Cálculo Diferencial e Integral II Resolução da 3ª prova - 29/06/2011 - 7h30m

Questão 1 (10 pontos). Suponha que z = f(x, y), onde x = g(s, t), y = h(s, t), g(1, 2) = 3, $g_x(1, 2) = -1$, $g_t(1, 2) = 4$, h(1, 2) = 6, $h_s(1, 2) = -5$, $h_t(1, 2) = 10$, $f_x(3, 6) = 7$ e $f_y(3, 6) = 8$.

Determine $\partial z/\partial s$ e $\partial z/\partial t$ quando s=1 e t=2.

Solução. Pela Regra da Cadeia, aplicada no ponto em que $s=1,\ t=2,$ e também x=g(1,2)=3, y=h(1,2)=6, temos

$$\frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial s} = f_x(3,6)g_s(1,2) + f_y(3,6)h_s(1,2) = (7)(-1) + (8)(-5) = -47$$
e. similarmente.

$$\frac{\partial z}{\partial t} = f_x(3,6)g_t(1,2) + f_y(3,6)h_t(1,2) = (7)(4) + (8)(10) = 108.$$

Questão 2. O formato de um morro pode ser aproximado perto do seu cume pela equação

$$z = 3000 - \frac{(2x^2 + 3y^2)}{1000}$$

O eixo x aponta para o Leste e o eixo y para o Norte e as unidades correspondem a um metro. Uma pessoa parte do ponto 100m a leste e 50m ao norte do cume.

- 1. (4 pontos) Se ela se dirigir para o Sudeste, ela começará a subir ou descer? Com que taxa?
- 2. (4 pontos) Em que direção e sentido ela deverá se dirigir para descer o mais rapidamente possivel.
- 3. (4 pontos) Em qual direção e sentido ela deverá andar para subir a uma taxa de elevação de 1/4?

Solução. 2.1. As derivadas parciais são: $z_x = \frac{-x}{250}$, $z_y = \frac{-3y}{500}$.

O valor delas no ponto
$$P = (100, 50)$$
 é : $z_x(100, 50) = \frac{-100}{250} = \boxed{-\frac{2}{5}}$ e $z_y(100, 50) = \boxed{\frac{-3}{10}}$

$$\Rightarrow \nabla z(100, 50) = (-\frac{2}{5}, -\frac{3}{10})$$
, é o gradiente de z no ponto P . E a derivada direcional

pedida $D_{\vec{u}}z(100,50)$ é na direção unitária \vec{u} do vetor $\vec{v}=(1,-1) \implies \vec{u}=(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}})$

$$\Rightarrow D_{\vec{u}}z(100,50) = \nabla z(100,50) \cdot \vec{u} = (-\frac{2}{5})(\frac{1}{\sqrt{2}}) + (-\frac{1}{10})(-\frac{1}{\sqrt{2}}) = \frac{-1}{10\sqrt{2}} < 0$$

- \Rightarrow A pessoa vai descer com uma taxa negativa de $-1/10\sqrt{2}$.
- **2.2.** Ela vai subir mais rápido na direção e sentido do gradiente $\nabla z(100, 50)$ e portanto, ela vai descer mais rapidamente na direção e sentido de $-\nabla z(100, 50) = \left(\frac{2}{5}, \frac{3}{10}\right)$ ou, também, na direção e sentido do vetor (4,3).

2.3. \rightarrow **1**^a **Opção.** Procuramos um vetor $\vec{u} = (a, b)$ tal que

$$D_{\vec{u}}z(100,50) = \left(-\frac{2}{5}\right)a - \left(\frac{3}{10}\right)b = \frac{1}{4}, \ a^2 + b^2 = 1$$
$$b = -\frac{4}{3}a - \frac{5}{6} \Rightarrow a^2 + \left(-\frac{4}{3}a - \frac{5}{6}\right)^2 = a^2 + \frac{16}{9}a^2 + \frac{20}{9}a + \frac{25}{36} = 1$$
$$\Rightarrow 100a^2 + 80a - 11 = 0 \Rightarrow a = \frac{-4 \pm 3\sqrt{3}}{10}, \ b = \frac{-3 \mp 4\sqrt{3}}{10}$$

Temos duas soluções
$$\boxed{\vec{u} = (\frac{-4+3\sqrt{3}}{10}, \frac{-3-4\sqrt{3}}{10})} e \boxed{\vec{u} = (\frac{-4-3\sqrt{3}}{10}, \frac{-3+4\sqrt{3}}{10})}.$$

Verificação de uma das soluções:

$$\left(-\frac{2}{5}\right)a - \left(\frac{3}{10}\right)b = \left(-\frac{2}{5}\right)\left(\frac{-4+3\sqrt{3}}{10}\right) - \left(\frac{3}{10}\right)\left(\frac{-3-4\sqrt{3}}{10}\right) = \left(-\frac{6}{50} + \frac{12}{10}\right)\sqrt{3} + \left(\frac{8}{50} + \frac{9}{100}\right) = \frac{1}{4}.$$

