DM-IMECC-UNICAMP - Geometria Analítica e Vetores - MA141 - T. Z	
Prof. Marcelo M. Santos – 2a. prova ,	17/05/2010
Aluno:	_ RA:
Assinatura (idêntica à do RG):	

Desligar o celular! Não destaque o grampo da prova.

Questão 1. a) (1,5 pontos). Determine, se existir, os valores de x para que o vetor $\vec{u} = x\vec{i} + \vec{k}$ seja paralelo ao produto vetorial de $\vec{v} = \vec{i} + x\vec{j} - 2\vec{k}$ por $\vec{w} = \vec{i} + \vec{j} - 2\vec{k}$.

b) (1,0 ponto). <u>Usando vetores</u>, prove o Teorema de Pitágoras:

$$a^2 + b^2 = c^2 \qquad \qquad b \qquad \qquad a$$

- 2. a) (1,5 pontos). Mostre (usando resultado(s)/teorema(s) visto(s) em aula) que os vetores $\vec{u}=(1,3,2), \ \vec{v}=(2,1,-1)$ e $\vec{w}=(1,-2,1)$ não são coplanares. Qual é o volume do paralelepípedo gerado pelos mesmos? (Não se esqueça de justificar a sua resposta.)
- b) (1,0 ponto). Seja \vec{v} um vetor não nulo no espaço e α , β , γ os ângulos que \vec{v} forma com os vetores \vec{i} , \vec{j} , \vec{k} , respectivamente. Mostre que $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1.$
- **3.** a) (1,5 pontos). Calcule os cossenos (ou senos) dos ângulos internos e a área do triângulo com vértices nos pontos A = (1, 2, -1), B = (2, 1, 0) e C = (2, 3, -1).
- **b)** (1,0 ponto). Mostre que a distância de um ponto $P_0 = (x_0, y_0)$ a uma reta r: ax + by + c = 0, no plano xy, é dada pela fórmula

$$dist(P_0, r) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

4. a) (1,5 pontos). Determine a posição relativa dos planos

$$x - 2y + 3z = 2$$
, $3x + y - 2z = 1$, $5x - 3y + 4z = 4$.

b) (1,0 ponto). O ângulo entre uma reta r com vetor diretor \vec{v} e um plano Π com vetor normal N é definido como sendo o complementar do ângulo entre uma reta perpendicular ao plano e à reta r. Denotando por $\text{sen}(r,\Pi)$ o seno do ângulo entre r e Π , mostre que $\text{sen}(r,\Pi) = \frac{|N \cdot \vec{v}|}{\|N\| \|\vec{v}\|}$. Usando esta fórmula e a fórmula da distância de um ponto a um plano, e supondo que a reta r intercepta o plano Π , conclua que $\text{dist}(P,\Pi) = \|P\vec{P}_1\| \text{sen}(r,\Pi)$, para qualquer ponto P em r, onde P_1 é o ponto de interseção de r e Π . Sugestão: $Tome \vec{v} = P\vec{P}_1$.

Lembrete: ângulos complementares são aqueles cuja soma é igual a 90°.

5. a) (1,5 pontos). Mostre que a equação da hipérbole com focos em $F_1 = (0,0)$ e $F_2 = (4,0)$ e satisfazendo $|\operatorname{dist}(P,F_1) - \operatorname{dist}(P,F_2)| = 2$ é dada por

$$(x-2)^2 - \frac{y^2}{3} = 1$$
.

Não se esqueça de justificar todas as suas afirmações.

Boa prova!

Gabarito

Questão1. a) Determine, se existir, os valores de \vec{x} para que o vetor $\vec{u} = \vec{x} + \vec{k}$ seja paralelo ao produto vetorial de $\vec{v} = \vec{i} + \vec{x} \vec{j} - 2\vec{k}$ por $\vec{w} = \vec{i} + \vec{j} - 2\vec{k}$.

$$\vec{v} \times \vec{w} = \left(\begin{vmatrix} x & -2 \\ 1 & -2 \end{vmatrix}, - \begin{vmatrix} 1 & -2 \\ 1 & -2 \end{vmatrix}, \begin{vmatrix} 1 & x \\ 1 & 1 \end{vmatrix} \right)$$

$$= (-2x + 2, 0, 1 - x) = 2(1 - x)\vec{i} + (1 - x)\vec{k}.$$

0,5 pontos até aqui.

