LISTA DE DISCIPLINAS

Teorema do Confronto, do Valor Intermediário e de Weierstrass

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


165   

Uma importante aplicação do Teorema do Valor Intermediário é o Método da Bissecção.

Suponha que estamos interessados em encontrar as raízes de uma função contínua $f(x)$. O Método da Bissecção é uma alternativa que pode resultar em boas aproximações para as raízes, após sucessivas aplicações do método.

Para iniciar o método, precisamos encontrar dois valores $a$ e $b$ tais que $f(a) \cdot f(b) < 0$.

Sem perda de generalidade, vamos assumir $f(a) < 0$, $f(b) > 0$ e $a<b$. O Teorema do Valor Intermediário afirma que existe um valor $c$ no intervalo $[a,b]$ tal que $f(c) = 0$. O teorema não afirma nada a respeito da localização de $c$ dentro do intervalo, apenas que ele existe.

O Método da Bissecção é, portanto, uma maneira sistemática de obter este valor $c$. Seja $d=\frac{a+b}{2}$ o meio do intervalo. Existem três possibilidades:

  1. $f(d) = 0 $ - Por sorte, encontramos a raiz e não é necessário prosseguir com o método.
  2. $f(d) < 0$ - Como $f(b)>0$, sabemos que há uma raiz no intervalo $[d,b]$. Este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
  3. $f(d) > 0$ - Como $f(a)<0$, sabemos que há uma raiz no intervalo $[a,d]$. Novamente, este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.

O Método da Bissecção é a aplicação sucessiva dos passos descritos até que se esteja próximo o suficiente da raiz de $f(x)$ para a aplicação desejada. Nota-se que para o caso em que $f(a)>0$ e $f(b)<0$ o método ainda funciona, mas no caso 2 o intervalo escolhido seria $[a,d]$ e no caso e $[d,b]$ (por quê?).

Utilize o Método da Bissecção para encontrar as raízes de $f(x) = \sin x - 1/2$ no intervalo $[0.5,0.55]$.


 A raiz aproximada é $x=0.52$.

Os intervalos utilizados são:

$[0.5,0.55] \quad [0.5,0.525] \quad [0.5125,0.525]$

$[0.51875,0.525]\quad [0.521875,0.525]$.


1345   

Use o Teorema do Valor Intermediário para provar que a equação $\tan x= 2-4x$ possui uma solução no intervalo $\bigl(-\frac{\pi}{2}, \frac{\pi}{2}\bigr).$



171   

Seja $h$ uma função definida em $[-1,1]$, sendo que $h(-1) = -10$ e $h(1) = 10$. Existe um valor $-1<c<1$ tal que $h(c) = 0$? Por quê?


Não é possível dizer: O Teorema do Valor Intermediário só se aplica para funções contínuas, e nada foi afirmado sobre a continuidade de $h$.


760   

Mostre que a equação
  \begin{equation*}
  x^{26}+x^{2}-320=0
  \end{equation*}
  possui ao menos uma raiz real positiva e também uma raiz real negativa.


166   

Uma importante aplicação do Teorema do Valor Intermediário é o Método da Bissecção.

Suponha que estamos interessados em encontrar as raízes de uma função contínua $f(x)$. O Método da Bissecção é uma alternativa que pode resultar em boas aproximações para as raízes, após sucessivas aplicações do método.

Para iniciar o método, precisamos encontrar dois valores $a$ e $b$ tais que $f(a) \cdot f(b) < 0$.

Sem perda de generalidade, vamos assumir $f(a) < 0$, $f(b) > 0$ e $a<b$. O Teorema do Valor Intermediário afirma que existe um valor $c$ no intervalo $[a,b]$ tal que $f(c) = 0$. O teorema não afirma nada a respeito da localização de $c$ dentro do intervalo, apenas que ele existe.

O Método da Bissecção é, portanto, uma maneira sistemática de obter este valor $c$. Seja $d=\frac{a+b}{2}$ o meio do intervalo. Existem três possibilidades:

  1. $f(d) = 0 $ - Por sorte, encontramos a raiz e não é necessário prosseguir com o método.
  2. $f(d) < 0$ - Como $f(b)>0$, sabemos que há uma raiz no intervalo $[d,b]$. Este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
  3. $f(d) > 0$ - Como $f(a)<0$, sabemos que há uma raiz no intervalo $[a,d]$. Novamente, este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.

