Definição precisa de limite
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Sabe-se que $f$ é contínua em $1$ e que $f(1)=2$. Mostre que existe $\delta>0$ tal que para todo $x \in D_f$ vale $1-\delta<x<1+\delta \rightarrow \dfrac{3}{2}<f(x)<\dfrac{5}{2}$.
Sabe-se que $f$ é contínua em $2$ e que $f(2)=8$. Mostre que existe $\delta>0$ tal que para todo $x \in D_f$ vale $2-\delta<x<2+\delta \rightarrow f(x)>7$.
Considere $\epsilon =1$. Como $f$ é contínua em $2$, sabemos que existe $\delta >0$ tal que, para $|x-2|<\delta $ temos que $|f(x)-f(2)|<\epsilon =1$. Mas $|x-2|<\delta $ se, e somente se, $2-\delta<x<2+\delta$ e $|f(x)-f(2)|=|f(x)-8|<1$ se, e somente se, $7< f(x)<9$.
Mostre, usando a definição de limite, que $\displaystyle \lim_{x\to 5} 3-x = -2$
Seja $\epsilon >0$ dado. Queremos encontrar $\delta >0$ tal que, quando$|x-5|<\delta$, $|f(x)-(-2)|<\epsilon$.
Considerando $|f(x)-(-2)|<\epsilon$:
\begin{gather*}
|f(x) + 2 | < \epsilon \\
|(3-x) + 2 |<\epsilon \\
| 5-x | < \epsilon \\
-\epsilon < 5-x < \epsilon \\
-\epsilon < x-5 < \epsilon. \\
\end{gather*}
Isso implica que podemos estabelecer $\delta =\epsilon$. Portanto:
\begin{gather*}
|x-5|<\delta \\
-\delta < x-5 < \delta\\
-\epsilon < x-5 < \epsilon\\
-\epsilon < (x-3)-2 < \epsilon \\
-\epsilon < (-x+3)-(-2) < \epsilon \\
|3-x - (-2)| < \epsilon,
\end{gather*}
que é o que buscávamos provar.
Calcule, através da definição de limite, $\displaystyle \lim_{x\to 0} e^{2x}-1 = 0$.
Seja $\epsilon >0$ dado. Queremos $\delta >0$ tal que, quO IMECC é responsável pelos cursando $|x-0|<\delta$, $|f(x)-0|<\epsilon$.
Considerando $|f(x)-0|<\epsilon$, lembrando que o objetivo é afirmar algo sobre $|x-0|$ (i.e., $|x|$):
\begin{gather*}
|f(x) -0 | < \epsilon \\
|e^{2x}-1 |<\epsilon \\
-\epsilon< e^{2x}-1 < \epsilon \\
1-\epsilon< e^{2x} < 1+\epsilon \\
\ln (1-\epsilon) < 2x < \ln (1+\epsilon) \\
\frac{\ln (1-\epsilon)}{2} < x < \frac{\ln (1+\epsilon)}{2} \\
\end{gather*}
Seja $\delta = \min\left\{\left|\frac{\ln(1-\epsilon)}{2}\right|,\frac{\ln(1+\epsilon)}{2}\right\}=\frac{\ln(1+\epsilon)}{2}.$
Portanto:
\begin{gather*}
|x| < \delta \\
|x| <\frac{\ln(1+\epsilon)}{2}<\left|\frac{\ln(1-\epsilon)}{2}\right| \\
\frac{\ln(1-\epsilon)}{2} < x < \frac{\ln(1+\epsilon)}{2}\\
\ln(1-\epsilon)< 2x < \ln(1+\epsilon)\\
1-\epsilon < e^{2x} < 1+\epsilon\\
-\epsilon < e^{2x}-1 < \epsilon\\
|e^{2x}-1-(0)| < \epsilon,
\end{gather*}
que é o que buscávamos provar.
Foi pedido a um torneiro mecânico que fabricasse um disco de metal circular com área de $1000cm^2$.
- Qual o raio do disco produzido?
- Se for permitido ao torneiro uma tolerância do erro de $\pm 5 cm^2$ na área do disco, quão próximo do raio ideal da parte (a) o torneiro precisa controlar o raio?
- Em termos da definição $\epsilon, \delta$ de $\lim\limits_{x \to a} f(x)=L$, o que é $x$? O que é $f(x)$? O que é $a$? O que é $L$? Qual valor de $\epsilon$ é dado? Qual o valor correspondente de $\delta$?
Calcule, pela definição, o limite $ \lim_{x\to 0} \sin x= 0$ (Dica: use o fato que $|\sin x| \leq |x|$, sendo uma igualdade apenas para $x=0$.)
Considere $\epsilon >0$ arbitrário. Queremos encontrar $\delta >0$ tal que quando $|x-0|<\delta$, $|f(x)-0|<\epsilon$. Em termos simples, queremos mostrar que quando $|x|<\delta$, $|\sin x| < \epsilon$.
Considere $\delta = \epsilon$. Podemos presumir que $|x|<\delta$. Usando a dica do enunciado, temos que $|\sin x | < |x| < \delta = \epsilon$. Portanto, se $|x|<\delta$, sabemos imediatamente que $|\sin x| < \epsilon$.
Calcule, por meio da definição, o limite $\lim_{x\to 2} x^3-1 = 7$.