Logo, $\vec{u} = x\vec{i} + \vec{k}$ é paralelo a $\vec{v} \times \vec{w}$ se

$$x\vec{i} + \vec{k} = \alpha[2(1-x)\vec{i} + (1-x)\vec{k}]$$

para algum escalar α ($\alpha \in \mathbb{R}$)

+ 0,5 pontos até aqui.

i.e.

$$\begin{cases} x = 2\alpha(1-x) \\ 1 = \alpha(1-x) \end{cases}$$

Substituindo a segunda equação na primeira, obtemos x = 2.

+ 0,5 pontos

1.b) Usando vetores, prove o Teorema de Pitágoras:

$$a^2 + b^2 = c^2 \qquad \qquad b \qquad \qquad c$$

Em termos de vetores, temos:

$$\|\vec{A}\|^2 + \|\vec{B}\|^2 = \|\vec{A} - \vec{B}\|^2$$

$$\vec{B}$$

0,5 pontos

Para provar esta fórmula, desenvolvemos o lado direito usando o produto escalar, propriedades de operações com vetores e o fato de que os vetores \vec{A} e \vec{B} são ortogonais $(\vec{A} \cdot \vec{B} = 0)$:

$$\begin{split} \|\vec{A} - \vec{B}\|^2 &= (\vec{A} - \vec{B}) \cdot (\vec{A} - \vec{B}) \\ &= \vec{A} \cdot \vec{A} - 2\vec{A} \cdot \vec{B} - \vec{B} \cdot \vec{B} \\ &= \|\vec{A}\|^2 + \|\vec{B}\|^2 \,. \end{split}$$

Questão 2. a) Mostre (usando resultado(s)/teorema(s) visto(s) em aula) que os vetores $\vec{u} = (1, 3, 2)$, $\vec{v} = (2, 1, -1)$ e $\vec{w} = (1, -2, 1)$ não são coplanares. Qual é o volume do paralelepípedo gerado pelos mesmos?

Pelo que aprendemos em aula, para mostrarmos que os vetores não são coplanares, basta verificarmos que o produto misto $\vec{u} \cdot (\vec{v} \times \vec{w})$ não é nulo (resultado no livro-texto). Também vimos que este produto é igual ao determinante da matriz tendo como linhas linhas as respectivas coordenadas destes vetores (idem). Assim, calculamos (desenvolvendo o determinante pela primeira linha)

$$\vec{u} \cdot (\vec{v} \times \vec{w}) = \begin{vmatrix} 1 & 3 & 2 \\ 2 & 1 & -1 \\ 1 & -2 & 1 \end{vmatrix}$$

$$0,8 \text{ pontos at\'e aqui.}$$

$$= \begin{vmatrix} 1 & -1 \\ -2 & 1 \end{vmatrix} - 3 \begin{vmatrix} 2 & -1 \\ 1 & 1 \end{vmatrix} + 2 \begin{vmatrix} 2 & 1 \\ 1 & -2 \end{vmatrix}$$

$$= (1-2) - 3(2+1) + 2(-4-1) = -1 - 6 - 10 = -17.$$

Como este produto misto não é nulo, concluimos que os vetores não são coplanares. + **0,2 pontos**

Vimos ainda (em aula/resultado do livro-texto) que o módulo do produto misto é o volume do paralelepípedo determinado pelos vetores. Então o volume perguntado é 17 (unidades de volume). + **0,5 pontos**

2.b) Seja \vec{v} um vetor não nulo no espaço e α , β , γ os ângulos que \vec{v} forma com os vetores \vec{i} , \vec{j} , \vec{k} , respectivamente. Mostre que $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$.

