Planos
Selecione os exercícios por
Dificuldade
Categoria
Outros
Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.
Encontre a distância entre o plano $\pi: 2x+2y-z=6$ e o ponto $P=(2,2,-4)$.
Vamos utilizar o conceito de distância dado na referência R. J. Santos-Matrizes, Vetores e Geometria Analítica. Neste caso, precisamos tomar um ponto (arbitrário) sobre o plano. Vamos tomar $P_1=(3,0,0)$ em $\pi$. Assim, sendo $N=(2,2,-1)$ a normal ao plano, $$ d(P,\pi)=\|\mathrm{proj}_N\vec{P_1P}\|=2.$$
Considere os planos $\alpha : x - y + z - 3=0$ e $\beta: 2m^{2}x - (m+1)y + 2z=0$.
- Determine $m$ para que os planos $\alpha$ e $\beta$ possam ser paralelos, concorrentes, e concorrentes ortogonais (Um $m$ para cada caso, se for possível).
- Para $m=-1$ encontre a equação da reta interseção entre $\alpha$ e $\beta$.
Estabeleça as equações gerais dos planos bissetores dos ângulos formados pelos planos $xOy$ e $yOz$.
$x-y=0$
Encontre a equação da reta simétrica à reta $r$ em relação ao plano $\pi$:
$$r:\begin{cases} x - 2y = 4\\
3y + z = -8\end{cases}\ \ \ {\rm e}\ \ \ \pi:x-y+z=0.$$
Considere os pontos $A = (4,3,-2)$, $B = (5,5,-1)$, $C = (6,4,-3)$ e $D = (7,6,0)$. Pede-se:
A equação do plano $\pi$ que passa por $A$, $B$ e $C$. Mostre também que $D$ não está em $\pi$.
As equações paramétricas da reta $r$ que passa por $D$ e é perpendicular ao plano $\pi$ (do item 1).
O ponto de interseção entre a reta $r$ (do item 2) e o plano $\pi$ (do item 1).
A distância do ponto $D$ ao plano $\pi$ (do item 1).
A área do triângulo de vértices $A$, $B$ e $C$ (área do triângulo $=1/2$ área do paralelogramo).
O volume do tetraedro de vértices $A$, $B$, $C$ e $D$. (Volume do tetraedro $= 1/6$ volume do paralelepípedo).
A altura do tetraedro $ABCD$.
Dica: Os itens 5 e 6 requerem produto vetorial. A solução baseada na geometria plana não é o propósito da geometria analítica.
Encontre a equação do plano $\pi$ que é perpendicular ao plano $x+3y-z=7$ e contém os pontos $A=(2,0,5)$ e $B=(0,2,-1)$.
Consideremos os vetores $v_1=(1,3,-1)$ (normal ao plano
perpendicular) e $v_2=B-A=(-2,2,-6)$. Note que estes vetores estão
contidos no plano procurado e não são paralelos, com $v_1\times
v_2=(-16,8,8)$. Logo, o plano procurado pode ser descrito por $$\pi:
-16x+8y+8z=(-16,8,8)\cdot A=8\Longleftrightarrow -2x+y+z=1. $$
Sejam $P=(a,b, c)$ um ponto no espa\c co e $r$ a reta $\left\{ \begin{array}{c} x+y+2z=4 \\ x-2y+z=5\end{array} \right.$. Para cada par não nulo de n\'umeros reais, $m,\,n$, considere o plano:
$$\pi_{(m,n)}: (m+n)x+(m-2n)y+(2m+n)z=4m+5n.$$
Mostre que: $P\in r$ se e somente se $P\in \pi_{(m,n)}$, para todo par não nulo $(m,n)$.
Considere os pontos $A=(1,1,0)$, $B=(3,2,-1)$, $C=(0,1,-2)$ e $D=(1,3,-1)$.
- Encontre as retas: $r_1$ contendo o segmento $AB$ e $r_2$ contendo o segmento $CD$. Determine a posição relativa desta retas.
- Use o produto misto para encontrar a equação do plano $\pi$ contendo o segmento $AB$ e que seja paralelo a $r_2$.
- Calcule as distâncias $d(\pi, r_2)$ e $d(r_1, r_2)$.
