LISTA DE DISCIPLINAS

Integral definida

Selecione os exercícios por

Dificuldade

Categoria

Outros

Os botões acima permitem selecionar que tipos de exercício você deseja ver na lista.
Para retirar alguma categoria da lista, clique sobre o botão para toná-lo inativo. Para adicioná-la, clique novamente no botão.


1756   

Avalie a integral $\displaystyle \int_{-1}^1 (x^5+3) \sqrt{1-x^2} \, dx$ sem fazer nenhuma conta.


1120   

Com base no gráfico, avalie as seguintes integrais:

fig_int_definida_5.png

  1. $\int_0^1 (-2x+4)\ dx$
  2. $\int_0^2 (-2x+4)\ dx$
  3. $\int_0^3 (-2x+4)\ dx$
  4.  $\int_1^3 (-2x+4)\ dx$
  5. $\int_2^4 (-2x+4)\ dx$
  6. $\int_0^1 (-6x+12)\ dx$


  1. 3
  2. 4
  3. 3
  4. 0
  5. $-4$
  6. 9


1868   

A atmosfera da Terra absorve aproximadamente $32\%$ da radiação proveniente do Sol. A Terra também emite radiação (a maior parte em forma de calor) e a atmosfera absorve aproximadamente $93\%$ dessa radiação. A diferença entre a radiação que entra na Terra e a que sai é chamada efeito-estufa. Modoficações nesse equilíbrio podem afetar o clima da Terra. Seja $I_0$ a intensidade da radiação do Sol e $I$ a intensidade depois de percorrer uma distância $x$ na atmosfera. Se $p(h)$ é a densidade da atmosfera na altitude $h$, então a espessura ótica é $f(x)=k \displaystyle\int_0^x p(h) dh$, onde $k$ é uma constante de absorção e $I$ é dada por $I=I_0e^{-f(x)}$. Mostre que $dI/dx=-kp(x)I$. 


1117   

Dado que os números no gráfico representam o valor das áreas demarcadas, avalie as seguintes integrais:
fig_int_definida_2.png

  1. $ \int_0^2 f(x)\ dx$
  2. $ \int_2^4 f(x)\ dx$
  3. $ \int_0^4 f(x)\ dx$
  4. $ \int_0^1 f(x)\ dx$


  1. $4/\pi$
  2. $-4/\pi$
  3. $0$
  4. $2/\pi$


1119   

Dado que os números no gráfico representam o valor das áreas demarcadas, avalie as seguintes integrais:

fig_int_definida_4.png

  1. $ \int_{0}^{2} 5x^2\ dx$
  2. $ \int_0^2 (x^2+3)\ dx$
  3. $ \int_{1}^3 (x-1)^2\ dx$
  4. $ \int_2^4 \big((x-2)^2+5\big)\ dx$


  1. $40/3$
  2. $26/3$
  3. $8/3$
  4. $38/3$


1116   

Dado que os números no gráfico representam o valor das áreas demarcadas, avalie as seguintes integrais:

fig_int_definida_1.png

  1. $\int_0^1 f(x)\ dx$
  2. $\int_0^2 f(x)\ dx$
  3. $\int_0^3 f(x)\ dx$
  4. $\int_1^2 -3f(x)\ dx$


  1. $-59$
  2. $-48$
  3. $-27$
  4. $-33$


1655   

Quais valores de $a$ e $b$ minimizam o valor de

$\int_a^b\left(x^4-2x^2\right)dx$?


1124   

Com base no gráfico, avalie as seguintes integrais:

fig_int_definida_9.png

  1. $\int_0^2 f(x)\ dx$
  2. $\int_2^4 f(x)\ dx$
  3.  $\int_0^4 f(x)\ dx$
  4. $\int_0^4 5f(x)\ dx$


  1. $\pi$
  2. $\pi$
  3. $2\pi$
  4. $10\pi$


1258   

Calcule a seguinte integral:

   $\int \dfrac{x^{3}+x}{x-1}dx.$


1128   

Um objeto é lançado para cima com uma velocidade, em pés por segundo, dada por $v(t) = -32t+64$, de uma altura de $48$ pés.