O Método da Bissecção é a aplicação sucessiva dos passos descritos até que se esteja próximo o suficiente da raiz de $f(x)$ para a aplicação desejada. Nota-se que para o caso em que $f(a)>0$ e $f(b)<0$ o método ainda funciona, mas no caso 2 o intervalo escolhido seria $[a,d]$ e no caso e $[d,b]$ (por quê?).

 Utilize o Método da Bissecção para encontrar as raízes de $f(x) = e^x - 2$ no intervalo $[0.65,0.7]$.


A raiz aproximada é $x=0.69$.

  Os intervalos utilizados são:

  $[0.65,0.7] \quad [0.675,0.7] \quad [0.6875,0.7]$

  $[0.6875,0.69375]\quad [0.690625,0.69375]$


169   

Seja $f$ uma função contínua em $[1,5]$, sendo que $f(1) = -2$ e $f(5) = -10$. Existe um valor $1<c<5$ tal que $f(c) = -9$? Por quê?


 Sim, pelo Teorema do Valor Intermediário.


160   

Seja $f:\mathbb{R} \to \mathbb{R}$ uma função contínua tal que, para todo real x, tenhamos $f(f(f(x))) = x^2 + 1$. Prove que $f$  é par.


158   

Sejam $f,g:\mathbb{R} \to \mathbb{R}$ funções contínuas tais que $f(a)<g(a)$ e $f(b)>g(b)$. Mostre que existe $c \in (a,b)$ tal que $f(c)=g(c)$.


153   

Mostre que toda equação polinomial de grau ímpar, tem pelo menos uma raiz real.


161   

Seja $f:\mathbb{R} \to \mathbb{R}$ uma função contínua que satisfaz as seguintes propriedades:

  1. $f(n)=0$, para todo inteiro $n$;
  2. Se $f(a)=0$ e $f(b)=0$ então $f \left(\frac{a+b}{2} \right)$.

  Mostre que $f(x)=0$, para todo real $x$.


163   

Enuncie e demonstre o Teorema do Confronto.


170   

Seja $g$ uma função contínua em $[-3,7]$, sendo que $g(0) = 0$ e $g(2) = 25$. Existe um valor $-3<c<7$ tal que $g(c) = 15$? Por quê?



 Sim, pelo Teorema do Valor Intermediário. Na realidade, é possível ser ainda mais preciso e afirmar não só que um valor $c$ existe em $(3,7)$, mas ainda que existe um valor $x$ contido em $(0,2)$.


1346   

Mostre que existe um número real que é igual a soma de seu cubo e de seu quadrado mais um. Justifique sua resposta.




Dizer que um número é igual a soma de seu cubo e de seu quadrado mais um significa dizer que $x=x^{3}+x^{2}+1$ ou, equivalentemente, que $f\left(  x\right)  =x^{3}+x^{2}-x+1=0.$


Mas $f\left(  -2\right)  =\left(  -2\right)^{3}+\left(  -2\right)  ^{2}-\left(  -2\right)  +1=-1$ e $f\left(  0\right)=1$.


Como $f\left(  x\right)  $ é contínua, pelo Teorema do Valor Intermediário, existe $-2<x<0$ tal que $f\left( x\right)  =0$.

Resolução Alternativa:


Uma vez definida $f(x)$, pode-se ver que $\lim_{x\rightarrow+\infty}f\left(  x\right)=+\infty$ e $\lim_{x\rightarrow-\infty}f\left(  x\right)  =-\infty $. Como $f\left(  x\right)$ é contínua, pelo Teorema do Valor Intermediário, existe $x$ tal que $f\left(x\right)  =0$.



759   

Use o Teorema do Confronto para calcular $\lim\limits_{x\rightarrow0^{+}}\sqrt{x} \,e^{\sin\left(  \pi/x\right)  }\text{.}$
  Lembre-se de justificar porque o Teorema do Confronto pode ser útil.


