LISTA DE DISCIPLINAS

Integrais Impróprias

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


1682   

A trombeta de Torricelli, também conhecida como trombeta de Gabriel, em referência à passagem da bíblia na qual o arcanjo Gabriel anuncia o dia do julgamento com sua trombeta,  é uma figura geométrica bastante interessante. Ela é descrita a partir da rotação da função $1/x$ no domínio $x>1$ em relação ao eixo $x$. Calcule sua área e seu volume.



A área de uma superfície de revolução é dada por:

$A=\int_{a}^b 2 \pi f(x) \sqrt{1+f'(x)^2}\ dx$


Assim, temos, para a trombeta de Torricelli:

$A= \lim\limits_{a\rightarrow \infty}\left(2 \pi \int_{1}^{a}\ \frac{1}{x} \sqrt{1+\left(-\frac{1}{x^2}\right)^2}\ dx\right)$

Portanto, como $\sqrt{1+\left(-\frac{1}{x^2}\right)^2}>1$:

$A > \lim\limits_{a\rightarrow \infty}\left( 2 \pi \int_{1}^{a} \frac{1}{x} \ dx\right)= \lim\limits_{a\rightarrow \infty}\left( 2 \pi ln\ a\right)$


para $a\rightarrow \infty$, vemos que a área $A$ tende ao infinito.

Quanto ao volume, temos que:

$V= \lim\limits_{a\rightarrow \infty}\left( \pi \int_{1}^{a} \frac{1}{x^2}\ dx\right)$

Portanto, obtemos:

$V= \lim\limits_{a\rightarrow \infty}\ \pi \left(1-\frac{1}{a}\right)$

Que para $a\rightarrow \infty$ tende a $V=\pi$.


1805   

Dependendo da função e limites de integração, é possível transformar uma integral imprópria em uma integral ``própria'' com mesmo valor, por meio de uma substituição apropriada.

  1. Ilustre esse processo calculando a integral $\displaystyle \int_0^1 \sqrt{\dfrac{1+x}{1-x}} \, dx$ por meio da substituição $u=\sqrt{1-x}$.

  2. Tente calcular diretamente a integral (utilize algum recurso computacional se a integral estiver muito difícil). Compare os resultados obtidos.


1680   

Calcule a seguinte integral:

$\int_{0}^{\infty}{\frac{dx}{x^{1,001}}}$


Não converge.


1679   

Calcule a seguinte integral:

$\int_{0}^{\infty}{\frac{dx}{x^2+1}}$



Para resolver a integral, utilizamos a substituição $x=\tan(u)$, com $dx=\frac{du}{cos^2(u)}$. A integral equivalente, com os limites de integração escolhidos no primeiro quadrante, é:

$\int_0^{\frac{\pi}{2}}\frac{du}{\cos^2(u)\left(\tan^2(u)+1\right)}=\int_0^{\frac{\pi}{2}}\frac{du}{1}=u\rvert_0^{\frac{\pi}{2}}=\frac{\pi}{2}$


1802   

Sejam $f$ e $g$ funções contínuas tais que $0 \leq f(x) \leq g(x)$, para $x\geq a$. Utilizando conceitos de área, explique informalmente o porquê dos resultados abaixo serem verdadeiros.

  1. Se $\displaystyle \int_a^{+\infty} f(x) \, dx$ diverge, então $\displaystyle \int_a^{+\infty} g(x) \, dx$ diverge.

  2. Se $\displaystyle \int_a^{+\infty} g(x) \, dx$ converge, então $\displaystyle \int_a^{+\infty} f(x) \, dx$ converge e $\displaystyle \int_a^{+\infty} f(x) \, dx \leq \int_a^{+\infty} g(x) \, dx$.

Obs: estes resultados são chamados de testes de comparação para integrais impróprias.


699   

Calcule a integral imprópria $\int_{0}^{\infty }x^{2}e^{-x}dx$


$2$.


700   

Calcule a integral imprópria $\int_0^1 \frac{1}{\sqrt{1-x^2}} dx.$


$\pi/2$.


1804   

Encontre os valores de $p$ tais que a integral $\displaystyle \int_0^{+\infty} e^{px} \, dx$ converge.


1681   

Calcule a seguinte integral:

$\int_{0}^{\infty}{\frac{dx}{\sqrt{4-x}}}$


Não converge.


1684   

Calcule o valor de $p$ para a integral a seguir convergir:

$\int_{2}^{\infty}{\frac{dx}{x\left(ln\ x\right)^p}}$


1801   

Na teoria de eletromagnetismo, o potencial magnético de uma bobina circular em um ponto de seu eixo é dado por:

$$\displaystyle u = \dfrac{2\pi N I r}{k} \int_a^{\infty} \dfrac{dx}{(r^2+x^2)^{3/2}},$$

onde $N$, $I$, $r$, $k$ e $a$ são constantes com significados físicos apropriados. Calcule $u$.


1803   

Se $f$ e $g$ são funções contínuas tais que $0 \leq f(x) \leq g(x)$, para $x\geq a$, temos:
Se $\displaystyle \int_a^{+\infty} f(x) \, dx$ diverge, então $\displaystyle \int_a^{+\infty} g(x) \, dx$ diverge.

Se $\displaystyle \int_a^{+\infty} g(x) \, dx$ converge, então $\displaystyle \int_a^{+\infty} f(x) \, dx$ converge e $\displaystyle \int_a^{+\infty} f(x) \, dx \leq \int_a^{+\infty} g(x) \, dx$.

  1. Mostre (graficamente e algebricamente) que para $x \geq 1$, temos $e^{-x^2} \leq e^{-x}$.

  2. Calcule a integral $\displaystyle \int_1^{+\infty} e^{-x}\, dx$.

  3. O que podemos afirmar sobre a integral $\displaystyle \int_1^{+\infty} e^{-x^2}\, dx$?


1685   

Demonstre que $\int_{-\infty}^{\infty}{f(x)\ dx}$ pode ser diferente de $\lim\limits_{b \rightarrow \infty }\int_{-b}^{b}{f(x)\ dx}$.


Para isto, mostre que
$\int_{0}^{\infty}{\frac{2x\ dx}{x^2 +1}\ dx}$


diverge, e, portanto,
$\int_{-\infty}^{\infty}{\frac{2x\ dx}{x^2 +1}\ dx}$


também diverge. Depois, mostre que

$\lim\limits_{b \rightarrow \infty }\int_{-b}^{b}{\frac{2x\ dx}{x^2 +1}\ dx}=0$


1683   

Calcule o valor de $p$ para a integral a seguir convergir:

$\int_{1}^{2}{\frac{dx}{x\left(ln\ x\right)^p}}$