Denotando as coordenadas (componentes) de \vec{v} por v_1, v_2, v_3 , temos $\vec{v} = v_1 \vec{i} + v_2 \vec{j} + v_3 \vec{k}$ e $v_1 = \vec{v} \cdot \vec{i} = ||\vec{v}|| ||\vec{i}|| \cos \alpha = ||\vec{v}|| \cos \alpha, \quad v_2 = \vec{v} \cdot \vec{j} = ||\vec{v}|| ||\vec{j}|| \cos \beta = ||\vec{v}|| \cos \beta, \quad v_3 = \vec{v} \cdot \vec{k} = ||\vec{v}|| ||\vec{k}|| \cos \gamma = ||\vec{v}|| \cos \gamma.$

0,5 pontos

Daí e de $\|\vec{v}\|^2 = v_1^2 + v_2^2 + v_3^2$, obtemos $\|\vec{v}\|^2 = \|\vec{v}\|^2 \cos^2 \alpha + \|\vec{v}\|^2 \cos^2 \beta + \|\vec{v}\|^2 \cos^2 \gamma = \|\vec{v}\|^2 (\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma)$, logo, $\cos^2 \alpha + \cos^2 \beta + \cos^2 \gamma = 1$, já que \vec{v} é não nulo.

+ 0,5 pontos

Questão 3. a) Calcule os cossenos (ou senos) dos ângulos internos e a área do triângulo com vértices nos pontos A = (1, 2, -1), B = (2, 1, 0) e C = (2, 3, -1).

Os lados do triângulo podem ser identificados com os vetores

$$\vec{AB} = B - A = (1, -1, 1), \quad \vec{AC} = C - A = (1, 1, 0),$$

$$\vec{BC} = B - C = (0, 2, -1),$$

0,2 pontos até aqui.

logo, os cossenos dos ângulos internos são

$$\frac{\vec{AB} \cdot \vec{AC}}{\|\vec{AB}\| \|\vec{AC}\|} = \frac{1 - 1 + 0}{\|\vec{AB}\| \|\vec{AC}\|} = 0, \quad \frac{\vec{BA} \cdot \vec{BC}}{\|\vec{BA}\| \|\vec{BC}\|} = \frac{0 + 2 + 1}{\sqrt{3}\sqrt{5}} = \frac{3}{\sqrt{15}},$$
$$\frac{\vec{CA} \cdot \vec{CB}}{\|\vec{CA}\| \|\vec{CB}\|} = \frac{0 + 2 + 0}{\sqrt{2}\sqrt{5}} = \frac{2}{\sqrt{10}}.$$
$$+ 0.5$$

A área do triângulo é metade da área do parelogramo determinado pelos vetores \vec{AB} e \vec{AC} (ou \vec{BC} e \vec{BA} =- \vec{AB} ou \vec{CA} e \vec{CB}). + **0,2** A área do paralelogramo determinado pelos vetores \vec{AB} e \vec{AC} é dado pela norma do produto vetorial $\vec{AB} \times \vec{AC}$ + **0,3** que é igual a $\|\vec{AB}\| \|\vec{AC}\| \text{sen}(\vec{AB}, \vec{AC}) = \sqrt{3}\sqrt{2} \, 1 = \sqrt{6}$, onde usamos que $\text{sen}(\vec{AB}, \vec{AC}) = 1$, já que, como calculado acima, $\cos(\vec{AB}, \vec{AC}) = 0$. + **0,3**

3.b) (1,0 ponto). Mostre que a distância de um ponto $P_0 = (x_0, y_0)$ a uma reta r: ax + by + c = 0, no plano xy, é dada pela fórmula

$$dist(P_0, r) = \frac{|ax_0 + by_0 + c|}{\sqrt{a^2 + b^2}}.$$

Consideremos o espaço xyz. Então $P_0 = (x_0, y_0, 0), P_1 = (0, -c/b, 0)$ é um ponto da reta e $\vec{v} = (-b, a, 0)$ é um vetor diretor da reta. Para o ponto P_1 , estamos supondo que $b \neq 0$. Como temos uma reta, $a \neq 0$ ou $b \neq 0$; se $a \neq 0$, podemos tomar $P_1 = (-c/a, 0, 0)$ e o racicínio que se segue vale de forma análoga. **0,3 pontos**

