendiculares.
Para que $v$ e $u$ fossem perpendiculares, seria necessário haver $x$ tal que $v\cdot u= x^2-4+9=0$, ou seja, $x$ tal que $x^2=-5$. Mas não há $x\in \mathbb{R}$ que satisfaça essa equação.
Examine o sitema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[\left \{\begin{array}{rrrrl}x&-y&+2z&-t&=0\\3x&+y&+3z&+t&=0\\x&-y&-z&-5t&=0\end{array}\right..\]
Esse sistema linear possui infinitas soluções.
Sejam $A$ e $B$ duas matrizes quadradas $n\times n$.
- Mostre que $(A+B)^2=A^2+AB+BA+B^2$.
- Suponha que:
$A= \left( \begin{array}{cc}
1 & 0 \\
1 & 1
\end{array}\right) \;\; \mbox{e}\;\;
B= \left( \begin{array}{cc}
0 & 1 \\
1 & 1
\end{array}\right) $.
Verifique que $AB\neq BA$. Conclua que neste caso, $(A+B)^2\neq A^2+2AB+B^2$. - Mostre que: Se $A$ e $B$ são duas matrizes quadradas $n\times n$, então $(A+B)^2=A^2+2AB+B^2$, se e somente se, $AB=BA$.
Verifique a posição relativa do seguinte par de retas (isto é, verifique se são paralelas, concorrentes ou reversas):
\[(2,1,-1) + t(3,2,-1), \ \ \ \left\{\begin{array}{ccr}x &=& -1+2s\\y &=& 3s\\ z &=& 4 + 5s\end{array}\right. \]
São reversas.
Dada a superfície $4x^2+z^2-y^2=9$, identifique a cônica obtida ao fixar:
$x=0$;
$y=0$;
$z=1$.
Encontre ou mostre a impossibilidade de encontrar $\gamma\in\mathbb{R}$ tal que $\displaystyle x^2+\gamma y^2-4xy+ \gamma x = \gamma$ represente uma parábola.
Verifique se os seguintes pontos são colineares: $A=(0,1,-1)$, $B=(1,2,0)$ e $C=(0,2,1)$.
Os pontos não são colineares.
Dada a superfície $4x^2+y^2+z^2=9$, identifique a cônica obtida ao fixar:
$x=0$;
$y=0$;
$z=1$.
Dado que os pontos médios dos lados do triângulo $ABC$ são $M=(0,1,3)$, $N=(3,-2,2)$ e $P=(1,0,2)$, determine a área do triângulo $ABC$.
Seja $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ uma função definida por $f(x,y) =(2x+y,x-y)$. Ache o(s) valor(es) de $\lambda$ para que a equação $f(x,y) = \lambda(x,y)$ possua solução $(x,y) \neq 0$.
$\lambda=\dfrac{1 + \sqrt{13}}{2}$ ou $\lambda=\dfrac{1 - \sqrt{13}}{2}$.
Examine o sistema linear a seguir, verificando se tem solução ou não, ou quantas são as possíveis soluções, utilizando resultados sobre posto de matriz.
\[\left\{\begin{array}{ccccccccccr}x_1&-&2x_2&+&3x_3&+&2x_4&+&x_5&=&10 \\2x_1&-&4x_2&+&8x_3&+&3x_4&+&10x_5&=& 7 \\3x_1&-&6x_2&+&10x_3&+&6x_4&+&5x_5&=&27\\\end{array}\right..\]
Esse sistema linear possui infinitas soluções.
Sejam $\vec{u},\; \vec{v}$ e $\vec{w}$ três vetores. Sabendo que $\vec{u}$ é ortogonal a $\vec{v} - \vec{w}$ e $\vec{v}$ é ortogonal a $\vec{w} - \vec{u}$, verifique que $\vec{w}$ é ortogonal a $\vec{u} - \vec{v}$.
Como $\vec{u}\cdot(\vec{v}-\vec{w})=0$, temos que
$\vec{u}\cdot\vec{w}=\vec{u}\cdot\vec{v}$. Da mesma forma, como
$\vec{v}\cdot(\vec{w}-\vec{u})=0$, decorre que
$\vec{v}\cdot\vec{w}=\vec{v}\cdot\vec{u}$. Assim, usando a simetria do
produto interno euclidiano, segue que
$$
\vec{w}\cdot(\vec{u}-\vec{v})=\vec{w}\cdot\vec{u}-\vec{w}\cdot{v}=\vec{u}\cdot\vec{w}-\vec{v}\cdot\vec{w}=\vec{u}\cdot\vec{v}-\vec{v}\cdot\vec{u}=0.$$