Superfícies Quádricas
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Dada a superfície $4x^2+z^2-y^2=9$, identifique a cônica obtida ao fixar:
$x=0$;
$y=0$;
$z=1$.
Dada a superfície $4x^2+y^2-z=0$, identifique a cônica obtida ao fixar:
$x=0$;
$y=0$;
$z=1$.
Classifique a superfície $\displaystyle \dfrac{x^2}{36}+\dfrac{y^2}{25}-z=0$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Se uma esfera $\displaystyle \dfrac{x^2}{a^2}+\dfrac{y^2}{a^2}+\dfrac{z^2}{a^2}=1$ de raio $a$ for comprimida na direção $z$, então a superfície resultante, chamada de esferóide oblato, tem uma equação da forma $\displaystyle \dfrac{x^2}{a^2}+\dfrac{y^2}{a^2}+\dfrac{z^2}{c^2}=1$, onde $c<a$. A rotação da Terra causa um achatamento nos pólos, portanto sua forma é freqüentemente modelada como um esferóide oblato em vez de uma esfera. Um dos modelos usados pelos satélites de posicionamento global é o Sistema Geodésico Mundial de 1984 (WGS-84), que trata a Terra como uma esfera oblata, cujo raio equatorial é $6378,1370$ km e cujo raio polar (a distância do centro da Terra aos pólos) é $6356,5231$ km. Use o modelo WGS-84 para encontrar uma equação para a superfície da Terra em relação ao sistema de coordenadas com origem no centro de massa da Terra, eixo $z$ apontando para o pólo norte e plano $xy$ contendo o equador.
Obtenha a equação do lugar geométrico dos pontos que equidistam das retas $r: y=z=0$ e $l: x=y-1=0$. Que conjunto é este?
Classifique a superfície $\displaystyle \dfrac{x^2}{36}+\dfrac{y^2}{25}+z^2=1$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Classifique a superfície $\displaystyle \dfrac{x^2}{36}+\dfrac{y^2}{25}-z^2=0$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Considere o hiperbolóide de uma folha $H$ dado pela equação $x^2+y^2=1+z^2$. Mostre que por cada um dos seus pontos passam duas retas inteiramente contidas na superfície $H$. Generalize para qualquer hiperbolóide de uma folha. (Sugestão: $x^2+y^2=1+z^2\Leftrightarrow(x+z)(x-z)=(1+y)(1-y)$.)
Identifique a quádrica definida pela equação reduzida $\dfrac{x^2}{6}+\dfrac{y^2}{5}+\dfrac{z^2}{3}=1$ e esboce seu gráfico.
Identifique a quádrica definida pela equação reduzida $-x^2+ y^2+z^2=0$ e esboce seu gráfico.
Identifique a quádrica definida pela equação reduzida $z=4x^2+4y^2$ e esboce seu gráfico.
Obtenha a equação do lugar geométrico dos pontos que equidistam do plano $\pi: x=2$ e do ponto $P=(-2,0,0)$. Que conjunto é este?
Identifique a quádrica definida pela equação reduzida $\dfrac{x^2}{10}+\dfrac{y^2}{9}+\dfrac{z^2}{5}=1$ e esboce seu gráfico.
Classifique a superfície $\displaystyle \dfrac{x^2}{36}-\dfrac{y^2}{25}+z=0$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Quais dos seguintes objetos não podem ser associados a elipsóides, pelo aspecto da sua superfície externa?
Um ovo.
Um bola de rugby.
Uma câmara de ar.
Uma bola de futebol.
Um charuto.
O aspecto de uma bola de rugby lembra bastante o de um elipsóide, o que não ocorre com as demais opções.
Determine uma equação da superfície consistindo em todos os pontos $P(x,y,z)$ que estão duas vezes mais afastados do plano $z=-1$ que do ponto $(0,0,1)$. Identifique a superfície.
Determine uma equação da superfície consistindo em todos os pontos $P(x,y,z)$ que estão eqüidistantes do ponto $(0,0,1)$ e do plano $z=-1$. Identifique a superfície.
Determine a equação do lugar geométrico dos pontos $P=(x,y,z)$ tais que a soma das distâncias de $P$ aos dois pontos $(2,0,0)$ e $(-2,0,0)$ é igual a $6$. Que lugar geométrico é este?
Mostre que por cada ponto do parabolóide hiperbólico $z=x^2-y^2$ passam duas retas inteiramente contidas nele.
Identifique a quádrica definida pela equação reduzida $6x^2+3y^2-z^2=-2$ e esboce seu gráfico.
Se uma esfera $\displaystyle \dfrac{x^2}{a^2}+\dfrac{y^2}{a^2}+\dfrac{z^2}{a^2}=1$ de raio $a$ for comprimida na direção $z$, então a superfície resultante, chamada de esferóide oblato, tem uma equação da forma $\displaystyle \dfrac{x^2}{a^2}+\dfrac{y^2}{a^2}+\dfrac{z^2}{c^2}=1$, onde $c<a$. Mostre que o esferóide oblato tem um traço circular de raio $a$ no plano $xy$ e um traço elíptico no plano $xz$, com eixo maior de comprimento $2a$ ao longo do eixo $x$ e eixo menor de comprimento $2c$ ao longo do eixo $z$.
Identifique a quádrica definida pela equação reduzida $x^2+ y^2-z^2=0$ e esboce seu gráfico.
Classifique a superfície $\displaystyle \dfrac{x^2}{36}+\dfrac{y^2}{25}-z^2=1$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Dada a superfície $4x^2+y^2+z^2=9$, identifique a cônica obtida ao fixar:
$x=0$;
$y=0$;
$z=1$.
Classifique a superfície $\displaystyle z^2-\dfrac{x^2}{36}-\dfrac{y^2}{25}=1$ como elipsóide, hiperbolóide de uma folha, hiperbolóide de duas folhas, cone elíptico, parabolóide elíptico ou parabolóide hiperbólico.
Identifique a quádrica definida pela equação reduzida $3x^2+y^2-2z^2=1$ e esboce seu gráfico.