Encontre a distância perpendicular entre os planos (paralelos): $$ 4x-8y-z=9 \;\;\; \mbox{e}\;\;\;2x-4y-\frac{z}{2}=5.$$
O primeiro plano ($\pi_1$) tem normal, digamos, $n_1=(4,-8,-1)$ e
$p_1=(0,0,-9)$ é um ponto sobre o mesmo. Note também que $p_2=(0,0,-10)$
é um ponto sobre o outro plano ($\pi_2$). Assim, segue que $$
d(\pi_1,\pi_2)=d(\pi_1,p_2)=\|\mathrm{proj\,}_{n_1}(\vec{p_1p_2})\|=\frac{1}{9}.$$
Achar o ponto $N$, projeção ortogonal do ponto $P(3,-1,-4)$ no plano determinado pelos pontos $A(2,-2,3)$, $B(4,-3,-2)$ e $C(0,-4,5)$. Qual é o ponto simétrico de $P$ em relação a este plano?
$N=\left(\frac{18}{7},-\frac{17}{14},\frac{47}{14}\right),\;
P'=\left(\frac{15}{7},\frac{10}{7},-\frac{9}{14}\right)$
Dado o ponto $P(5,2,3)$ e o plano $\pi:\;2x+y+z=0$, determinar:
- equações paramétricas da reta que passa por $P$ e é perpendicular a $\pi$;
- a projeção ortogonal de $P$ sobre o plano $\pi$;
- o ponto $P'$ simétrico de $P$ em relação a $\pi$;
- a distância de $P$ a o plano $\pi$.
- $r:(x,y,z)=(5+2t,2+t,3+t)$.
- $P_{\bot}=(0,-\frac{1}{2},\frac{1}{2})$.
- $P'=(-5,-3,-2)$.
- $5\dfrac{\sqrt{6}}{2}$.
Encontre a equação geral do plano que contém os pontos $A=(1,0,0)$, $B=(1,5,-2)$ e é paralelo ao vetor $(1,-1,1)$. Determine a distância de $C=(1,-1,1)$ ao plano encontrado e a área do triângulo formado pelos vértices $A$, $B$ e $C$.
Encontre a equação do plano $\pi$ que passa pelos pontos $A=(0,0,2)$, $B=(2,4,1)$ e $C=(-2,3,3)$
$\pi:7x+14z=28$
Dados o plano $x-y+z=1$ e o ponto $P=(1,0,1)$, encontre o ponto $Q$ que é simétrico a $P$ em relação ao plano dado.
Sejam $a$, $b$, $c$, $d$ números reais tais que $ax+by+cz+d>0$ para quaisquer $x$, $y$, $z\in\mathbb{R}$. Mostre que $a=b=c=0$ e $d>0$.
Os seguintes pares de retas $r_1$ e $r_2$ são paralelas ou concorrentes. Encontre uma equação geral do plano que as contém.
$$r_1:\;\begin{cases}y=2x-3\\z=-x+2\end{cases}\ \ \ {\rm e}\ \
\ r_2: \begin{cases}\text{ $\frac{x-1}{3}=\frac{z-1}{-1}$}\\
y=-1.\end{cases}$$
Considere o plano $\pi : ax + by + cz = 0$. Encontre as coordenadas:
- da projeção ortogonal do vetor $(x,y,z)$ sobre o plano $\pi$;
- da reflexão do vetor $(x,y,z)$ em relação ao plano $\pi$.
Determine o plano que passa pelos pontos $P=(1,1,-1)$ e $Q=(2,1,1)$ e que dista $1$ da reta $r=\{ (1,0,2)+t(1,0,2),t\in\mathbb{R}\}$.
Considere as retas $r$ e $r^{\prime}$ dadas por:
$r$: $x=0$, $y=2+t$ e $z=1+t$ $r^{\prime}$: $ x-2=z+1$ e $y=3$.
- Mostre que $r$ e $r^{\prime}$ são reversas.
- Encontre dois planos paralelos $\pi$ e $\alpha$ tais que $r\subset \pi$ e $r^{\prime}\subset \alpha$. Pergunta: Podem existir outros planos com as propriedades de $\pi$ e $\alpha$?
