LISTA DE DISCIPLINAS

Escalonamento

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


438   

Encontre a inversa da matriz abaixo (se existir):

\[\begin{pmatrix}\cos x & \sin x \\ - \sin x & \cos x\end{pmatrix}.\]


\[\begin{pmatrix}\cos x & -\sin x \\ \sin x & \cos x\end{pmatrix}.\]


1389   

Uma liga de metal $L_1$ contém $20\%$ de ouro e $80\%$ de prata e uma liga $L_2$ tem $65\%$ de ouro e $35\%$ de prata. Quanto gramas de cada liga são necessários para se formar $100$ gramas de uma liga com quantidade igual de ouro e prata?


Serão necessárias aproximadamente 33.3333 gramas da liga $L_1$ e 66.6667 gramas da liga $L_2$.


425   

Resolver o sistema linear em função do parâmetro $\lambda$:

\[\left\{\begin{array}{cccl}2x_1+&3x_2+&x_3&=1 \\x_1+&6x_2+&x_3&=3 \\2x_1-&3x_2+&2x_3&=\lambda\\x_1+&3x_2+&2x_3&=1 \\\end{array}\right.. \]



$x_1 =\dfrac{-1}{4}, x_2 =\dfrac{7}{12}, x_3 =\dfrac{-1}{4}, \lambda = \dfrac{-11}{4}.$


434   

Resolver o sistema linear: 

\[\left \{\begin{array}{rrrrl}x&-y&+2z&-t&=0\\3x&+y&+3z&+t&=0\\x&-y&-z&-5t&=0\end{array}\right..\]



$y = \dfrac{-6 x}{5}, z = \dfrac{-4 x}{5}, t = \dfrac{3 x}{5}, \forall x \in \mathbb{R}$.


437   

Encontre a inversa da matriz abaixo (se existir):

\[\begin{pmatrix}a & b \\ -b & a\end{pmatrix}.\]


A inversa existirá desde que $a\neq 0$ ou $b\neq 0$, nesse caso será dada por \[\begin{pmatrix}\dfrac{a}{a^2+b^2} & \dfrac{-b}{a^2+b^2} \\ \dfrac{b}{a^2+b^2} & \dfrac{a}{a^2+b^2}\end{pmatrix}.\]


424   

Resolver o sistema linear:

\[\left\{\begin{array}{cccccr}2x_1+&1x_2+&4x_3+&x_4&=&-5 \\2x_1+&8x_2-&10x_3+&8x_4&=&2 \\&&-9x_3+&2x_4&=&2\\4x_1+&1x_2+&6x_3+&5x_4&=&-3\\4x_1+&5x_2-&8x_3+&8x_4&=&-3\\\end{array}\right . .\]


$x_1 = -\dfrac{27}{7}, x_2=\dfrac{-5}{7}, x_3 =\dfrac{2}{7} , x_4 =\dfrac{16}{7}.$


416   

Sejam $U=\begin{bmatrix} c & 4 & 1 \\ 0 & d+1 & 3 \\ 0 & 0 & c^2-4  \end{bmatrix}$,  $M=\begin{bmatrix}  -1 & 1 & -1 \\ -4 & 9 & -3 \\ 2 & 3 & 3 \end{bmatrix}$ e $N=\begin{bmatrix}  1 & -5 & 4 \\ -2 & 2 & 0 \\ -3 & -1 & -1 \end{bmatrix}$.

  1. Determine, se possível, $c$ e $d$ tais que $A=M\,U$ seja invertível; 
  2. Determine, se possível, $c$ e $d$ tais que $B=N\,U$ seja invertível.



  1. Posto que $\det(M)=0$ e $\det(A)=\det(M)\det(U)$, não há valores de $c$ e $d$ tais que $A$ seja invertível.
  2. $\det(N)=40$, logo, se $\det(U)\neq0$, $B=NU$ será invertível, de novo porque  $\det(B)=\det(N)\det(U)$. Os valores de $c$ e $d$ para os quais $\det(U)\neq$ são $c,\, d\in\mathbb{R}$ tais que $c\neq 0,$ $c\neq\pm 2$ e $d\neq -1$.


