LISTA DE DISCIPLINAS

Aplicações

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


3149   

Seja \(\displaystyle \mathbf{F}(x,y,z)=f(x,y,z)\mathbf{i}+ g(x,y,z)\mathbf{j} + h(x,y,z)\mathbf{k}\) e suponha que \(f\), \(g\) e \(h\) sejam contínuas e tenham derivadas parciais de primeira ordem contínuas numa região. Mostre que se \(\mathbf{F}\) é conservativo numa região esférica aberta então \(\mathrm{rot\,}\mathbf{F} = \mathbf{0}\) nessa região. [Sugestão: use que se \(\mathbf{F}\) for conservativo numa região, então \[ \dfrac{\partial f}{\partial y}=\dfrac{\partial g}{\partial x},\quad \dfrac{\partial f}{\partial z}=\dfrac{\partial h}{\partial x},\quad \dfrac{\partial g}{\partial z}=\dfrac{\partial h}{\partial y} \]  nessa mesma região.]


3150   

Seja \(\mathbf{F}(x,y)= (ye^{xy}-1)\mathbf{i} + xe^{xy}\mathbf{j}.\)

  1.  Mostre que \(\mathbf{F}\) é um campo vetorial conservativo.

  2.  Calcule uma função potencial de \(\mathbf{F}\).

  3.  Calcule o trabalho realizado pelo campo vetorial sobre uma partícula que se move ao longo da curva representada pelas seguintes equações paramétricas \begin{align*} x  & = t+ \arcsin(\sin t) \\ y & = \dfrac{2}{\pi}\arcsin(\sin t), \ \left(0\leq t\leq 8\pi\right).  \end{align*}


3142   

Considere o campo vetorial \(\mathbf{F}(x,y,z)=(x-y)\mathbf{i} + (y-z)\mathbf{j}+(z-x)\mathbf{k}\) e a superfície \(\sigma\)
descrita como sendo a porção do plano \(x+y+z=1\) no primeiro octante e orientada para cima. Verifique o Teorema de Stokes
calculando, separadamente, a integral de linha e a integral dupla e, em seguida, comparando os valores.


\(\dfrac{3}{2}\)


3139   

Prove a seguinte identidade \[ \iint\limits_\sigma\mathrm{rot\,}\mathbf{F}\cdot\mathbf{n}\,dS = 0, \] supondo que \(\mathbf{F}\) e \(\sigma\) satisfaçam as hipóteses do Teorema da Divergência.


3151   

Enuncie o Teorema da Divergência e o Teorema de Stokes, incluindo todas as hipóteses envolvidas.


3143   

Considere o campo vetorial \(\mathbf{F}(x,y,z)=x^2\mathbf{i} + y^2\mathbf{j}+z^2\mathbf{k}\) e a superfície \(\sigma\) descrita como sendo a porção do cone \(z=\sqrt{x^2+y^2}\) abaixo do plano \(z=1\) e tendo orientação para cima. Verifique o Teorema de Stokes calculando, separadamente, a integral de linha e a integral dupla e, em seguida, comparando os valores.


3144   

Encontre o trabalho realizado pelo campo de forças \[ \mathbf{F}(x,y)= y^2\mathbf{i} + xy\mathbf{j} \] para mover uma partícula de \((0,0)\) até \((1,1)\) ao longo da parábola \(y=x^2\).


3147   

  1.  Use o Teorema de Green para provar que\[ \int_Cf(x)\,dx + g(y)\,dy = 0\] se \(f\) e \(g\) forem funções diferenciáveis e \(C\) for uma curva fechada simples lisa por partes.

  2.  O que isso nos diz sobre o campo vetorial \[ \mathbf{F}(x,y) = f(x)\mathbf{i}+g(y)\mathbf{j}?\]


3146   

Sejam \(\alpha\) e \(\beta\) dois ângulos que satisfazem \(\displaystyle 0<\beta-\alpha\leq 2\pi\) e suponha que \( r= f(\theta)\) seja uma curva polar lisa com \(f(\theta)>0\) no intervalo \([\alpha,\beta]\). Use a fórmula \[ A = \dfrac{1}{2}\int_C-y\,dx+x\,dy \] para encontrar a área da região \(R\) englobada pela curva \(r=f(\theta)\) e os raios \(\theta=\alpha\) e \(\theta=\beta\).


3148   

Seja \(G\) um sólido com a superfície \(\sigma\) orientada por vetores normais unitários para fora, suponha que \(\phi\) tenha derivadas parciais de primeira e segunda ordens contínuas em algum conjunto aberto contendo \(G\) e seja \(D_{\mathbf{n}}\phi\) a derivada direcional de \(\phi\), onde \(\mathbf{n}\) é um vetor normal unitário para fora de \(\sigma\). Mostre que \[ \iint\limits_\sigma D_{\mathbf{n}}\phi\,dS = \iiint\limits_G\left[\dfrac{\partial^2\phi}{\partial x^2}+ \dfrac{\partial^2\phi}{\partial y^2} + \dfrac{\partial^2\phi}{\partial z^2} \right]\,dV. \]


3145   

A Lei de Coulomb afirma que a força eletrostática \(\mathbf{F}(\mathbf{r})\) que uma partícula com carga \(Q\) exerce sobre outra partícula com carga \(q\) é dada pela fórmula \[ \mathbf{F}(\mathbf{r}) = \dfrac{q\,Q}{4\pi\epsilon_0\|\mathbf{r}\|^3}\mathbf{r}, \] onde \(\mathbf{r}\) é o vetor posição da carga \(q\) em relação a \(Q\) e \(\epsilon_0\) é uma constante positiva (chamada permissividade do meio).

  1.  Expresse o campo vetorial \(\mathbf{F}(\mathbf{r})\) em forma de coordenadas \(\mathbf{F}(x,y,z)\) com \(Q\) na origem.

  2.  Calcule o trabalho realizado pelo campo vetorial \(\mathbf{F}\) sobre uma carga \(q\) que se move ao longo de um segmento de reta de \((3,0,0)\) para \((3,1,5)\).


3141   

Supondo que \(\sigma\) e \(G\) satisfaçam as hipóteses do Teorema da Divergência e que \(f\) e \(g\) sejam funções suficientemente regulares, prove as seguintes identidades (de Green):

  1.  \[\iint\limits_\sigma\left(f\nabla g\right)\cdot\mathbf{n}\,dS = \iiint\limits_G\left( f\Delta g+\nabla f\cdot\nabla g\right)\,dV, \]

  2.  \[\iint\limits_\sigma\left(f\nabla g-g\nabla f\right)\cdot\mathbf{n}\,dS = \iiint\limits_G\left( f\Delta g- g\Delta f\right)\,dV, \] onde \(\displaystyle \Delta f= \dfrac{\partial^2f}{\partial x^2}+\dfrac{\partial^2f}{\partial y^2}+\dfrac{\partial^2f}{\partial z^2}\) é denominado Laplaciano de \(f\).


3140   

Prove a seguinte identidade \[ \iint\limits_\sigma\nabla f\cdot\mathbf{n}\,dS = \iiint\limits_G\Delta f\,dV, \] supondo que \(\sigma\) e \(G\) satisfaçam as hipóteses do Teorema da Diverência e que \(f(x,y,z)\) cumpra os requisitos de diferenciabilidade necessários. Acima, \(\displaystyle \Delta f= \dfrac{\partial^2f}{\partial x^2}+\dfrac{\partial^2f}{\partial y^2}+\dfrac{\partial^2f}{\partial z^2}\) é denominado Laplaciano de \(f\).