149   

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função contínua no intervalo $\left[2,6 \right]$ com $f(2)=3$ e $f(6)=5$. Use o Teorema de Weierstrass e o Teorema do Valor Intermediário pra mostrar que a imagem de $f$ é um intervalo fechado.


148   

Mostre que a equação

  \begin{equation*}
  x^{26}+x^{2}-320=0
  \end{equation*}

  possui ao menos uma raiz real positiva e também uma raiz real negativa.


168   

Seja $f$ uma função contínua em $[-1,1]$ sendo que $f(-1) = -10$ e $f(1) = 10$. Existe um valor $-1<c<1$ tal que $f(c) = 11$? Por quê?



Não se pode dizer. O Teorema do Valor Intermediário apenas se aplica, neste caso, para valores entre $-10$ e $10$; como $11$ não pertence a este intervalo, o teorema não nos permite afirmar nada sobre a possibilidade da existência de $c$.


172   

Calcule o limite a seguir:

  $\lim\limits_{x \to -\infty } e^x \sin(x)$



Observe que $-1 \leq \sin(x) \leq 1$ e, portanto, como $e^x \geq 0$, $-e^x \leq e^x \sin(x) \leq e^x$.


  Como $\lim\limits_{x \to -\infty} e^x = 0$ e $\lim\limits_{x \to -\infty} -e^x = 0$, então, pelo Teorema do Confronto temos $\lim\limits_{x \to -\infty} e^x \sin(x) = 0$


154   

Sejam  $f$  uma função contínua num intervalo  $I$,  $a$  e  $b$  valores em  $I$. Se $f(a)$ e $f(b)$ são valores com sinais contrários, mostre que a equação $f(x)=0$ tem pelo menos uma raiz real no intervalo $\left[a,b\right]$.


159   

Prove que a única função contínua $f:\mathbb{R} \to \mathbb{R}$ que satisfaz $f(f(f(x)))=x$ é a função identidade $f(x)=x$. (Sugestão: Prove que se uma função é injetiva e contínua então ela é monótona).


151   

Seja $f: \mathbb{R} \to \mathbb{R}$ uma função derivável cuja derivada é sempre positiva e tal que $f(0)=1$ e $f(4)=2$. Use o TVM para mostrar que $f(2) \neq 2$.


152   

 Determine um intervalo de comprimento $\pi/2$ cuja equação $$2x^3+3x^2-\sqrt{|\cos(x)|}=0$$ admita uma solução real.


156   

 Seja $f:[a,b] \to [a,b]$ uma função contínua. Prove que $f$ possui um ponto fixo, ou seja, algum valor de $x$ tal que $f(x)=x$.


147   

Use o teorema do valor intermediário para mostrar que $f(x)=4x^3-6x^2+3x-4$ possui um zero no intervalo $[1,2]$.



Como $f(1) = -3 < 0$ e $f(2) = 10 > 0$, temos que a função $f$ muda de sinal no intervalo $[1,2]$, e portanto, pelo teorema do valor intermediário, $f$ possui um zero nesse intervalo.


1344   

Verifique que a equação $x^{179}+\frac{163}{1+x^2+\sin^2x}=119$ possui pelo menos uma solução.



150   

 Mostre que $f(x) = \cos x - \frac{x}{10}$ tem pelo menos dois zeros em $[0, 2\pi]$.


167   

Uma importante aplicação do Teorema do Valor Intermediário é o Método da Bissecção.

Suponha que estamos interessados em encontrar as raízes de uma função contínua $f(x)$. O Método da Bissecção é uma alternativa que pode resultar em boas aproximações para as raízes, após sucessivas aplicações do método.

Para iniciar o método, precisamos encontrar dois valores $a$ e $b$ tais que $f(a) \cdot f(b) < 0$.

Sem perda de generalidade, vamos assumir $f(a) < 0$, $f(b) > 0$ e $a<b$. O Teorema do Valor Intermediário afirma que existe um valor $c$ no intervalo $[a,b]$ tal que $f(c) = 0$. O teorema não afirma nada a respeito da localização de $c$ dentro do intervalo, apenas que ele existe.