423   

Resolver o sistema linear:\[\left\{\begin{array}{rrrrrcr}1x_1+&3x_2-&7x_3+&5x_4+&2x_5&=&0 \\2x_1+&3x_2-&20x_3+&7x_4+&8x_5&=&0 \\10x_1+&22x_2-&46x_3+&34x_4+&12x_5&=&0 \\\end{array}\right. . \]


$x_3 =\dfrac{11x_1+4x_2}{5}, x_4 = \dfrac{6 x_1-x_2}{5}, x_5 = \dfrac{21 x_1 + 9 x_2}{5}, \forall x_1, x_2 \in \mathbb{R}$.


440   

Encontre a inversa da matriz abaixo (se existir):

\[\begin{pmatrix}2 & 2 & -1 \\ 2 & -1 & 2 \\-1 & 2 & 2\end{pmatrix}.\]


\[\begin{pmatrix}2/9 & 2/9 & -1/9 \\ 2/9 & -1/9 & 2/9 \\-1/9 & 2/9 & 2/9\end{pmatrix}.\]


428   

Resolver o sistema linear: \[\left\{\begin{array}{ccccccr}2x_1&+&5x_2&+&12x_3&=& 6 \\3x_1&+&x_2&+&5x_3&=& 12 \\5x_1&+&8x_2&+&21x_3&=& 17\\\end{array}\right. .\]


Esse sistema linear não possui solução.


422   

Resolver o sistema linear:

\[\left\{\begin{array}{rrrcr}2x_1+&3x_2-&5x_3&=& 2 \\2x_1+&3x_2-&x_3&=& 8 \\6x_1+ &9x_2-&7x_3&=& 18 \\\end{array}\right. . \]


$x_2 =\dfrac{19-4x_1}{6}, x3 =\dfrac{3}{2}, \forall x_1 \in \mathbb{R}$.


429   

Resolver o sistema linear: \[\left\{\begin{array}{ccccccccccr}x_1&-&2x_2&+&3x_3&+&2x_4&+&x_5&=&10 \\2x_1&-&4x_2&+&8x_3&+&3x_4&+&10x_5&=& 7 \\3x_1&-&6x_2&+&10x_3&+&6x_4&+&5x_5&=&27\\\end{array}\right..\]



$x_3 = \dfrac{-19+2 x1- 4 x2}{3}, x_4 = \dfrac{ 41 - 4 x_1 + 8 x_2}{3}, x_5 = \dfrac{5- x_1+2 x_2}{3}, \forall x_1, x_2\in \mathbb{R}$.


420   

Resolver o sistema linear:

\[\left\{\begin{array}{ccccccccccr}&&x_1&+&x_2&-&x_3&+&2x_4&=&6 \\&-&x_1&+&x_2&+&4x_3&-&3x_4&=&-2 \\&&&&x_2&+&3x_3&+&x_4&=& 5 \\&&&&x_1&+&5x_2&+&5x_3& =&14 \\\end{array}\right. . \]


$x_2 = \dfrac{13-2 x_1}{5}, x_3 = \dfrac{1+x_1}{5}, x_4 = \dfrac{9-x_1}{5}, \forall x_1\in\mathbb{R}.$


421   

Resolver o sistema linear:

\[\left\{\begin{array}{cccccr}&x_1&-&7x_2&=&-11 \\-&x_1&+&11x_2&=&31 \\&2x_1&-&12x_2&=&-26 \\&3x_1&-&17x_2&=&-15 \\\end{array}\right. . \]


O sistema não possui solução.


415   

Resolva o sistema $A\,X=B$ usando o método de Gauss-Jordan, onde:  $$A=\begin{bmatrix}  1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \text{ e } B=\begin{bmatrix}  1 \\ 1 \\ 1 \end{bmatrix}.$$


Destaque as operações elementares usadas.



Vamos aplicar escalonamento sobre a matriz aumentada do sistema:
\begin{gather*}
\begin{pmatrix} 1 & 0 &-1&\vdots & 1 \\  2 & 1 & 0& \vdots & 1 \\ 0 & 1 & 1 & \vdots & 1  \end{pmatrix} \begin{array}{c} L_2-2L_1\rightarrow L_2\\ \sim  \end{array}
 \begin{pmatrix} 1 & 0 & -1 & \vdots & 01 \\ 0 & 1 & 2 & \vdots & -1 \\  0 & 1 & 1 & \vdots & 01  \end{pmatrix}
 \begin{array}{c} L_3-L_2\rightarrow L_3 \\\sim \end{array}
 \begin{pmatrix} 1 & 0 & -1 & \vdots & 1 \\ 0 & 1 & 2 & \vdots & -1 \\ 0&0&-1&\vdots&2 \end{pmatrix} \\  \begin{array}{c} \\-L_3\leftrightarrow L_3 \\ \sim \\ L_3+L_1\rightarrow L_1 \end{array} \begin{pmatrix} 1& 0& 0&\vdots & -1\\  0& 1& 2&\vdots & -1\\  0&  0& 1&\vdots &-2  \end{pmatrix}
 \begin{array}{c} L_2-2 L_3\rightarrow L_2 \\ \sim \end{array}
\begin{pmatrix} 1& 0& 0&\vdots &-1 \\  0 & 1& 0& \vdots& 3\\  0& 0 & 1 &\vdots & -2 \end{pmatrix}. \end{gather*} Logo, a solução é dada por \(\displaystyle (-1,3,-2)^T\).