  1. Qual a velocidade máxima do objeto?
  2. Qual o deslocamento máximo do objeto?
  3. Em que momento ocorre o maior deslocamento do objeto?
  4. Em que momento o objeto alcança a altura de $0$ pés?

 Dica: encontre o momento no qual o deslocamento é $-48ft$


  1. $64ft/s$
  2. $64ft$
  3. $t=2$
  4. $t=2+\sqrt{7}\approx 4.65s$.


1118   

Dado que os números no gráfico representam o valor das áreas demarcadas, avalie as seguintes integrais:
fig_int_definida_3.png

  1. $ \int_{-2}^{-1} f(x)\ dx$
  2. $ \int_1^2 f(x)\ dx$
  3. $ \int_{-1}^1 f(x)\ dx$
  4. $ \int_0^1 f(x)\ dx$


  1. $4$
  2. $4$
  3. $-4$
  4. $-2$


1757   

Mostre que $\displaystyle \int_0^x \dfrac{\sin t}{t+1} \, dt > 0$

para todo $x>0$.


1125   

Seja:

  • $\int_0^2{f(x)dx} = 5$
  • $\int_0^3{f(x)dx} = 7$
  • $\int_0^2{g(x)dx} = -3$ e
  • $\int_0^3{g(x)dx} = 5$

A partir destes valores, calcule as seguintes integrais:

  1. $\int_0^2 \big(f(x)+g(x)\big) \ dx$
  2. $\int_0^3 \big(f(x)-g(x)\big) \ dx$
  3. $\int_2^3 \big(3f(x)+2g(x)\big) \ dx$
  4. Encontre valores para $a$ e $b$ tal que:
    $\int_0^3 \big(af(x)+bg(x)\big) \ dx=0$



  1. $2$
  2. $2$
  3. $22$
  4. $a=-\frac{5}{7}b,\quad b\in\mathbb{R}$


1126   

Seja:

  • $\int_0^3{s(t)dt} = 10$
  • $\int_3^5{s(t)dt} = 8$
  • $\int_3^5{r(t)dt} = -1$ e
  • $\int_0^5{r(t)dt} = 11$

A partir destes valores, calcule as seguintes integrais:

  1. $\int_0^3 \big(s(t) + r(t)\big)\ dt$
  2. $\int_5^0 \big(s(t) - r(t)\big)\ dt$
  3. $\int_3^3 \big(\pi s(t) - 7r(t)\big)\ dt$
  4. Encontre valores para $a$ e $b$ tal que:
    $\int_0^5 \big(ar(t)+bs(t)\big) \ dt=0$


  1. $22$
  2. $-7$
  3. $0$
  4. $b=-\frac{11}{18}a,\quad a\in\mathbb{R}$


1656   

Demonstre que não é possível que o valor de $\int_0^1\sin(x^2)\ dx$ seja $2$. Depois, utilizando a desigualdade $\sin x \leq x$, válida para $x \geq 0$, determine um limitante superior para esta integral.



Sabemos que $\sin x \leq 1,\,\forall\,x\in\mathbb{R}$. Assim, como $\int_a^b f(x)dx \leq max\_{a \leq x \leq b} f(x) (b-a)$, podemos dizer que $\int_0^1\sin(x^2)\ dx \leq 1$.

Utilizando a desigualdade $\sin x \leq x$, podemos determinar de maneira ainda mais precisa um limitante superior para a integral.

 $\int_0^1\sin(x^2)\ dx \leq \int_0^1x^2\ dx = \frac{1}{3}x^3 \vert^1_0=\frac{1}{3}$


1383   

De acordo com s primeira lei de Kirchhoff para circuitos elétricos $V=RI+L(dI/dt)$, onde as constantes $V$, $R$ e $L$ denotam a força eletromotriz, a resistência e a indutância, respectivamente, e $I$ denota a corrente no instante $t$. Se a força eletromotriz é interrompida no instante $t=0$ e se a corrente é $I_0$ no instante da interrupção, prove que $I=I_0 e^{-Rt/L}$.


1755   

Avalie a integral $\displaystyle \int_{-1}^1 x^3 \sqrt{1-x^2} \, dx$ sem fazer nenhuma conta.