O Método da Bissecção é, portanto, uma maneira sistemática de obter este valor $c$. Seja $d=\frac{a+b}{2}$ o meio do intervalo. Existem três possibilidades:

  1. $f(d) = 0 $ - Por sorte, encontramos a raiz e não é necessário prosseguir com o método.
  2. $f(d) < 0$ - Como $f(b)>0$, sabemos que há uma raiz no intervalo $[d,b]$. Este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
  3. $f(d) > 0$ - Como $f(a)<0$, sabemos que há uma raiz no intervalo $[a,d]$. Novamente, este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.

O Método da Bissecção é a aplicação sucessiva dos passos descritos até que se esteja próximo o suficiente da raiz de $f(x)$ para a aplicação desejada. Nota-se que para o caso em que $f(a)>0$ e $f(b)<0$ o método ainda funciona, mas no caso 2 o intervalo escolhido seria $[a,d]$ e no caso e $[d,b]$ (por quê?).

Utilize o Método da Bissecção para encontrar as raízes de $f(x) = \cos x -\sin x$ no intervalo $[0.7,0.8]$.


A raiz aproximada é $x=0.78$.

  Os intervalos utilizados são:

  $[0.7,0.8] \quad [0.75,0.8] \quad [0.775,0.8]$

  $[0.775,0.7875]\quad [0.78125,0.7875]$

  (Alguns passos a mais mostrariam que $0.79$ é melhor, dado que a raiz é $\pi/4 \approx 0.78539$.)


162   

Use o Teorema do Confronto para demonstrar que $\lim\limits_{x \to 0} \cos{x} = 1$.


157   

Seja $f:\mathbb{R} \to \mathbb{R}$ contínua e tal que $f(x).f(f(x))=1$, para todo $x$. Se $f(1000)=999$, calcule $f(500)$.


155   

Determine todas as funções contínuas $f:\mathbb{R} \to \mathbb{R}$ tais que $f(x+y)=f(x)f(y)$ para quaisquer x, y reais.


164   

Uma importante aplicação do Teorema do Valor Intermediário é o Método da Bissecção.

Suponha que estamos interessados em encontrar as raízes de uma função contínua $f(x)$. O Método da Bissecção é uma alternativa que pode resultar em boas aproximações para as raízes, após sucessivas aplicações do método.

Para iniciar o método, precisamos encontrar dois valores $a$ e $b$ tais que $f(a) \cdot f(b) < 0$.

Sem perda de generalidade, vamos assumir $f(a) < 0$, $f(b) > 0$ e $a<b$. O Teorema do Valor Intermediário afirma que existe um valor $c$ no intervalo $[a,b]$ tal que $f(c) = 0$. O teorema não afirma nada a respeito da localização de $c$ dentro do intervalo, apenas que ele existe.

O Método da Bissecção é, portanto, uma maneira sistemática de obter este valor $c$. Seja $d=\frac{a+b}{2}$ o meio do intervalo. Existem três possibilidades:

  1. $f(d) = 0 $ - Por sorte, encontramos a raiz e não é necessário prosseguir com o método.
  2. $f(d) < 0$ - Como $f(b)>0$, sabemos que há uma raiz no intervalo $[d,b]$. Este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.
  3. $f(d) > 0$ - Como $f(a)<0$, sabemos que há uma raiz no intervalo $[a,d]$. Novamente, este intervalo tem metade do tamanho do intervalo original, então estamos mais próximos de obter uma boa aproximação para a raiz.

O Método da Bissecção é a aplicação sucessiva dos passos descritos até que se esteja próximo o suficiente da raiz de $f(x)$ para a aplicação desejada. Nota-se que para o caso em que $f(a)>0$ e $f(b)<0$ o método ainda funciona, mas no caso 2 o intervalo escolhido seria $[a,d]$ e no caso e $[d,b]$ (por quê?).

Utilize o Método da Bissecção para encontrar as raízes de $f(x) = x^2+2x-4$ no intervalo $[1,1.5]$.


A raiz aproximada é $x=1.23$.

  Os intervalos utilizados são:

  $[1,1.5] \quad [1,1.25] \quad [1.125,1.25]$

  $[1.1875,1.25]\quad [1.21875,1.25]\quad [1.234375,1.25]$

  $[1.234375,1.2421875]\quad [1.234375,1.2382813]$.