- Encontre a distância entre os planos $\pi$ e $\alpha$ do item anterior.
- Encontre $P$ em $r$ e $Q$ em $r^{\prime}$ tais que a reta que passa por $P$ e $Q$ seja perpendicular a $r$ e $r^{\prime}$.
Considere a reta
\[
r:\left\{
\begin{array}{ccl}
x & = & 1 \\
y & = & -z
\end{array}
\right.
\]
e o ponto $A\ =\ (1,1,1)$. Determine a equação do plano $\pi $ que é paralelo à reta $r$, passa por $A$ e é tal que a sua reta normal pelo ponto $A$ seja perpendicular e concorrente com a reta $r$.
$y+z=2$
Um trecho de uma estrada passa sob três viadutos. Aproximadamente, a estrada pode ser considerada como pertencente ao plano $\pi: 5x+4y+20z-20=0$, e os viadutos têm seus pontos mais baixos nas retas: $r_1: X=(5,6,3)+t(4,0,-1)$, $r_2: X=(3,3,4)+t(0,5,-1)$ e $r_3=(2,6,4)+t(4,5,-2)$. As medidas são consideradas em metros. Determine aproximadamente a altura máxima dos veículos que podem trafegar na estrada.
Obtenha o plano que contém a reta $r = \{ (1,1,0)+t(2,1,2), t\in\mathbb{R}\}$ e é paralelo à reta $s:\frac{x+1}{2}=y=z+3$.
Um vetor diretor para a reta $s$ é dado por $v_s=(2,1,0)$. Já para
$r$, $v_r=(2,1,2)$ é o vetor diretor. Fazendo $v_r\times v_s=(-1,2,3)$
obtemos, dessa forma, um vetor normal ao plano procurado. Como esse
plano deve conter o ponto $(1,1,0)$, então o mesmo pode ser descrito
como: $$(x-1,y-1,z)\cdot(-1,2,3)=0\Longleftrightarrow -x+2y+3z=-1.$$
Calcular $k$ de modo que a reta determinada por $A(1,-1,0)$ e $B(k,1,2)$ seja paralela ao plano
$$\pi:\;\begin{cases}x=1+3h\\ y=1+2h+t\\ z=3+3t \end{cases}$$
$k=3/2$
- Encontre a equação da reta $r$ que passa pelos pontos $A=(3,5,3)$ e $B=(1,1,1)$.
- Considere $s$ a reta $(x,y,z)=(1,2,3)+t(1,2,1).$ Verifique se as retas $r$ e $s$ são paralelas, reversas ou concorrentes.
- Ache, se possível, uma equação geral do plano que contém as retas $r$ e $s$.
- Calcule a distância entre as retas $r$ e $s$.
- $\left\{
\begin{array}{l}
x=1+2t \\
y=1+4t \\
z=1+2t
\end{array}
\right. $. - Paralelas.
- $3x-2y+z=2.$
- $\sqrt{\frac{7}{3}}.$
Determine a equação do plano $\pi_1$ que passa por $A = (10/3, 1,-1), B = (1, 9/2,-1) \text{ e } C = (1,-1, 5/6)$.
Determine a equação do plano $\pi_2$ que passa por $D = (-1, 4,-1), E = (3/2,-1, 10)$ e é paralelo ao eixo $z$.
Escreva as equações paramétricas para a reta $r$, interseção dos planos $\pi_1$ e $\pi_2$.
Qual o ângulo entre os planos $\pi_1$ e $\pi_2$?
Qual o ponto $P$ de $\pi_1$ que está mais próximo da origem? (Sugestão: este ponto é tal que $ \overrightarrow{OP}$ é ortogonal ao plano $\pi_1$.)
Determine a reta $t$, contida no plano $\pi : x-y+z=0$, e que é concorrente com as retas
$$\begin{cases} x+2y+2z=2\\ x=y \end{cases}\ \ \ {\rm e}\ \ \ \begin{cases} z=x+2\\ y=0 \end{cases}$$
Usando escalonamento, podemos ver que a primeira reta irá intersectar o plano $\pi$ no ponto $A=(2/3,2/3,0)$. Da mesma forma, a segunda reta irá intersectar $\pi$ no ponto $B=(-1,0,1)$. Assim, $t$ será a reta contida em $\pi$ e que passa por $A$ e $B$. Ou seja, tomando $B-A=(-5/3,-2/3,1)$ como vetor diretor, então podemos escrever $t$ na forma vetorial como $$ t: (2/3,2/3,0)+s(-5/3,-2/3,1),\quad s\in\mathbb{R}, $$ ou ainda, em termos de componentes, $$\begin{cases} x=\frac{2}{3}-s\frac{5}{3}, \\ y=\frac{2}{3}-s\frac{2}{3},\\ s,\quad s\in\mathbb{R}.\end{cases}$$
Considere o ponto $A=(3,4,-2)$ e a reta $ r:\left\{
\begin{array}{ccc}
x & \;=\; & 1+t \\
y & \;=\; & 2-t \\
z & \;=\; & 4+2t
\end{array}
\right. $, onde $t\in \mathbb{R}.$
- Escreva a equação do plano $\pi $ perpendicular a $r$ que passa por $A$.
- Determine a reta que passa por $A$ e é perpendicular a $r$.
- $x-y+2z=-5.$
- $\left\{
\begin{array}{l}
x=3-4t \\
y=4 \\
z=-2+2t
\end{array}
\right. .$
- Determine a equação do plano $\pi_1$ que passa por $A = (10, 1,-1)$, $B = (1, 9,-1) \text{ e } C = (1,-1, 5)$.
- Determine a equação do plano $\pi_2$ que passa por $D = (-1, 4,-1)$, $E = (3,-1, 10)$ e é paralelo ao eixo $z$.
- Escreva as equações paramétricas para a reta $r$, interseção dos planos $\pi_1$ e $\pi_2$.
- Qual o ângulo entre os planos $\pi_1$ e $\pi_2$?
- Qual o ponto $P$ de $\pi_1$ que está mais próximo da origem? (Sugestão: este ponto é tal que $\overrightarrow{OP}$ é ortogonal ao plano $\pi_1$.)
Seja $\pi $ o plano que contém as retas
\[
r_{1}:\left\{
\begin{array}{ccc}
x & \;=\; & 2t \\
y & \;=\; & t \\
z & \;=\; & 2-t
\end{array}
\right. \mathrm{onde}\ \;\;t\in \Bbb{R}\;\;\;\;\ \ \ \ \ \ \mathrm{e}\ \ \ \
\ \ \;\;r_{2}:\left\{
\begin{array}{ccc}
z & \;= & \;2 \\
x & \;= & y
\end{array}
\right.
\]
- Determine a equação de $\pi $.
- Escreva o vetor $\vec{V}=2\vec{\imath}+1\vec{\jmath}+2\vec{k}$ como a soma de 2 vetores $\vec{U_{1}}$ e $\vec{U_{2}}$, sendo $\vec{U_{1}}$ paralelo a $\pi $ e $\vec{U_{2}}$ ortogonal a $\pi $.
- $x-y+z=2.$
- $\overrightarrow{U}_{1}=(1,2,1)$ e $\overrightarrow{U}_{2}=(1,-1,1).$
Considere os seguintes vetores de $\mathbb{R}^{3}$: $U=(1,0,-1)$ e $V=(0,1,0)$.
- Determine a forma geral de um vetor perpendicular a $U$. Explique porque sua resposta contém duas variáveis livres.
- Determine (caso existam) as equações das retas que passam pelo ponto $(1,2,3)$, são perpendiculares ao vetor $U$ e fazem ângulo de $\dfrac{\pi}{3}$ com o vetor $V$.
- $(a,b,a)$.
- $\left\{
\begin{array}{l}
x=1+\sqrt{3} \\
y=2+\sqrt{2}t \\
z=3+\sqrt{3}t
\end{array}
\right. $ e $\left\{
\begin{array}{l}
x=1+\sqrt{3}t \\
y=2-\sqrt{2}t \\
z=3+\sqrt{3}t
\end{array}
\right. .$
Existe alguma reta paralela a $r=\{ (0,1,1)+t(1,-1,-1), t\in\mathbb{R}\}$, contida no plano $\pi : x-2y+3z-1=0$? Por quê?
