Primitiva
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Use suas próprias palavras para definir o significado de $\int{f(x)}\ dx$.
O símbolo $\int{f(x)}\ dx$ é chamado integral indefinida de $f$ e corresponde ao conjunto de todas as antiderivadas da função $f$.
Avalie a seguinte integral indefinida:
$\int \frac{1}{\sqrt{x}}\ dx$
$2\sqrt{x}+C$
Avalie a seguinte integral indefinida:
$\int \frac{5^t}{2}\ dt$
$\frac{5^t}{2\ln 5}+C$
Seja $f:\mathbb{R} \to \mathbb{R}$ uma função derivável, tal que $f'(x)=\alpha f(x)$ para todo $x$ e sendo $\alpha$ uma constante diferente de zero. Mostre que existe uma constante $k$ tal que, para todo $x$:
$$f(x) = k e^{\alpha x}$$
Defina o termo antiderivada com suas próprias palavras.
A antiderivada de uma função $f$ é uma função $F$ cuja derivada é a função $f$ original.
Avalie a seguinte integral indefinida:
$\int x^8\ dx$
$1/9x^9+C$
Encontre $f(x)$ que satisfaça o seguinte problema de valor inicial:
$f'(x) = 5e^x$ e $f(0)= 10$
$5e^x+5$
Avalie a seguinte integral indefinida:
$\int \frac{1}{3t^2}\ dt$
$-1/(3t)+C$
Avalie a seguinte integral indefinida:
$\int (2t+3)^2\ dt$
$4/3t^3+6t^2+9t+C$
Avalie a seguinte integral indefinida:
$\int 3x^3\ dx$
$3/4x^4+C$
Avalie a seguinte integral indefinida:
$\int \sin\theta\ d\theta$
$-\cos \theta+C$
\item Avalie a seguinte integral indefinida:
$\int dt$
$t+C$
Considere $y=f(x)$, para $x$ real, sendo $f$ derivável até a segunda ordem e tal que, para todo $x$, $f''(x)+f(x)=0$. Seja $g$ uma função tal que $g(x)=f'(x) \sin x - f(x) \cos x$. Mostre que $g$ é constante.
Determine $f\left(x\right)$ sabendo que: \begin{equation*} f\,^{\prime \prime }\left( x\right) = 12\sin 2x+\cos 3x+1,\;f\,^{\prime}\left( 0\right) =1\text{ e }f\left( 0\right) =0\text{ .} \end{equation*}
Determine uma primitiva para cada uma das funções:
$f(x)=cosx$
$f(x)=tgx$
Avalie a seguinte integral indefinida:
$\int (\sec x\tan x + \csc x\cot x)\ dx$
$\sec x - \csc x+C$
Determine uma primitiva para cada uma das funções:
$f(x)=x^n$
$f(x)=sen(x)$
Encontre $f(x)$ que satisfaça o seguinte problema de valor inicial:
$f'(x) = 4x^3-3x^2$ e $f(-1)= 9$
$x^4-x^3+7$
Um carro está em uma rodovia a uma velocidade constante de $60mi/h$ quando vê um acidente a frente e aciona os freios. Que desaceleração constante é necessária para frear o carro em 242 pés?
Encontre $f(\theta)$ que satisfaça o seguinte problema de valor inicial:
$f''(\theta) = \sin \theta$ e $f'(\pi)= 2$, $f(\pi) = 4$
$\theta-\sin (\theta)-\pi +4$
É mais correto se referir a uma antiderivada de $f(x)$ ou a antiderivada de $f(x)$?
O correto é uma antiderivada, já que existem infinitas antiderivadas para uma dada função.
A antiderivada de uma função aceleração é a função _________.
Velocidade. A taxa de variação com a qual a velocidade varia de acordo com o tempo é, justamente, a aceleração.
