GAAL - 3a. Prova, 7:30h, 29/07/2003

Nome:____

Duração: 100 minutos.

Questão	1a.	2a.	3a.	4a.	Total
Valor	7	6	6	6	25
Nota					

Questões:

1. Considere o conjunto

$$\mathcal{P} = \{v_1 = (1, 1, 1, 1), v_2 = (-1, -1, 0, 2), v_3 = (1, 3, -6, 2)\}.$$

- i) Mostre que \mathcal{P} é um conjunto ortogonal.
- ii) Quando $v \in \mathbb{R}^4$ é combinação linear dos elementos de \mathcal{P} ?
- iii) Complete o conjunto \mathcal{P} de modo a obter uma base ortogonal do \mathbb{R}^4 .
 - ${f 2.}$ Seja V o conjunto das soluções do sistema

$$\begin{cases} x + y + 2z + w = 0 \\ x + 2y + 3z + w = 0. \end{cases}$$

- i) Determine a dimensão de V;
- ii) Encontre uma base ortogonal para V.
 - **3.** Encontre uma base para o conjunto de soluções de AX = 0, sendo

$$A = \left(\begin{array}{rrr} -1 & 2 & 3 \\ -3 & 7 & -8 \\ -2 & 4 & 6 \end{array}\right).$$

4. Sejam

$$u_1 = \frac{1}{\sqrt{3}}(1,1,1), u_2 = \frac{1}{\sqrt{2}}(1,0,-1), u_3 = \frac{1}{\sqrt{6}}(-1,2,-1).$$

- i) Mostre que $\mathcal{B} = \{u_1, u_2, u_3\}$ é uma base ortonormal de \mathbb{R}^3 .
- ii) Encontre as coordenadas do ponto P = (1, -1, 1) em relação ao sistema $S = \{O, u_1, u_2, u_3\}.$
- iii) Dê a equação do plano que passa pela origem e é perpendicular ao vetor \overrightarrow{OP} utilizando as coordenadas (x', y', z') do sistema \mathcal{S} .