Sim, pois o vetor diretor de $r$ está contido no plano $\pi$, haja visto que $(1,-1,-1)\cdot(1,-2,3)=0$. De outra forma, podemos deduzir (como?) que $v_1=(2,1,0)$ e $v_2=(-3,0,1)$ formam um par gerador para $\pi$ e que o vetor diretor da reta $r$ pode ser escrito como combinação deste par. Ou seja, se escalonarmos a matriz cujas linhas são estes três vetores, então obteremos uma linha nula na forma escalonada reduzida.
Encontre a equação do plano $\pi$ que é perpendicular a cada um dos planos $x-y-2z=0$ e $2x+y-4z-5=0$ e contém o ponto $A=(4,0,-2)$.
$$\pi: 2x+z=6$$
Dados os planos $\pi_1:x-y=0$, $\pi_2:x+y-z+1=0$ e $\pi_3:x+y+2z-2=0$, determine o plano que contém $\pi_1\cap\pi_2$ e é perpendicular a $\pi_3$.
Verifique que a intersecção dos planos $\pi_1:x-y=0$, $\pi_2:x+z=0$ e $\pi_3:x-y+3z+3=0$ é um ponto. Modifique o coeficiente de $y$ na equação do plano $\pi_3$ para que a intersecção $\pi_1\cap\pi_2\cap\pi_3$ seja uma reta.
Em um sistema de coordenadas ortogonal, um detonador de bomba está localizado no ponto $P=(2,1,2)$. Para ativá-lo, é preciso acender a extremidade $A=(2,1,1)$ de uma haste de combustível paralela ao vetor $\vec{u}=(1,0,2)$, cuja extremidade $B$ toca o ponto inicial de um caminho de pólvora que segue em linha reta até o detonador. O fogo se propaga com velocidade unitária na haste e no caminho de pólvora e este está contido no plano $\pi : x+2y-z-2=0$. Mostre que a explosão ocorre entre $3$ e $4$ segundos após o início do processo.
Encontre a equação do plano $\pi$ que passa pelo ponto $P=(3,1,2)$ e tem vetor normal $N=(1,2,-3)$.
$x+2y-3z=-1$
Os seguintes pares de retas $r_1$ e $r_2$ são paralelas ou concorrentes. Encontre uma equação geral do plano que as contém.
$$r_1:\;\begin{cases}x=1+2t\\
y=-2+3t\\ z=3-t\end{cases}\ \ \ {\rm e}\ \ \ r_2: \begin{cases}x=1+2t\\
y=-2-t\\ z=3+2t.\end{cases}$$
As retas são concorrentes em $P(1,-2,3)$; $\pi: 5x-6y-8z+7=0$.
Verifique que a reta $x-1=z-2 y=3$ é paralela ao plano $x+2y-z=3$ e encontre a distância perpendicular entre eles.
Escrevendo $z$ como parâmetro livre, obtemos que $v=(1,0,1)$ é um
vetor diretor da reta dada e, sendo $n=(1,2,-1)$ o vetor normal ao
plano, vemos que $v\cdot n=0$. Ou seja, a reta é paralela ao plano.
Tomando os pontos $p=(-1,3,0)$ sobre a reta e $p_1=(3,0,0)$ sobre o
plano, segue também que a distância procurada é dada por $$
\|\mathrm{proj}_{n}\overrightarrow{p_1p}\| = \sqrt{\frac{2}{3}}.$$
- Determine a equação do plano $\pi_1$ que passa por $A = (3, 1,-1), B = (1, 2,-1) \text{ e } C = (1,-1, 0)$.
- Determine a equação do plano $\pi_2$ que passa por $D = (-1, 4,-1), E = (2,-1,0)$ e é paralelo ao eixo $y$.
- Escreva as equações paramétricas para a reta $r$, interseção dos planos $\pi_1$ e $\pi_2$.
- Qual o ângulo entre os planos $\pi_1$ e $\pi_2$?
- Qual o ponto $P$ de $\pi_1$ que está mais próximo da origem? (Sugestão: este ponto é tal que $\overrightarrow{OP}$ é ortogonal ao plano $\pi_1$.)