Pela fórmula da distância de um ponto a uma reta, temos

$$\operatorname{dist}(P_{0}, r) = \frac{\|P_{1}P_{0} \times \vec{v}\|}{\|\vec{v}\|} + \mathbf{0,3 \ pontos}$$

$$= \frac{\|(x_{0} + c/a, y_{0}, 0) \times (-b, a, 0)\|}{\sqrt{a^{2} + b^{2}}} = \frac{\|(0, 0, a(x_{0} + c/a) + by_{0})\|}{\sqrt{a^{2} + b^{2}}}$$

$$= \frac{|ax_{0} + by_{0} + c|}{\sqrt{a^{2} + b^{2}}}.$$

Questão 4. a) Determine a posição relativa dos planos

$$x - 2y + 3z = 2$$
, $3x + y - 2z = 1$, $5x - 3y + 4z = 4$.

Os vetores $N_1 = (1, -2, 3)$, $N_2 = (3, 1, -2)$, $N_3 = (5, -3, 4)$ são normais aos planos, respectivamente. É fácil ver que nenhum par destes são paralelos, logo, não há dois planos paralelos. **0,5 pontos**Vejamos se estes vetores são coplanares:

$$\begin{vmatrix} 1 & -2 & 3 \\ 3 & 1 & -2 \\ 5 & -3 & 4 \end{vmatrix} = \begin{vmatrix} 1 & -2 \\ -3 & 4 \end{vmatrix} + 2 \begin{vmatrix} 3 & -2 \\ 5 & 4 \end{vmatrix} + 3 \begin{vmatrix} 3 & 1 \\ 5 & -3 \end{vmatrix}$$
$$= (4-6) + 2(12+10) + 3(-9-5) = -2 + 44 - 42 = 0;$$

como o determinante acima é nulo, concluimos que os tres vetores normais são coplanares, logo, a posição relativa dos planos é tal que a interseção dos mesmos é um conjunto vazio (os planos se interceptam dois a dois em retas distintas) ou uma reta (os três planos se interceptam segundo uma reta).

+ 0,5 pontos

Para decidir sobre estas duas alternativas, resolvemos o sistema de equações lineares, dados pelas equações dos planos:

$$\begin{cases} x - 2y + 3z = 2 \\ 3x + y - 2z = 1 \\ 5x - 3y + 4z = 4. \end{cases}$$

Fazendo operações elementares sobre a matriz aumentada do sistema (as contas devem constar na prova) chegamos ao sistema equivalente

$$\begin{cases} x - 2y + 3z = 2 \\ 0x + 7y - 11z = -5 \\ 0x + 0y + 0z = 1, \end{cases}$$

o qual não tem solução. Portanto, a posição relativa dos três planos é que eles se interceptam dois a dois segundos três retas distintas. + **0,5 pontos**

b) O ângulo entre uma reta r com vetor diretor \vec{v} e um plano Π com vetor normal N é definido como sendo o complementar do ângulo entre uma reta perpendicular ao plano e à reta r. Denotando por $sen(r,\Pi)$ o seno do ângulo entre r e Π , mostre que $sen(r,\Pi) = \frac{|N \cdot \vec{v}|}{\|N\| \|\vec{v}\|}$. Usando esta fórmula

e a fórmula da distância de um ponto a um plano, e supondo que a reta r intercepta o plano Π , conclua que dist $(P,\Pi) = \|PP_1\| \operatorname{sen}(r,\Pi)$, para qualquer ponto P em r, onde P_1 é o ponto de interseção de r e Π .