Considere $\epsilon >0$ arbitrário. Queremos encontrar $\delta >0$ tal que quando $|x-2|<\delta$, $|f(x)-7|<\epsilon$.
Considere $|f(x)-7|<\epsilon$, lembrando que o objetivo é afirmar algo sobre $|x-2|$:
\begin{gather*}
|f(x) -7 | < \epsilon \\
|x^3-1 -7 |<\epsilon \\
| x^3-8 | < \epsilon \\
| x-2 |\cdot|x^2+2x+4| < \epsilon \\
| x-3 | < \epsilon/|x^2+2x+4| \\
\end{gather*}
Como $x$ está próximo de $2$, podemos considerar $1<x<3$. Portanto
\begin{gather*}
1^2+2\cdot1+4<x^2+2x+4<3^2+2\cdot3+4 \\
7 < x^2+2x+4 < 19 \\
\frac{1}{19} < \frac{1}{x^2+2x+4} < \frac{1}{7} \\
\frac{\epsilon}{19} < \frac{\epsilon}{x^2+2x+4} < \frac{\epsilon}{7} \\
\end{gather*}
Seja $\delta =\frac{\epsilon}{19}$. Então:
\begin{gather*}
|x-2|<\delta \\
|x-2| < \frac{\epsilon}{19}\\
|x-2| < \frac{\epsilon}{x^2+2x+4}\\
|x-2|\cdot|x^2+2x+4| < \frac{\epsilon}{x^2+2x+4}\cdot|x^2+2x+4|\\
\end{gather*}
Assumindo $x$ próximo de $2$, $x^2+2x+4$ é positivo e podemos eliminar o módulo do lado direito da equação.
\begin{gather*}
|x-2|\cdot|x^2+2x+4| < \frac{\epsilon}{x^2+2x+4}\cdot(x^2+2x+4)\\
|x^3-8| < \epsilon\\
|(x^3-1) - 7| < \epsilon,
\end{gather*}
que é o que desejávamos provar.
Um $n$-ágono regular é um polígono de $n$ lados que possui todos os lados iguais e todos os ângulos de mesma medida.
- Encontre o perímetro de um $n$-ágono regular inscrito num círculo de raio $r$.
- O perímetro do $n$-ágono se aproxima de algum valor quando $n$ cresce?
- Deduza a fórmula do comprimento de uma circunferência de raio $r$.
Calcule, através da definição, o limite $ \lim_{x\to 2} 5 = 5$
Seja $\epsilon >0$ dado. Queremos encontrar $\delta >0$ tal que, quando $|x-2|<\delta$, $|f(x)-5|<\epsilon$. Entretanto, como $f(x)=5$ é uma função constante, a segunda inequação é simplesmente $|5-5|<\epsilon$, o que é sempre verdade. Assim, pode-se escolher um $\delta$ qualquer; arbitrariamente, escolhe-se $\delta =\epsilon$.
O que há de errado com a seguinte ``definição'' de limite?
"O limite de $f(x)$, quando $x$ tende a $a$, é $K$'' significa que para qualquer $\delta>0$, existe $\epsilon>0$ tal que $|f(x)-K|< \epsilon$, tem-se $|x-a|<\delta$."
$\epsilon$ deve ser apresentado antes, e a restrição $|x-a|<\delta$ implica em $|f(x)-K|< \epsilon$, e não o contrário.
Calcule, pela definição, o limite $ \lim_{x\to 4} x^2+x-5 = 15$
Considere $\epsilon >0$ arbitrário. Queremos encontrar $\delta >0$ tal que quando $|x-4|<\delta$, $|f(x)-15|<\epsilon$.
Considere $|f(x)-15|<\epsilon$, lembrando que o objetivo é afirmar algo sobre $|x-4|$:
\begin{gather*}
|f(x) -15 | < \epsilon \\
|x^2+x-5 -15 |<\epsilon \\
| x^2+x-20 | < \epsilon \\
| x-4 |\cdot|x+5| < \epsilon \\
| x-4 | < \epsilon/|x+5| \\
\end{gather*}
Assumindo $x$ próximo de $4$, podemos assumir, por exemplo, que, $3<x<5$. Portanto
\begin{gather*}
3+5<x+5<5+5 \\
8 < x+5 < 10 \\
\frac{1}{10} < \frac{1}{x+5} < \frac{1}{8} \\
\frac{\epsilon}{10} < \frac{\epsilon}{x+5} < \frac{\epsilon}{8} \\
\end{gather*}
Seja $\delta =\frac{\epsilon}{10}$. Então:
\begin{gather*}
|x-4|<\delta \\
|x-4| < \frac{\epsilon}{10}\\
|x-4| < \frac{\epsilon}{x+5}\\
|x-4|\cdot|x+5| < \frac{\epsilon}{x+5}\cdot|x+5|\\
\end{gather*}
Assumindo $x$ próximo de 4, $x+5$ é positivo e podemos eliminar o módulo do lado direito da equação.
\begin{gather*}
|x-4|\cdot|x+5| < \frac{\epsilon}{x+5}\cdot(x+5)\\
|x^2+x-20| < \epsilon\\
|(x^2+x-5) -15| < \epsilon,
\end{gather*}
que é o que desejávamos provar.