Considere a reta $r$ e o plano $\pi $ de respectivas equações
\[
\frac{x-2}{2}\ =\ y-2\ =\ \frac{z-3}{3}\, \ \mathrm{e}, \ x+y+z\ =\ 1.
\]
Encontre uma equação paramétrica para a reta que é a projeção ortogonal de $r$ sobre $\pi$.
$\left\{
\begin{array}{l}
x=0 \\
y=1-t \\
z=t
\end{array}
\right. $
Encontre a equação da reta simétrica à reta $r$ em relação ao plano $\pi$:
$$r:\begin{cases} x= 1 + 2t\\
y = -2 + 7t
\\z = -2 + 5t \end{cases}\ \ \ {\rm e}\ \ \ \pi:x-y+z=1.$$
Encontre a equação da reta simétrica à reta $r$ em relação ao plano $\pi$:
$$r:\begin{cases} x= 1 + t\\
y = -2 - t
\\z = -1 + t \end{cases}\ \ \ {\rm e}\ \ \ \pi:x-y+z=2.$$
Considere a reta $r$ e o plano $\pi$ de respectivas equações
\[
\frac{x}{2}\ =\ \frac{1-y}{4}\ =\ z-3, \]
\[ x+y+2z\ =\ 1.\]
Determine a equação paramétrica da reta $s$ que é igual a projeção ortogonal da reta $r$ sobre o plano $\pi$.
$\left\{
\begin{array}{l}
x=-1+2t \\
y=-4t \\
z=1+t
\end{array}
\right. .$
Considere as retas $r$ e $s$ dadas pelas equações:
\[
r:\ x\ =\ \frac{y}{2}\ =\ z, \ s:\left\{
\begin{array}{ccl}
x & = & -4+t \\
y & = & 2+2t \\
z & = & t , \ \ \ \ \ \ \ \ \mathrm{onde}\ \ t\in \mathbb{R}
\end{array}
\right. \ \
\]
Determine a equação da reta paralela a $r$ e a $s$, contida no mesmo plano de $r$ e $s$ e que seja equidistante de $r$ e de $s$.
$\left\{
\begin{array}{l}
x=-2+t \\
y=1+2t \\
z=t
\end{array}
\right. $
Considere a reta $r$ de equação \[
\frac{x-1}{2}\ =\ y-2\ =\ \frac{z-2}{3}
\] e considere o plano $\pi $ de equação $2x+y+z=-2$. Determine a equação do plano $\alpha $ que contém a reta $r$ e é perpendicular ao plano $\pi $.
$-x+2y=3.$
Considere as retas $r=\{ (1,1,0)+t(0,1,1), t\in\mathbb{R}\}$ e $s:\frac{x-1}{2}=y=z$. Sejam $A$ o ponto de intersecção de $s$ e $\pi : x-y+z=2$; $B$ e $C$ as intersecções de $r$ com os planos coordenados $xz$ e $xy$ respectivamente. Calcule a área do triângulo $ABC$.
$\frac{\sqrt{3}}{2}$
Dada a reta $r:\;(x,y,z)=(3+t,1-2t,-1+2t)$, determinar as equações reduzidas das retas projeções de $r$ sobre os planos $xOy$ e $xOz$.
$r_{xOy}=(3+t',1-2t',0),\;r_{xOz}=(3+t,0,-1+2t)$
Encontre a equação do plano $\pi$, sabendo que $C=(-5,1,2)\in \pi$ e $\pi$ é perpendicular à reta que passa pelos pontos $A=(2,2,-4)$ e $B=(7,-1,3)$.
Podemos tomar $B-A=(5,-3,7)$ como vetor normal ao plano e, sendo $(B-A)\cdot C=-25-3+14=-14$, segue que $$\pi:5x-3y+7z=-14.$$
Dados os dois pontos $A=(x_1,y_1,z_1)$ e $B=(x_2,y_2,z_2)$, mostre que o lugar geométrico dos pontos do espaço que equidistam de $A$ e $B$ é um plano que passa pelo ponto médio do segmento $AB$ e é perpendicular à reta que contém $A$ e $B$.