441   

Encontre a inversa da matriz abaixo (se existir):

\[\begin{pmatrix}1 & 3 & -7 \\ 0 & 1 & -2 \\0 & 0 & 1\end{pmatrix}.\]


\[\begin{pmatrix}1 & -3 & -1 \\ 0 & 1 & -2 \\0 & 0 & 1\end{pmatrix}.\]


1391   

Seja $f: \mathbb{R}^2 \rightarrow \mathbb{R}^2$ uma função definida por $f(x,y) = (2x+y,x-y)$. Ache o(s) valor(es) de $\lambda$ para que a equação $f(x,y) = \lambda(x,y)$ possua solução $(x,y) \neq 0$.


$\lambda=\dfrac{1 + \sqrt{13}}{2}$ ou $\lambda=\dfrac{1 - \sqrt{13}}{2}$.


435   

Considere a matriz $ A = \left[ \begin{array}{ccc} 1 & 2 & 3\\ 1 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$.

  1. Calcule o $det(A^n)$, para todo número natural $n$.
  2. Usando escalonamento encontre a matriz inversa $A^{-1}$.


  1. Como $\det(A)=-1$ e $\det(A^n)=\det(A)^n$, $\det(A)^n=(-1)^n$.
  2.  $ A^{-1} = \left[ \begin{array}{ccc} 0 & 1 & -1\\ 2 & -2 & -1 \\ -1 & 1 & 1\end{array}\right]$.

418   

Use o método de inversão por escalonamento para obter, se possível, a inversa das seguintes matrizes:

  1. $A= \begin{bmatrix} 1 & 1 & 1 \\ 2 & 1 & 4 \\ 2 & 3 & 5 \end{bmatrix} $;
  2. $B=\begin{bmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 0 & 1 & 1 \end{bmatrix} $.


436   

Encontre a inversa da matriz abaixo (se existir):

\[\begin{pmatrix}1 & 2 \\ 3 & 5\end{pmatrix}.\]


\[\begin{pmatrix}-5 & 2 \\ 3 & -1\end{pmatrix}.\]


417   

Use o processo de inversão (Gauss-Jordan) para obter a inversa da matriz $A$ e verifique que a matriz obtida é de fato a inversa de $A$, onde: $$ A = \begin{bmatrix}  6 & 4 & 3 & 0 \\   1 & 1 & 0 & 0 \\  -3 & -2 & -1 & 0 \\  0 & 0 & 0 & 1 \end{bmatrix}$$


439   

Encontre a inversa da matriz abaixo (se existir):

\[\begin{pmatrix}1 & 0 & 0 \\ 0 & 5 & 0 \\0 & 0 & 6\end{pmatrix}.\]



\[\begin{pmatrix}1 & 0 & 0 \\ 0 & 1/5 & 0 \\0 & 0 & 1/6\end{pmatrix}.\]


1380   

Um construtor tem contratos para construir 3 estilos de casa: moderno, mediterrâneo e colonial. A quantidade de material empregada em cada tipo de casa é dada pela tabela:

\[
    \begin{array}{lccccc}
    & \text{Ferro} & \text{Madeira} & \text{Vidro} &
    \text{Tinta} & \text{Tijolo}\\
    \text{Moderno} & 5 & 20 & 16 & 7 & 17\\
    \text{Mediterrâneo} & 7 & 18 & 12 & 9 & 21\\
    \text{Colonial} & 6 & 25 & 8 & 5 & 13
    \end{array}
    \]

  1. Se ele pretende construir 5, 7 e 12 casas dos tipos moderno, mediterrâneo e colonial, respectivamente, quantas unidades de cada material serão empregadas?