O cosseno $\cos r_1, r_2$ entre duas retas r_1, r_2 é dado pela fórmula $\cos r_1, r_2 = \frac{|\vec{v_1} \cdot \vec{v_2}|}{\|\vec{v_1}\| \|\vec{v_2}\|}$, em que $\vec{v_1} \ \vec{v_2}$ são vetores diretores das (paralelos às) retas, respectivamente. Então, tomando $\vec{v_1} = \vec{v}$ e $\vec{v_2} = N$, obtemos que

$$\frac{|\vec{v} \cdot \vec{N}|}{\|\vec{v}\| \, \|\vec{N}\|}$$

é o cosseno do ângulo pedido. Como este é complementar, segue-se a fórmula $sen(r,\Pi) = \frac{|N \cdot \vec{v}|}{\|N\| \|\vec{v}\|}$ (pois $\theta_1 + \theta_2 = 90^\circ \Rightarrow \cos \theta_1 = sen \theta_2$). **0,5 pontos**

Para a segunda parte, tomando nesta fórmula $\vec{v}=P\vec{P}_1$ (um vetor paralelo à reta r, já que $P,P_1\in r$) obtemos

$$sen(r,\Pi) = \frac{|\vec{PP_1} \cdot \vec{N}|}{\|\vec{PP_1}\| \|\vec{N}\|}.$$

Daí, como $\operatorname{dist}(P,\Pi) = \frac{|P\vec{P}_1 \cdot \vec{N}|}{\|\vec{N}\|}$ (fórmula da distância de um ponto a um plano) vem a fórmula pedida, $\operatorname{dist}(P,\Pi) = \|P\vec{P}_1\| \operatorname{sen}(r,\Pi)$.

+0.5 pontos

Questão 5. a) Mostre que a equação da hipérbole com focos em $F_1 = (0,0)$ e $F_2 = (4,0)$ e satisfazendo $|dist(P,F_1) - dist(P,F_2)| = 2$ é dada por

$$(x-2)^2 - \frac{y^2}{3} = 1.$$

Escrevendo P = (x, y) e desenvolvendo a equação dada, temos:

$$\operatorname{dist}(P, F_{1}) - \operatorname{dist}(P, F_{2}) = \pm 2$$

$$\operatorname{dist}(P, F_{1}) = \pm 2 + \operatorname{dist}(P, F_{2})$$

$$\|P - F_{1}\| = \pm 2 + \|P - F_{2}\|$$

$$\|P - F_{1}\|^{2} = (\pm 2 + \|P - F_{2}\|)^{2}$$

$$\mathbf{0,5 \ pontos}$$

$$= 4 \pm 4\|P - F_{2}\| + \|P - F_{2}\|^{2}$$

$$x^{2} + y^{2} = 4 \pm 4\|P - F_{2}\| + (x - 4)^{2} + y^{2}$$

$$x^{2} = 4 \pm 4\|P - F_{2}\| + x^{2} - 8x + 16$$

$$8x - 20 = \pm 4\|P - F_{2}\|$$

$$2x - 5 = \pm \|P - F_{2}\|$$

$$2x - 5 = \pm \|P - F_{2}\|$$

$$+ \mathbf{0,5 \ pontos}$$

$$(2x - 5)^{2} = (\|P - F_{2}\|)^{2} = (x - 4)^{2} + y^{2}$$

$$4x^{2} - 20x + 25 = x^{2} - 8x + 16 + y^{2}$$

$$3x^{2} - 12x + 9 = y^{2}$$

$$y^{2} = 3(x^{2} - 4x + 3)$$

$$= 3[(x - 2)^{2} - 1]$$

$$(x - 2)^{2} - \frac{y^{2}}{3} = 1.$$

+ 0,5 pontos

b) Sejam r uma reta e F um ponto, num plano Π , com dist(F,r)=1. Mostre que a equação $dist(P,F)=\frac{1}{2}dist(P,r),\ P\in\Pi$, descreve uma elipse. Sugestão: Considere um sistema de coordenadas cartesianas xy em que o eixo x contém o ponto F e é perpendicular à reta r e o eixo y é tal que $F=(\frac{1}{3},0)$ e a reta r é dada por $x=\frac{4}{3}$.

Tomando o sistema de coordenadas xy sugerido, escrevendo P=(x,y) e desenvolvendo a equação dada, temos: