LISTA DE DISCIPLINAS

Função logarítmica

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


935   

A intensidade $I$ de um terremoto, medida na escala Richter, é um número que varia de $I=0$ até $I=8,9$ para o maior terremoto conhecido. $I$ é dado pela fórmula $I=\dfrac{2}{3} log {\left(\dfrac{E}{E_0}\right)}$, em que $E$ é a energia liberada pelo terremoto em quilowatt-hora e $E_0=7 \times 10^{-3}$ kwh.

  1. Qual a energia liberada por um terremoto de intensidade 8 na escala Richter?
  2. Aumentando uma unidade na intensidade do terremoto, por quanto fica multiplicada a energia liberada?


1510   

Se $(ln\ x)/x = (ln\ 2)/2$, é necessário que $x=2$? Se $(ln\ x)/x=-2ln\ 2$, é necessário que $x=\frac{1}{2}$? Justifique suas respostas.


929   

Calcule, apresentando todos os cálculos e/ou justificativas.

  1. $log_2 (1024)+sen^2(40)+cos^2(40)$
  2. $log_\pi [sen(30^0)+cos(60^0)]$



932   

Seja $a>0$. Esboce o gráfico das funções $f(x) = \log_a x $ e $ f(x) = \log_\frac{1}{a} x$ num mesmo sistema cartesiano. Qual relação você observa entre os gráficos? Explique.


934   

Calcule:

  1. $log_3 (36) +log_3 (6)$
  2. $8^{\frac {2} {3}}+\sqrt{100}+2^{2^3}+2^{(2^3)}$



1507   

Demonstre que $x^{ln(2)}=2^{ln(x)}$ utilizando propriedades de logaritmos e exponenciais. Utilizando recursos computacionais, observe os gráficos das duas funções, assim como a diferença entre elas. Qual seria uma explicação para o comportamento observado no gráfico de $f(x)=x^{ln(2)}-2^{ln(x)}$?


1260   

Resolva a equação $e^{ax}=Ce^{bx}$, onde $a\neq b$.



Usando as propriedades básicas da função exponencial temos que:
  \begin{align*}
  e^{ax}  & =Ce^{bx}\\
  & \Leftrightarrow e^{-ax}e^{ax}=e^{-ax}Ce^{bx}\\
  & \Leftrightarrow1=Ce^{(b-a)x}\\
  & \Leftrightarrow\frac{1}{C}=e^{(b-a)x}\\
  & \Leftrightarrow\ln\left(  \frac{1}{C}\right)  =\ln\left(  e^{(b-a)x}\right)
  =\left(  b-a\right)  x\\
  & \Leftrightarrow\frac{-\ln C}{b-a}=\frac{\ln C}{a-b}=x
  \end{align*}


1512   

Sejam $f(x)=log_x(2)$ e $g(x)=log_2(x)$:

  1. Utilize a propriedade de quociente de logaritmos para expressar $f(x)$ e $g(x)$ em termos de logaritmos naturais.
  2. Com o auxílio de recursos computacionais, compare os gráficos de $f(x)$ e $g(x)$.


930   

Calcule, apresentando todos os cálculos e/ou justificativas.

  1. $log_6 (36) +log_3 (6^4)$
  2. $8^{\frac {2} {3}}+\sqrt{log_2 (16)}+2^{2^3}+(2^2)^{3}$



1648   

Mostre que $\pi^e < e^\pi$. Sugestão: Analise a função $ln(x)/x$.



Pelas propriedades do logaritmo, podemos escrever:

$
ln(e^\pi)=\pi
$

e

$
ln(\pi^e) = e\ ln(\pi)
$

Como $\pi > e$, pode-se escrever $\pi = ae,\ a > 1$. Assim, a primeira equação pode ser escrita como:

$
ln(e^\pi)=ae
$

E a segunda equação como:

$
ln(\pi^e) = e\ ln(a\ e) = e\ ln(a)ln(e)=e\ ln(a)
$

Assim, podemos escrever a razão entre as equações como:

$
\frac{ln(\pi^e)}{ln(e^\pi)} = \frac{ln(a)}{a}
$

Analisando a equação $ln(x)/x$, vemos que para $x>1$ ela é estritamente decrescente, dado que em $x=1$ o denominador é igual a um e o numerador igual a zero e como $\frac{d(ln(x))}{dx}=\frac{1}{x}$ e $\frac{d(x)}{dx}=1$, o denominador cresce mais rapidamente para $x>1$. Assim, como $a>1$, sabemos que:

$
\frac{ln(\pi^e)}{ln(e^\pi)} = \frac{ln(a)}{a} < 1
$

Portanto:

$
ln(\pi^e) < ln(e^\pi)
$

Como $\frac{d(ln(x))}{dx}=\frac{1}{x}>0$ para $x>0$, a função logaritmo é monotônica no intervalo desejado, e portanto podemos concluir que:

$\pi^e < e^\pi$


1508   

Uma droga é administrada por via intravenosa para combater a dor. A função
$f(t)=90-52\ ln(1+t), \quad 0 \leq t\leq4$ 
fornece o número de unidades da droga que permanecem no corpo após $t$ horas.

  1. Qual foi o número inicial de unidades administradas?
  2. Quanto estará presente após $2$ horas?
  3. Esboce o gráfico de $f(t)$


931   

Esboce o gráfico das funções $f(x) = \log_2 x $ e $ f(x) = \log_\frac{1}{2} x$ num mesmo sistema cartesiano. Qual relação você observa entre os gráficos? Explique.



1259   

Resolva a equação $\ln\left(  x^{2}+2x+1\right)  =3$.
  



Como a função exponencial é estritamente monótona, temos que $\ln\left(  x^{2}+2x+1\right)  =3$ se, e somente se, $e^{\ln\left(x^{2}+2x+1\right)  }=x^{2}+2x+1=e^{3}$. Mas $ x^{2}+2x+1=\left(  x+1\right)  ^{2}$. Logo $\ln\left(  x^{2}+2x+1\right)  =3\Leftrightarrow\left(  x+1\right)^{2}=e^{3}\Leftrightarrow x+1=\pm e^{3/2}\Leftrightarrow x=\pm e^{3/2}-1$.


1511   

O quociente $(log_4\ x)/(log_2\ x)$ possui um valor constante. Qual valor é este?


933   

Calcule:

  1. $log_2 (8)$
  1. $log_3 (27)$




  1. $\log_2(8) = x$
    $2^x = 8$
    $2^x = 2^3$
    $x = 3$.
  2. $\log_3(27) = x$
    $3^x = 27$
    $3^x = 3^3$
    $x = 3$.


1509   

Utilizando a aproximação $ln\ 2 \approx 0,7$, pode-se derivar uma regra popular, conhecida como regra dos 70, que diz: "Para estimar quantos anos uma determinada quantia em dinheiro dobre ao ser investida a uma porcentagem $r$ composta continuamente, divida $r$ por $70$". Por exemplo, uma quantia em dinheiro investida a $7\%$ dobrará em cerca de $70/7=10$ anos. Se, em vez disso, você quiser que ela dobre em $5$ anos, deve investí-la a $70/5=14\%$. Mostre a dedução da regra dos 70.