2.3. \to **2ª Opção.** Se θ_1 é o ângulo entre a direçao unitária $\vec{u} = (a, b)$ pedida e o gradiente $\nabla z(100, 50)$, então, como $|\nabla z(100, 50)| = 1/2$,

$$\nabla z(100, 50) \cdot \vec{u} = |\nabla z(100, 50)| \cdot |\vec{u}| \cos \theta_1 = \frac{1}{2} \cos \theta_1 = \frac{1}{4}$$

ou seja $\cos \theta_1 = \frac{1}{2}$. Temos duas possibilidades $\sin \theta_1 = \pm \frac{\sqrt{3}}{2}$.

Seja θ_2 o ângulo entre o gradiente $\nabla z(100, 50)$ e o eixo x. Então $\cos \theta_2 = -\frac{4}{5}$, $\sin \theta_2 = -\frac{3}{5}$. E seja α o ângulo entre a direção procurada \vec{u} e o eixo $\cos x \Rightarrow \alpha = \theta_1 + \theta_2$.

Pelas fórmulas do cosseno de uma soma e do seno de uma soma

$$\cos \alpha = \cos(\theta_1 + \theta_2) = \cos \theta_1 \cos \theta_2 - \sin \theta_1 \sin \theta_2$$
$$= (-\frac{4}{5})\frac{1}{2} - (-\frac{3}{5})\frac{\sqrt{3}}{2} = \frac{-4 + 3\sqrt{3}}{10}$$

que corresponde à possibilidade sen $\theta_1 = \frac{\sqrt{3}}{2}$. Isso dá, novamente, como primeira solução, $\vec{u} = (a, b)$ com $a = \frac{-4+3\sqrt{3}}{10}$, $b = \frac{-3-4\sqrt{3}}{10}$.

A outra resposta sai da segunda possibilidade sen $\theta_1 = -\frac{\sqrt{3}}{2}$.

Questão 3. Considere a função $f(x,y) = x^2 - y^2$

- 1. (4 pontos) Dê a equação do plano tangente ao gráfico de f no ponto correspondente a x = 2 e y = 1.
- 2. (4 pontos) Encontre e classifique os pontos críticos de f.
- 3. (4 pontos) Determine o valor máximo e o mínimo de f na região $x^2 + y^2 \le 8$.

Solução. 3.1. As coordenadas do ponto P_0 são $x_0 = 2, y_0 = 1, z_0 = f(2,1) = 4 - 1 = 3$ e a equação do plano tangente a z = f(x,y) em P_0 é

$$z - z_0 = f_x(x_0, y_0)(x - x_0) + f_y(x_0, y_0)(y - y_0),$$

ou seja,

$$z-3 = 4(x-2) + -2(y-1)$$
,

pois, $f_x = 2x$, $f_y = -2y$, $f_x(2,1) = 4$ e $f_y(2,1) = -2$.

3.2. O único ponto crítico é (0,0), pois,

$$f_x = 2x = 0, \ f_y = -2y = 0 \implies (x, y) = (0, 0)$$

E temos,

$$f_{xx} = 2$$
, $f_{yy} = -2$, $f_{xy} = 0$, $D = f_{xx}f_{yy} - (f_{xy})^2 = -4 \Rightarrow D(0,0) = -4 \ (0,0)$ é um ponto de sela e $f(0,0) = 0$

3.3. Os máximos e mínimos de f que estão no interior $x^2 + y^2 < 8$ do conjunto $g(x, y) = x^2 + y^8 \le 8$ encontram-se entre os pontos críticos de f e já foram achados acima.

Os máximos e mínimos de f que estão no fronteira $g(x,y)=x^2+y^2=8$ do conjunto $g(x,y)=x^2+y^8\leq 8$ serão achados agora usando Multiplicadores de Lagrange.

Ou seja, dados $f = x^2 - y^2$ sujeita à restrição $g(x,y) = x^2 + y^2 - 8 = 0$, queremos achar as soluções do sistema $\nabla f = \lambda \nabla g$, g = 0,

$$\begin{cases} 2x = \lambda 2x \\ -2y = \lambda 2y \\ x^2 + y^2 - 8 = 0, \end{cases}$$

o que abre duas possibilidades,

$$\begin{cases} x = 0 \Rightarrow y^2 = 8, \ y = \pm 2\sqrt{2} \Rightarrow \boxed{f(0, \pm 2\sqrt{2}) = -8} \quad \text{(Minimo)} \\ \lambda = 1 \Rightarrow y = 0 \Rightarrow x^2 = 8 \ x = \pm 2\sqrt{2} \Rightarrow \boxed{f(0, \pm 2\sqrt{2}) = -8} \quad \text{(Maximo)} \end{cases}$$