Encontre $f(x)$ que satisfaça o seguinte problema de valor inicial:
$f''(x) = 24x^2+2^x-\cos x$ e $f'(0)= 5$, $f(0) = 0$
$\frac{2 x^4 \ln ^2(2)+2^x+x \ln 2) (\ln 32-1)+\ln
^2(2) \cos (x)-1-\ln ^2(2)}{\ln ^2(2)}$
Encontre $f(x)$ que satisfaça o seguinte problema de valor inicial:
$f''(x) = 5$ e $f'(0)= 7$, $f(0) = 3$
$5/2x^2+7x+3$
Avalie a seguinte integral indefinida:
$\int 5e^\theta\ d\theta$
$5e^\theta+C$
Avalie a seguinte integral indefinida:
$\int e^\pi\ dx$
$e^\pi x+C$
Encontre $f(x)$ que satisfaça o seguinte problema de valor inicial:
$f'(x) = \sin x$ e $f(0)= 2$
$-\cos x+3$
Determine $f\left(x\right)$ sabendo que: \begin{equation*} f\,^{\prime \prime }\left( x\right) = \sin x-\cos x+x^{5},\;f\,^{\prime}\left( 0\right) =2\text{ e }f\left( 0\right) =0\text{ .} \end{equation*}
Avalie a seguinte integral indefinida:
$\int (t^2+3)(t^3-2t)\ dt$
$t^6/6+t^4/4-3t^2+C$
Encontre $f(x)$ que satisfaça o seguinte problema de valor inicial:
$f'(x) = 7^x$ e $f(2)= 1$
$7^x/\ln 7 + 1-49/\ln 7$
Um foguete decola da superfície terrestre com uma aceleração constante de $20m/s^2$. Qual será sua velocidade 1 minuto depois?
Determine $f\left(x\right)$ sabendo que: \begin{equation*} f\,^{\prime \prime }\left( x\right) = 9e^{3x}+\cos x+x^{6},\;f\,^{\prime}\left( 0\right) =1\text{ e }f\left( 0\right) =2\text{ .} \end{equation*}
Determine uma primitiva para cada uma das funções:
$f(x)=1+2x+3x^2+4x^3+5x^4$
$f(x)=1+x+x^2+\ldots +x^{1000000}$
- $F(x)=1+x+x^2+x^3+x^4+x^5$
- $F(x)=x+\frac{x^2}{2}+\frac{x^3}{3}+\ldots+\frac{x^1000001}{1000001}$
Este problema busca analisar o porquê de
\begin{equation*}
\int{\frac{1}{x}\ dx} = ln\left|x\right| + C
\end{equation*}
- Qual o domínio de $y = ln\ x$?
- Calcule $\frac{d}{dx}(ln\ x)$
- Qual o domínio de $y = ln(-x)$?
- Calcule $\frac{d}{dx}\left(ln(-x)\right)$
- Com base nos itens anteriores, explique o resultado apresentado no início deste problema.
Determine $f\left(x\right)$ sabendo que:
\begin{equation*} f\,^{\prime \prime }\left( x\right) = \cos 2x+6x+4,\;f\,^{\prime }\left(0\right) =2\text{ e }f\left( 0\right) =0\text{ .}\end{equation*}
Primeiramente, calcula-se a integral indefinida
$f\,^\prime(x)=\int \left(\cos 2x+6x+4\right)\,dx = 3 x^2+4 x+\frac{1}{2} \sin (2 x)+C_1$
Pelo dado do enunciado $f\, ^\prime(0)=2$. Avaliando a expressão acima para $x=0$, vê-se que $C_1=2$. Para obter $f(x)$, calcula-se novamente a integral indefinida:
$f(x)=\int \left(3 x^2+4 x+\frac{1}{2} \sin (2 x)+2\right)\,dx =x^3+2 x^2+2 x-\frac{\cos ^2(x)}{2}+C_2 $
De acordo com o enunciado, $f(0)=0$. Assim, obtém-se $C_2=\frac{1}{2}$.
Determine $f\left(x\right)$ sabendo que: \begin{equation*} f^{\prime \prime }\left( x\right) = \dfrac{1}{x^{2}}+8e^{2x}+2,\;f^{\prime }\left( 2\right) =4e^{4}\text{ e }f\left( 1\right) =2e^{2}\text{.} \end{equation*}
Avalie a seguinte integral indefinida:
$\int (10x^2-2)\ dx$
$10/3x^3-2x+C$
Avalie a seguinte integral indefinida:
$\int \sec^2\theta\ d\theta$
$\tan \theta+C$
Encontre $f(x)$ que satisfaça o seguinte problema de valor inicial:
$f'(x) = 3x+2$ e $f(0)= 7$
$\frac{3 x^2}{2}+7 x+7$
O que é um problema de valor inicial?