1121   

Com base no gráfico, avalie as seguintes integrais:

fig_int_definida_6.png

  1. $\int_0^2 f(x)\ dx$
  2. $\int_0^3 f(x)\ dx$
  3. $\int_0^5 f(x)\ dx$
  4. $\int_2^5 f(x)\ dx$
  5. $\int_5^3 f(x)\ dx$
  6. $\int_0^3 -2f(x)\ dx$


  1. $-4$
  2. $-5$
  3. $-3$
  4. 1
  5. $-2$
  6. 10


1657   

Demonstre que  $2\sqrt{2} \leq \int_{0}^{1}{\sqrt{x+8}dx} \leq 8$.


1626   

A atmosfera da Terra absorve aproximadamente $32\%$ da radiação proveniente do Sol. A Terra também emite radiação (a maior parte em forma de calor) e a atmosfera absorve aproximadamente $93\%$ dessa radiação. A diferença entre a radiação que entra na Terra e a que sai é chamada efeito-estufa. Modificações nesse equilíbrio podem afetar o clima da Terra. Seja $I_0$ a intensidade da radiação do Sol e $I$ a intensidade depois de percorrer uma distância $x$ na atmosfera. Se $p(h)$ é a densidade da atmosfera na altitude $h$, então a espessura ótica é $f(x)=k \displaystyle\int_0^x p(h) dh$, onde $k$ é uma constante de absorção e $I$ é dada por $I=I_0e^{-f(x)}$. Mostre que $dI/dx=-kp(x)I$.


1654   

Quais valores de $a$ e $b$ maximizam o valor de

$\int_a^b\left(x-x^2\right)dx$?


$a=0$ e $b=1$.


1123   

Com base no gráfico, avalie as seguintes integrais:

fig_int_definida_8.png

  1. $\int_0^1 (x-1)\ dx$
  2. $\int_0^2 (x-1)\ dx$
  3. $\int_0^3 (x-1)\ dx$
  4. $\int_2^3 (x-1)\ dx$
  5. $\int_1^4 (x-1)\ dx$
  6. $\int_1^4 \big((x-1)+1\big)\ dx$


  1. $-1/2$
  2. $0$
  3. $3/2$
  4. $3/2$
  5. $9/2$
  6. $15/2$


1122   

Com base no gráfico, avalie as seguintes integrais:

fig_int_definida_7.png


  1. $\int_0^2 f(x)\ dx$
  2. $\int_2^4 f(x)\ dx$
  3. $\int_2^4 2f(x)\ dx$
  4. $\int_0^1 4x\ dx$
  5. $\int_2^3 (2x-4)\ dx$
  6. $\int_2^3 (4x-8)\ dx$


  1. $4$
  2. $2$
  3. $4$
  4. 2
  5. $1$
  6. 2


1393   

O calor específico de um metal como a prata é constante a temperaturas $T$ acima de 200° K. se a temperatura do metal aumenta de $T_1$ a $T_2$, a área sob a curva $y=c/T$ de $T_1$ a $T_2$ é chamada variação de entropia $\Delta S$, que é uma medida da desordem molecular do sistema. Expresse $\Delta S$ em termos de $T_1$ e $T_2$,


1257   

Calcule a seguinte integral:
 $ \int_4^{\infty}e^{-\frac{y}{2}}dy$.


1382   

Durante o primeiro mês de crescimento de produtos como milho, algodão e soja, a taxa de crescimento (em gramas/dia) é proporcional ao peso presente $W$. Para determinada espécie de algodão, $dW/dt=0,21W$. Preveja o peso de uma planta no término de um mês ($t=30$), se a planta pesa 70 miligramas no início do mês.


1127   

Um objeto é lançado para cima com uma velocidade, em pés por segundo, dada por $v(t) = -32t+96$; de uma altura de $64$ pés.

  1. Qual a velocidade inicial do objeto?
  2. Em que momento o objeto tem deslocamento nulo?
  3. Quanto tempo leva para o objeto retornar a sua posição inicial?
  4. Quando o objeto alcançará uma altura de $210$ pés?


  1. $96ft/s$.
  2. $6s$.
  3. $6s$.
  4. Nunca, a altura máxima é $208ft$.