  2. Suponha que os preços por unidade de ferro, madeira, vidro, tinta e tijolo sejam, respectivamente, 15, 8, 5, 1 e 10. Qual é o preço unitário de cada tipo de casa?

  3. Qual é o custo total do material empregado?



  1. As quantidades de  ferro, madeira, vidro, tinta e tijolo serão 146, 526, 260,158 e 388, respectivamente.

  2. O preço unitário dos tipos moderno, mediterrâneo e colonial serão 492, 528 e 465, respectivamente.

  3. O custo total do material empregado para construir 5 casas do estilo moderno, 7 casas do estilo mediterrâneo e 12 casas do estilo colonial é 11736.

427   

Resolver o sistema linear: \[\left\{\begin{array}{ccccccccr}3x& + &3y& - &2z& - &t&=& 2\\5x& + &2y& + &z& - &2t&=& 1\\2x& - &y& + &3z& - &t&=& -1\end{array}\right. .\]


$z = \dfrac{-3+x+4y}{5}, t =\dfrac{-4+13 x+7 y}{5}, \forall x, y \in \mathbb{R}.$


431   

Verifique se as matrizes abaixo estão na forma escalonada. Usando operações de linha equivalência escalone as (encontre a forma escalonada das) que não estiverem na forma escalonada. 


  1. $ \begin{pmatrix}1&0&0\\0&1&0\\0&0&1\\1&0&0\end{pmatrix}.,$
  2. $ \begin{pmatrix}1&1&0\\0&0&1\\0&0&0\end{pmatrix}. $


426   

Resolver o sistema linear em função do parâmetro $\lambda$:

\[\left\{\begin{array}{ccccl}x_1-&2x_2-&x_3+&x_4&=-2 \\2x_1+&7x_2+&3x_3+&x_4&=\ \, 6 \\11x_1+&11x_2+&4x_3+&8x_4&=\ \, 8\\10x_1+&2x_2+&&8x_4&=\ \, \lambda \\\end{array}\right. .\]



$x_3 = 2 - \dfrac{x_1- 9 x_2}{4} , x_4 = -\dfrac{5x_1-x_2}{4}, \lambda = 0, \forall x_1,x_2\in\mathbb{R}$.


419   

Considere a matriz $$A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 3 & -2 & a \\ 2 & 2a-2 & -a-2& 3a-1 \\ 3 & a + 2 & -3 & 2a + 1 \end{bmatrix}.$$ Determine o conjunto solução do sistema $A\,X = B$, em que $B = \begin{bmatrix} 4 & 3 & 1 & 6\end{bmatrix}^t$, para todos os valores de $a$.


Para $a=5$, o sistema não possui solução.

Para $a=1$, o sistema possui infinitas soluções com $x=2-w$, $y=z=1$ e $w\in\mathbb{R}$.

Para $a\neq 5$ e $a\neq 1$, $x = \dfrac{4a-11}{a-5}$, $y = \dfrac{4}{5-a}$, $z = \dfrac{4}{5-a}$, $w = \dfrac{1}{5-a}$.


432   

Resolver o sistema linear: 

\[\left\{\begin{array}{rrrrl}4x&+3y&-z&+t&=4\\x&-y&+2z&-t&=0\\5x&+2y&+z&&=4\end{array}\right. . \]


$z = 4 - 5 x - 2 y, t = 8 - 9 x - 5 y, \forall x, y \in \mathbb{R}$.


433   

Resolver o sistema linear:

\[ \left\{\begin{array}{rrrrl}x&+5y&+4z&-13z&=3\\3x&-y&+2z&+5t &=2\\2x&+2y&+3z&-4t&=1\end{array}\right. .\]



Esse sistema linear não possui solução.


1390   

No processo de escalonamento de um sistema linear, se uma linha se anular, mostre que ela era uma combinação linear das outras.


430   

Verifique se as matrizes abaixo estão na forma escalonada. Usando operações de linha equivalência escalone as (encontre a forma escalonada das) que não estiverem na forma escalonada. 

  1. $ \begin{pmatrix}1&-2&-1&0\\1&\phantom{-}0&-1&1\\0&\phantom{-}1&\phantom{-}0&2\end{pmatrix}, $
  2. $ \begin{pmatrix}1&0&0&5&0\\0&1&0&2&0\\0&0&1&1&0\\0&0&0&0&1\end{pmatrix}. $